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ON H-PRIMITIVE LATTICES
Véclav SLAVIK, Praha

Abitgagt: This paper is concerned with h-primitive lat-
tices, ere are shown infinitely many primitive classes of
lattices which are h-characterizable by means of a single
lattice and are not characterizable.

K rdg: Primitive class, splitting lattice, projee-
tive lattice, characterizable class, h-characterigzable class.

AMS: 06420 Ref. Z.: 2.724,8

Given a set E' of finite lattices, we shall denote by
N(E) the class of all lattices that contain no sublattice
isomorphic to a lattice in E and Yy lh(E) (lht(E)) the
class of all lattices L such that no homomorphic image of
any sublattice (finite sublattice) of L belongs to E . A
ciass K of lattices will be called characterizable ( h-cha-
racterizable, hf-characterizable) if there exists a set E
of finite lattices such that K = N(E) (K = N, (E), K =
= K, o(E)). If E 1s a finite set of finite lattices {L;,...
eeesly} , the olasses N(E), Ny (E)and NHf(E) will be denoted by
N(Lyyeoesly), Wp(Lyseeesly) and Hypo(Lye...,I,), respecti-
vely, A finite lattice L is said to be primitive (see [31])
( h-primitive, hf-primitive) if the class N(L) (N, (L) ,
Hpe(L)) 18 primitive. It is evident that N(E) 2 N, .(E) =
2 Hy(E), If K = N(B) is a characteriszable primitive class
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of lattices and a lattice L does not belong to K, (E) then
there exisis a homomorphism of a sublattice S of L onto a
lattice A in E , Since A¢ K, S¢ K and L ¢ K, Ve
have proved that K 1s hf-characterizable and h-characte-
rizable and K = N(E) = Np.(E) = Kh(E) . Similarly we can
prove that any hf-characterizable primitive class of latti-
ces K = N, ,(E) is h-characterizable and K = Np,(E) =

= H,(E) . Especially, any primitive lattice L is hf-primi-
tive and N(L) = Nhf(L) s any hf-primitive lattice 1L 1is
h-primitive and Nhf(L) = Nh(L) « If K is an hf-characte-
rizable primitive class of lattices, then a lattice 1L belongs
to K 1iff any finite sublattice of L belongs to K and
thus K is characterizable (see [11). The purpose of the pre-
sent paper 1s to show that there exist h-primitive lattices
that are not hf-primitive, hf-primitive lattices that are
not primitive and h-characterizable primitive classes of lat-
tices that are not characterizable, Notice that Igodin (121)
has shown that there exist h-characterizable primitive clas-
ses of algebras with one unary operation that are not charac-
terizable,

McKenzie ([5]) investigates splitting lattices, i.e, fi-
nite subdirectly irreducible lattices B such that there ex-
ists an equation p = q and any primitive class K of latti-
ces satisfies precisely one of the following conditions: ejt-
herl K satisfies p=q or Be K,

Theorem 1., A finite lattice B is h~primitive if and
only if B 1s a splitting lattice.
Proof. ILet B be an h-primitive lattice. The class
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N, (B) 4is finitely based ([2)) and thus it can be characteri-
zed by an equation p = g « Let K be a primitive class of
lattices that does not satisfy the equation p = q . Then the-
re is a lattice L€ K, L ¢ K (B) . Since B is a homo-
morphic image of a sublattice of L , Be€ K ., The equation

p =q is not satisfied in B and thus B is a splitting
lattice. But if B 1is a splitting lattice, then there exists
(see [5]1) a homomorphism f of PFL(k) , the free lattice with
k generators, onto B and p, g€ FPL(k) such that Ker £

is the greatest congruence of PFL(k) that separates p, q »
We shall show that Nh(B) is the class of all lattices satis-
fying the equation p = q . If L & N,(B) , then there is a
homomorphism of a sublattice of L onto B and since p = g
is not satisfied in B , the equation p = q 1is not satisfied
in L . If &8 lattice I does not satisfy p = q , then there
exists a homomorphiem h of PFL(k) into L such that

h(p) #+ h(g) . Since Ker h & Ker £ , there exists a homomorph-
iem g of I into B such that goh = f and thus

L¢ N, (B) . So the class Nh(B) is primitive, i.e. B is h-
primitive,

Theorem 2, Let B be a finite lattice. The following
conditions are equivalent:

(1) B 4is hf-primitive,

(2) B is he-primitive and K, (B) is characterizable,

(3) B is subdirectly irreducible and there exists a
homomorphism f of a finite sublattice I of a free lattice
onto B .

