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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

16,1(1975) 

QUASIGROUPS, ISOTOPIC TO A GROUP 

Jaroslav JEŽEK and Tomáš KEPKA, Praha 

Abstract: This paper is concerned with some proper­
ties of the variety of all quasigroupe which are isotopic 
to a group. 

As to the terminology used in this paper? the reader 
is referred to C U and [21. Nevertheless, a bit of termi­
nology should be mentioned. Namely, it will be convenient 
in some cases to consider quasigroups as algebras with three 
binary operations. 

Key words: Quasi/group, isotopy, variety, equivalence, 
linear. 
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Secondary 08A15 

1. Universal-algebraic preliminaries. By a type we 

mean a set A of symbols. Any symbol F e /_ is associ­

ated' with a non-negative integer nF , called the arity of 

F . By an algebra of type A we mean an ordered pair 

A * < x, £ > , where X is a non-empty set (the underly­

ing set of A ) an £ is a mapping, assigning to any 

F € A and np-ary operation FA on X . (If nF = 0 , 

then F^ is an element of X .) If there is no confusion, 

we write F instead of FA and identify A with its un­

derlyinĝ  set. 

Let K-̂  be a class of algebras of type A^ and Kp 

a class of algebras of type A% • A one-to-one mapping & 
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of K-. onto Kp is called an equivalence between K-, 

and Kp if the following two conditions are satisfied: 

(El) If A c Kx , then the algebras A and e (A) have 

the same underlying sets. 

(E2) If A , B c K p then a mapping of A into B is 

a homomorphism of A into B iff it is a homomorphism of 

£ (A) into e (B) . 

If such an equivalence exists, the classes K, and 

K« are called equivalent. 

By a parastrophy of a class K we mean an equivalen­

ce between K and K . Parastrophies of a variety V con­

stitute a group. In particular, the group of parastrophies 

of the variety of quasigroups has exactly six elements. 

1.1. Proposition. Let e be an equivalence between 

K-, and Kp • 

(i) If A , B e ^ , then A is a subalgebra of B iff 

S (A) is a subalgebra of €, (B). 

(ii) If A e K-, and (B-^i6i is a family of algebras 

from K-, , then A is the direct product of ^Bi^ieT 

iff e (A) is the direct product of ^ ^ B i ^ i e i • 

(iii) K, is closed with respect to direct products iff 

the same holds for K2 . 

(iv) K-, is closed with respect to isomorphic algebras 

iff the same holds for Kp. 
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Proof, (i) A is a subalgebra of B iff A £ B 

and the identical mapping of A is a homomorphism of A 

into B . 

(ii) A is the direct product of (-̂ i T i** i*8 

underlying set is the cartesian product of the underlying 

sets of B^ and every projection is a homomorphism. 

(iii) follows from (ii) and (iv) is obvious. 

1.2. Proposition. Let e be an equivalence between 

two varieties K-̂  and K2 . 

(i) If Ae L and Z is a subset of A , then Z is 

closed in A iff it is closed in e (A) . 

(ii) If A € K^ and Z S A , then Z generates A iff 

it generates- £ (A) . 

(iii) If A € Kn and r is an equivalence on A , then 

r is a congruence of A iff it is a congruence of e (A) 

(iv) If A is the free K-j-algebra, with K^-basis Z , 

then e (A) is the free K2-algebra with K2-basis Z • 

(v) A class L S K^ is a variety iff the class 

•{ e (A) ; A e L } is a variety. 

(vi) The lattice of subvarieties of K., is isomorphic to 

the lattice of subvarieties of K2 • 

Proof, (i) follows from l.l(i), as K-̂  and K2 are 

closed with respect to subalgebras. 

(ii) follows from (i). 

(iii) An equivalence r is a congruence of A iff 

it is a closed subset of the algebra A x A ; we may apply 
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l.Kii) and 1.2(i). 

(iv) follows from (ii). 

(v) and (vi) follow from l.l(i), l.Kiii) and 1.2(iii). 

A class K which is equivalent to a variety, need not 

be a variety itself. The class of all groupoids with unique 

division is not closed with respect to subalgebras and homo-

morphic images; however, it is equivalent to the variety of 

quasigroups. The class of all semigroups with division is 

not closed w.^.t. subalgebras (and is closed w.r.t. homomor-

phic images); however, it is equivalent to the variety of 

groups. 

1.3. Proposition. Let a clas3 K of A -algebras be 

equivalent to a variety. Then K is a variety iff it is 

closed under subalgebras. 

Proof. Only the converse implication requires to be 

proved. Let £ be an equivalence between K and a varie­

ty V . By l.Kiii) and l.l(iv) it is enough to show that 

A e K implies A/r e K for every congruence r of A . 

As the equivalence r is a closed subset of the algebra 

Ax A and K is closed under subalgebras, r is closed in 

e (Ax A) -= £ (A) x £ (A), too, so that r is a congruen­

ce of £ (A) and £ (A)/r € V • It is easy to see that 

?TA ( £ (A)/r) « A/r , so that A/r e K . 

Next we shall define the notion of rational equivalen­

ce which strengthens the notion of equivalence in the case 

of general classes of algebras. We start by recalling the 
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notion of term. 

Let Xj, x2, x-,,... be an infinite countable sequen­

ce of symbols, called the variables. Let A be a type. 

