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OH H-PRIMITIVE LATTICBS 

Václav SLAVÍKf Praha 

Abstract: This paper is concerned with h-primitive lat-
tices. There are shown infinitely many primitive classes of 
lattices which are h-characterizable by means of a single 
lattice and are not characterizable. 

Key words? Primitive class* splitting lattice, projee-
tive lattice, characterizable class9 h-characterizable class. 

AMS: 06A20 Ref. 2.: 2.724.8 

Given a set E of finite lattices* we shall denote by 

N(E) the class of all lattices that contain no sublettice 

isomorphic to a lattice in B and ty *n(B) (H^CE)) the 

class of all lattices L such that no homomorphic image of 

any sablattioe (finite snblattlce) of L belongs to B . A 

class K of lattices will be called characterizable ( h-cha­

racterizable # hf-characterizable) if there exists a set £ 

of finite lattices such that K - H(B) (K - Hh(B)f K -

" ^ ( B ) ) . If B is a finite set of finite lattices * . % » . . . 

...,1^1 , the classes N(E), Nh(E)and NHf(E) will be denoted by 

I(Llf...fI^)f Ijjd^,...,!^) and N ^ (1̂ -.... ,1^), respecti­

vely. A finite lattice L is said to be primitive (see £33) 

( h-primitivef hf-primitive) if the class I(L) (\(L) , 

Hgf (D) is primitive. It is evident that 1(E) 3 N^(E) 2 

2 Hn(B). If K • 9(B) is a characterizable primitive class 
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of lattlores and a lattice L doss not belong to Nn(E) then 

there exists a homcmorphism of a sublattice S of L onto a 

lattice A in E • Since A + K , S ̂  K and L i K . We 

have proved that K is hf-characterizable and h-characte-

rizable and K « N(E) « -^(E) « Nfl(E) • Similarly we can 

prove that any hf-oharacterizable primitive class of latti­

ces K « -^(B) is h-characterizable and K « H^(E) • 

• Sn(E) • Especially, any primitive lattice L is hf-primi­

tive and N(L) « Nj^L) 5 any hf-primitive lattice L is 

h-primitive and N^(L) « Nn(L) • If K is an hf-characte­

rizable primitive class of lattices* then a lattice L belongs 

to K iff any finite sublattice of L belongs to K and 

thus K is characterizable (see 111). The purpose of the pre­

sent paper is to show that there exist h-prlmit ive lattices 

that are not hf-primitive, hf-primitive lattices that are 

not primitive and h-characterizable primitive classes of lat­

tices that are not characterizable* Notice that IgoSin (123) 

has shown that there exist h-oharacterizable primitive clas­

ses of algebras with one unary operation that are not charac­

terizable* 

McKenzie (151) Investigates splitting lattices• i.e. fi­

nite subdirectly irreducible lattices B such that there ex­

ists an equation p » q and any primitive class K of latti­

ces satisfies precisely one of the following conditions: eit­

her K satisfies p =- q or B e K . 

Theorem 1. A finite lattice B is h-primitive if and 

only if B is a splitting lattice* 

Proof* Let B be an h-primitive lattice* The class 
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Hn(B) is finitely based (£23) and thus it can be characteri­

zed by an equation p = q . Let K be a primitive class of 

lattices that does not satisfy the equation p « q • Then the­

re is a lattice L € K f L $ K
tt(B) • Since B is a homo-

morphic image of a sublattice of L f B € K • The equation 

p « q is not satisfied in B and thus B is a splitting 

lattice. But if B is a splitting lattice, then there exists 

(see 15]) a homomorphism f of PL(k) f the free lattice with 

k generators, onto B and pf q e PL(k) such that Ker f 

is the greatest congruence of PL(k) that separates pf q • 

We shall show that -*n(B) is the class of all lattices satis­

fying the equation p » q . If L + Hn(B) f then there is a 

homomorphism of a sublattice of L onto B and since p • q 

is not satisfied in B f the equation p = q is not satisfied 

in L • If a lattice L does not satisfy p » q f then there 

exists a homomorphism h of PL(k) into L such that 

h(p) + h(q) • Since Ker h s Ker f f there exists a homomorph­

ism g of L into B such that g o b - f and thus 

L $ \ ( B ) • So the class \(B) is primitive, i.e. B is la-

primitive. 

Theorem 2. Let B be a finite lattice. The following 

conditions are equivalent: 

(1) B i s hf-primitive. 

(2) B is h-primitive and \ ( B ) i s characterizable. 

(3) B is subdirectly irreducible and there exists a 

homomorphism f of a f inite sublattice L of a free latt ice 

onto B • 

Moreover, i f B is hf-primitive, then N-̂ CB) » N
n(B) « H(E)f 
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where B is the set of all lattices A such that there ex­

ist homomorphisms g of L onto A and h of A onto B 

with h o g « f . 