Moreover, if B 1s hf-primitive, then Nhr(B) = Nh(B) = N(E),
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where E 1is the set of all lattices A such that there ex-
ist homomorphisms g of L onto A and h of A onto B
with hega=¢f,

Proof. Assume (1), Then B 1is evidently h-primitive,
lh(B) = HM(B) and since any hf-characterizable primitive
class is characterizable, we have (2). Suppose (2). Let
Ny (B) = N(E) . Since B 1is & homomorphic image of same PL(k),
PL(k) AQoes not belong to lh(B) = N(E) , there exists a fini-
te sublattice C of PL(k) 1isomorphic to a lattice in E .,
C¢ N(B) = llh(B) and we get that there is a homomorphism of
a sublattice L of C onto B ., It is evident that 1 is s
sublattice of PL(k) . Clearly, any h-primitive lattice must
be subdirectly irreducibls, Now, assume (3), McKenzie ([5])
has shown that any finite subdirectly irreducible lattice which
is & homomorphic image of a free lattice is a splitting latti-
ce, i.e, h-primitive. We shall show that K, (E) = N .(B) .
Clearly, N,B<S N, .(B) . If a lattice S ¢ Ih(B) » there ex-
ists a homomorphism h of a sublattice C of S8 onto B .
Since 1 is projeotive ([4],[5]), there is a homomorphism g
of L into C such that hog = f , Since g(IL) 1s a finite
sublattice of S, S¢ N,o(B) . Thus Ny (B) = X, .(B) and so
B 1is hf-primitive. The proof can now be finished easily.

Given a finite lattice L , defime a lattice L* in this
way: L 4s a sublattice of L*, L*\ L contains exactly
tln;oq elements u, v, a ; u 1s the smallest and v the grea-
test element of L* and a is comparable with no element of
L.

Theorem 3. Let L be a h-primitive lattice. Then L*



is h-primitive, too. Moreover, the following holds:

(1) 1r llh(I.) is the class of all lattices satisfying an
equation p(x;,eee9xy) = q(xyeeeesx,) 4 then lh(I-") is the
class of all lattices satisfying the equation p* (xyjece
eeesXpi1) = 9% (Xy,0009Xp,q) » where p¥ (Xy,e00,Xp,y) =

= P(Egsecasty) 5 Q% (XypeeenXpyg) = qlty,0ee,ty)) and ¥ =
= (pAi)vo (k=1,2,000ym) , 0= ()~ see AXy) V
Vg Aa@mve.vn)), 1=(xv..v)a (Xp41 ¥
vz A eee Axn)) .

(2) 1* is nf-primitive iff I 4is hf-primitive.

(3) L¥ dis primitive iff I 1is primitive.

Proof. Let lh(L) be the class of sll lattices satis-
£ying the equation p(xl,...,xn) = q(xy50009x,) o Lot 87,000
eces8y o d be elements of a lattice S such that p* (a),...
eoespsd) & g* (87,00008,,d) o+ Put r = (a3v..ovay) A
Aldv (ajnceenay)) , = (a74.0 Aa ) v (dA (a7 e,
cevay)) , ‘Q'k = (A r)ve (k=1,2,...,n) . Since
P* (83500098 ,d) = p(Lyy0eey £y) and q* (83500098y,d) =
= q(Lyyeeey En) , the equation p = q 4is not patisfied in
the interval [ s,r] ., There exists a homomorphism ‘f of a sub-
lattice S~ of [s,r] onto L, Since dA r=d A s and
dvr = dve , the set Su{d,dAr, dvr? forms a sublattice
of S that can be homomorphically mapped onto L* . Thus
S ¢ lh(L*) e The equation p = g is not satisfied in 1 and
thus there exist elements Bqrecesly of L such that
play,...,8,) + qlay,...,a,) o Clearly, p"‘(al,....an.a) =
= p(ay,...08,) and q* (a3,...08,,8) = q(ayseee0a)) o The
equation p* = q* is not satisfied in L and we get that any
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lattice satisfying p* = g* belongs to N (L*) . It is ea-
sy to show that 1L 1s a homomorphic image of a finite sub-
lattice of a free lattice ( L is a sublattice of a free lat-
tice) iff L* has the same property.

Now we shall show that there exist h-primitive lattices
that are not hf-primitive,

Lemma 1, For any positive integer n , the lattice B
in Pig. 1 is.generated by the elements a,b,c , and there ex~
ists a homomorphism fn of B, onto the lattice B, in Fig.
1 such that f (a) =a , £,(0) =Db, f (c)=0c.