Proof. Assume (1). Then B Is evidently h-primitive, 

Bh(B) m B^(B) and since any hf-characterizable primitive 

class is characterizablef we have (2). Suppose (2). Let 

Hn(B) • H(B) . Since B is a homomorphic image of some FL(k)„ 

FL(k) does not belong to -^(B) » 1(B) 9 there exists a fini­

te eublattice C of FL(k) isomorphic to a lattice in E . 

C | 1(B) m Hn(B) and we get that there is a homomorphism of 

a sublattice L of C onto B . It is evident that L is a 

eublattice of PL(fc) . Clearly* any h-primitive lattice mast 

be subdireotly irreducibls. Bow, assume (3)» McKenzie (£53) 

has shown that any finite sabdlrectly irreducible lattice which 

is a homomorphic image of a free lattice is a splitting latti­

ce, i.ef h-primitive. We shall show that H_(B) « Ij-(B) . 

Clearly, IQB £ 1^(B) . If a lattice S + *n(B) » there ex­

ists a homomorphism h of a eublattice C of S onto B . 

Since L is projective (U3f[51)f there is a homomorphism g 

of L into C such that h © g =- f . Since g(L) Is a finite 

sublattice of S , S + H^(B) . Thus I^B) - 1^(B) and so 

B is hf-primitive. fhe proof can now be finished easily* 

Given a finite lattice L f define a lattice L* in this 

ways L Is a sublattioe of L* f L* s L contains exactly 

three elements a, vv a ; a. is the smallest and v the grea­

test element of L* and a is comparable with no element of 

-0 • 

Theorem 3. Let L be a h-primitive lattice* Then L* 
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is h-ppimitive, too* Moreover, the following holds: 

(1) If Hh(L) is the class of all lattices satisfying an 

equation p(x-Lf*..txn) « q(x1,...,xn) , then Hn(L* ) i« the 

class of all lattices satisfying the equation p * (x1,.«. 

-•»xn+l> " °* ( xlf*» xn+l ) • where ** ̂ f « t W " 
« p(tlf...ftn) t q*(xlt...,xn+1) « q(tlf...ttn) and tk « 

• (x^ A i) v o ( k « lt2f...fn) f o « (xx A ... A xn) v 

v (xn+l A (xl v ••• v "n1** * * (xl v ••• v V A (*ii+iv 

^(Xj A ... A xft)) • 

(2) L* is hf-ppiaitlve iff L is .hf-primitive. 

(3) L* is ppijaitive iff L is primitive. 

Proof, Let B"n(L) he the class of all lattices satis­

fying the equation p(x1,...txn) » q(x1,...txn) . Let a1#... 

• ••fan , d be elements of a lattice S such that p * (a-̂ ,... 

• ••tanfd)4- q* (alt...fantd) • Put p « {
ai v*»* y an) A 

A (d v (a-̂ A # # # A an)) t s • (a-|A ## A a ^ v (d A (a-̂ v ••• 

.. v an)) t JL^ « (ak A r) v s ( k » lf2f...tn) • Since 

p* (alt...tan,d) « p(X l f... tX n) and q* (alf...tan,d) « 

« q(«tlf...t iL) t the equation p « q is not satisfied in 

the interval C S,P ] * Tfeere exists a homomopphiam f of a sab-

lattice s' of C sfp] onto L • Since d A r « d A S and 

dvp * dvs t the set S u < d t d A r f d v r ! forms a sablattice 

of S that can he homomopphically mapped onto L* • Thus 

S 4 H h ( L * ) • Tne equation p • q is not satisfied in L and 

thus there exist elements alt...tan of L suoh that 

p(alf...tan)4» q(alt...fan) . Clearly, p * (alf...,anta) « 

« P ( a i f » » a
n )

 an<* q* (alt...tanfa) « q(alf...tan) • The 

equation p* « q* la not satisfied in L and we get that any 
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l a t t i c e s a t i s f y i n g p* » q* belongs to Wn(l** ) . I t i s ea­

sy to show that L i s a homomorphic Image of a f i n i t e sab-

l a t t i c e of a free l a t t i c e ( L i s a sublat t ice of a free l a t ­

t i c e ) i f f L* has the same property. 

How we sha l l show that there e x i s t h-primitive l a t t i c e s 

that are not hf -pr imit ive . 