Proof. It is easy to verify that the elements o,d,e,f,
k,h,g, L,p,1,r,8,t,u,v , are in the sublattice C of B, ge-
nerated by {a,b,ct . Since t; =bvl , v, =Ave, 8 =

=avld , z,= 8)Avy » uy = %¥;Au, we have {sl,tl,nl,vl,

1
513 € C ., Assume {si,ti,ui,vi,zi} € C. Since syvuy = 84,4,
ViV Ry = Vg0 By gAYy T Bg4 0 bvzi+1 = ty,, and
B140A W = Uy, o Vo hAve {8y,0%5,)005,9075410%4 8 € C o Thus
we get that C = Bn » One can easily verify that the mapping
£, of B, into B, defined by f, (s ) =s , £,(t,) =t ,
rn(uk) = rn("k) =u, fn('k) =v for all k , 1€ k£n,
and fn(x) = x for all other x € .Bn s 1s a homomorphism of

B, onto B, -such that fn(a) =a , fn(b) =b, fn(c) =C .

Theorem 4. The lattice Bo in Fig.l 4is h-primitive and
it is not hf-primitive,

Broof. MNcKenzie ([5]1) has shown that B, 1s a splitting
lattice, 1.6., by Theorem 1, Bo is he-primitive. Suppose that

Bo is hf-primitive. By Theorem 2, there exists a homomorphism

£ of a sublattice C of a free lattice onto Bo e Since C
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is projective ([41,(5)), there exist homomorphisms g, of C
into B, such that fno &, = £ . There exist elements n', b',
¢ of C such that g (a) =a, g,(b) =1, gn(c’) =c .
Thus g, are homomorphism of C onto Bn and so C cannot
be finite; a contradiction.

Corollary 1. Any finite sublattice of a free lattice sa-
tisfies the inclusion
(av(®ac))(bv(anc))(ev(aab)) & (aa(dbve))v(balave)) v
vica(avd)) .

Proof.  4ll finite sublattices of a free lattice belong to
Nh(Bo) and Hh(Bo) is the class of all lattices satisfying
this inclusion (see [5]).

Starting from the lattice Bo in Pig. 1, we can obtain by
Theorem 3 an infinite sequence of h-primitive lattices that
are not hf-primitive. Hereby we obtain infinitely many h-cha-
racterizable primitive classes of lattices that are not charac-
terizable.

Finally we shall give a construction of hf-primitive lat-
tices that are not primitive,

Let A be the lattice given in Fig., 1 and let L be a
primitive lattice (i.e. a finite subdirectly irreducible sub-
lattice of a free lattice) of cardinality greater than two, De=-
fine a lattice A(L) in this way: A(L) = Au L, A and L
are sublattices of A(L) , XAy = xAa = XAc and xvy =

= xva = xvo forall xe A, yel.

Lemma 2. The lattice A(L) is a sublattice of a free
“lattice,
Proof. We shall show that A(L) 41s projective., Let ¢

- 511 -



be a homomorphism of a lattice S onto A(L) ., Since A is
projective (see [3],[5]), there exists a sublattice A ° of
S such that r|A, lis an isomorphism of A’ onto A ., Let
a’c¢ A" and Db’e A’ be such that f(a’) =a and £(b’) =b .
If o€ S and f(c)e L , then f£({(cvb’)Aa ) = £(c) . The
interval [ b’,a’] is mapped by £ onto L . The lattice L
is projective and thus there exists a sublattice L of
[b’,a’] such that flL, is an isomorphism of 1L’ onto L .
The set A’v L’ forms a sublattice of S and Llyy s 1s
an isomorphism of A‘v L’ onto A(L) .

If we identify in A(L) the greatest element v of I
with @ and the smallest element u of L with b , we get
a subdirectly irreducible lattice B(L) that is a homomorphic
image of A(L) . Since v is join reducible, i.e. there are
vy sV, € L such that v a4 v1 » VE Vy , ¥ :blvv2 s We get
ViV vV, meaf in B(L) and since enf vy, eafév,,
e4 v,vV, , £4 vyvv, in B(L) , the lattice B(L) is not
a sublattice of a free lattice. ilaing Theorem 2 we obtain

Theorem 5. The lattice B(L) is hf-primitive and B(L)
is not primitive.

Since the lattices L, (n = 1,2,...) in Pig. 1 are pri-
mitive (see [3],[5]) we have that lattices B(L;) ( n = 1,2,...
are hf-primitive and B(I‘n) are not primitive. Using Theorem

3 we can obtain other examples of such lattices.
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Fig. 1
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