Lemma 1* For any pos i t ive integer n f the l a t t i c e Bn 

in Pig* 1 is .generated by the elements a f b f c f and there ex­

i s t s a homomorphism f of Bn onto the l a t t i c e BQ in Fig# 

1 such that f n ( a ) - a f f n (b ) - b f f n ( c ) - c • 

Proof* I t i s easy to verify that the elements o , d f e f f f 

k#h fg f I f p f i f r f s f t f t t f v f are in the sublat t ice C of Bn ge--

nerated by { a f b f c } • Since t^ * b vjl , ^ * i v c » 8 l * 

• a v Z f 2- • 8 i A i r i t tti * * 1 A tt • 1"e h a T e * e l » * l , t t l f V l » 

z ^ £ C • Assume 4 s i . t i f t t i f v i » z i l £ C • Since s^v t^ - s 1 + l f 

v i v tti " * i + l » e i + l A v i + l " Z i+1 ' b v * i + l m * i+ l a n d 

t i + 1 A a m n i + 1 f we have i s i + i . t i + i » t t
i + i ^ i + i » z i + 1 } B C • Thas 

we get that C • B • One can eas i l y ver i fy that the mapping 

fn of Bn into B0 defined by f n ( s k ) - s f f n ( t k ) • t f 

*n(\) » ^n(^) • tt » ****** * v f o r a 1 1 k i l - s k ^ n , 

and f n ( x ) • x for a l l other z e B . i s a homomorphism of 

Bn onto B0 such that f n ( » ) * a t * n ( D ) * D t * n ( c ) * c • 

Theorem A* The l a t t i c e BQ in P i g . l i s h-primitive and 

i t i s not hf -pr imit ive . 

Proof* McKenzie (£53) has shown that BQ i s a s p l i t t i n g 

l a t t i c e f i . e . , by Theorem l f BQ i s h-primitive. Suppose that 

B i s hf -pr imit ive . By Theorem 2 f there e x i s t s a homomorphism 

f of a sublat t ice C of a free l a t t i c e onto BQ • Since C 
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is projective (C43,C5])t there exist homomorphisms gn of C 

into Bn such that fn© gn • f , There exist elements a'f b', 

c' of G such that gn(a') » a , g^b ') « b f gn(c ') • c » 

Thus gn are homomorphism of C onto B and so C cannot 

be finite; a contradiction* 

Corollary 1. Any finite sublattice of a free lattice sa­

tisfies the inclusion 

(av(bAc))(bv(aAc))(cv (a Ab)) £ (aA(bvc))v (bA(avc)) v 

v (c A (avb)) • 

Proof. All finite sublattices of a free lattice belong to 

Nn(BQ) and %(^ 0)
 i s tne class of all lattices satisfying 

this inclusion (see C53). 

Starting from the lattice BQ in Fig. 1, we can obtain by 

Theorem 3 an infinite sequence of h-primitive lattices that 

are not hf-primitive. Hereby we obtain infinitely many h-cha-

raoterizable primitive classes of lattices that are not charac-

terizable. 

Finally we shall give a construction of hf-primitive lat­

tices that are not primitive. 

Let A be the lattice given in Fig. 1 and let L be a 

primitive lattice (i.e. a finite subdirectly irreducible sub-

lattice of a free lattice) of cardinality greater than two* De­

fine a lattice A(L) in this way: A(L) « A u L f A and L 

are sublattices of A(L) .. XAJT • xAa • X A C and xvy « 

« xva - xvo for all xe A • y € L . 

Lemma 2. The lattice A(L) is a sublattice of a free 

lattice* 

Proof. We shall show that A(L) is projective. Let f 
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be a homomorphism of a lattice S onto A(L) . Since A is 

projective (see T3.]fC53)f there exists a sublattice A ' of 

S such that f|., is an isomorphism of A' onto A . Let 

a'e A" and b'e A' be such that f(a') » a and f(b') « b . 

If o c S and f(c) e L f then f((cvb')Aa ) • f(o) . The 

interval C b' ,a 'J is mapped by f onto L . The lattice L 

Is projective and thus there exists a sublattice L of 

[b'fa'3 suoh that fU/ is an isomorphism of L' onto L • 

The set A'w L' forms a sublattice of S and f|./ . w is 

an isomorphism of A'u L' onto A(L) . 

If we identify in A(L) the greatest element v of L 

with a and the smallest element a of L with b , we get 

a subdirectly irreducible lattice B(L) that is a homomorphic 

image of A(L) • Since v is join reducible, i.e. there are 

v-̂  f v2 € L such that • + •, f • * v2 •
 v * Di v v2 » w e get 

v ^ v2 - e A f in B(L) and since e A f £ v^ f e A f 4- v2 • 

e $ v-̂ v v2 9 t .£ vx v v2 *** B ^ » t n e lat*ioe B(L) i s no* 

a sublattice of a free lattice. Using Theorem 2 we obtain 

Theorem 5> The lattice B(L) is hf-primitive and B(L) 

is not primitive. 

Since the lattices 1^ ( n « lf2f...) in Fig. 1 are pri­

mitive (see [33,115]) we have that lattices Bd^) ( n * 1,2,.. 

are hf-primitive and 3(1^) a?e not primitive. Using Theorem 

3 we can obtain other examples of suoh lattices* 
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