A -terms are formal expressions which can be obtained by 

a finite number of applications of the following three ru­

les: 

(Tl) every variable is a A -term; 

(TC) if F e A and nF = 0 , then F is a A -term; 

(T3) if F e A , np 2r 1 and tlf..., tn are 
F 

A -terms, then the inscription F(tlf..., tn ) is a 
F 

A -term, too. 

We denote by W^ the set of all A -terms, Moreover, 

given a non-negative integer n , we denote by Wn i the 

set of A -terms containing no variables different from 

xlf..., xn . If A is an algebra of type A , then for 
(A) any t € Wn * we define an n-ary operation t on A , 

called the algebraic operation of the algebra A , corres­

ponding to t , as follows: 

(i) if t = x± f then t(A) (a,,..., an) = a± ; 

(ii) if t = F and np = 0 , then t(A) (a-,,... 

..., an) « FA ; 

(iii) if t = F(t1,..., tn) , then 

t (a1t.**t an)
 = * A ( * 1 ^l'***' an ) ,* # # l 

t
(A) (alf..., a )) . 
n 
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Let A^ and A% be two types. By a translation 

of A^ into A % we mean a mapping • tr of A^ into 

WA such that %, (F) e Wn - for any F c 2L • Given 
* F' 2 

such a translation ,t and a i^ .-algebra A , we define 

a A^ -algtfbra T^ (A) as follows: its underlying set 

coincides with the underlying set of A ; if F € J^ then 

F* (A\ is just the n-y-ary algebraic operation of A , cor-

responding to f(F) • 

Let K^ and K2 be two classes of algebras (of types 

A^ and A% > respectively). A one-to-one mapping e of 

K^ onto K2 is called a rational equivalence between K, 

and K2 if there exists a translation tr of A^ into A% 

and a translation 6" of AQ, into A4 such that e (A) = 

= T^(A) for any A e K-̂  and eT^ (B) = T ^ (B) for any 

B € K2 • We say that K-, and K2 are rationally equiva­

lent under *c , CT • 

1.4. Proposition. Any two rationally equivalent clas­

ses are equivalent. 

Proof is easy. 

It is proved e.g. in [33 that two varieties are equi­

valent iff they are rationally equivalent. However, this 

will not be used in the following. 

1.5. Proposition. Let £, be a rational equivalen­

ce between K^ and K2 • 

(i) If A * Kx and Z S A , then Z is closed in A iff 

it is closed in € (A) 
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(ii) If A € K-j and r is an equivalence on A , then 

r is a congruence of A iff it is a congruence of € (A) • 

(iii) K^ is a variety iff K2 is a variety. 

Proof is easy. 

We shall finish this section with several remarks on 

classes K* of algebras with fixed points. 

Given a class K of A -algebras, we define a new 

type A * and a class K * of A * -algebras as follows: 

A* = A u -iei where e is a miliary symbol, not 

belonging to A \ K * is the class of all A * -algebras 

A such that the algebra A I A (which results from A 

by forgetting the nullary operation e ) belongs to K . 

1.6. Proposition. K * is a variety iff K is a 

variety. 

Proof is obvious. 

1.7. Proposition. Let K be a variety, A e K* and 

Z£ A . The algebra A i s free in K* , with K* -basis 

Z , i f f A I A i s free in K , with K-basis Z u-£eAJ . 

Proof is obvious. 

Problem. Let K be a variety with only countably ma­

ny subvarieties. Is it true that K * has countably many 

subvarieties, too ? 

2» The variety of quasigroups isotopic to a .group. We 

denote by ff the class of all quasigroups which are iso-

- 65 -



topic to a group. We shall show in Theorem 2.1 that the in­

dividual correspondence between quasigroups of the class $ 

and groups has a global character (in certain sense). To 

this purpose we introduce several definitions. 

Let £. denote the variety of algebras of the type 

( + , - , 0 , o c , / S t T> <T } (where • i s a binary symbol 

and - , vC , (I ,-y, cT are unary symbols, determined by the 

following identit ies: 

(x • y) • z * x + (y • z ) , 

x + 0 * - 0 + x = x , 

X + ( - X) » ( - x) • X a 0 , 

oc ( T (x)) « r (<*(x) ) s x , 

fl ( <T ( X ) ) a <T(ft (X) a X , 

OC (0) a f3 (0 ) a 0 . 

The type of algebras from ?f* will be denoted by 

• ( • , / , \ , u J and the type of algebras from C* by 

4 + , - , 0 , o o , / 3 , ' 3 r , c r , e ? « W e have added two nul-

lary symbols u and e • 

Let us define a translation t of i . , / , \ , u J 

into i + , - , 0 , oc , (& , 7 , oT,e } and a translation 5* of 

K + , -,0 , oc , ft , T - ** t • ? in*0. 4 • »• / i \ t ** J in 

the following way: 

t, ( . ) * «c(x) + e • ft (y) (the distribution of pa-

rantheses is inessential), 

% ( / ) a 7 (x - /J (y) - e ) , 

t ( \ ) a (f (- e - oc (x) • y) , 

fc(u) ='0 , 

e( + ) a (x / u) ((u / u) \ y ) , 
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$ ( - ) = (u / u) ((x / u ) \ u) , 

6 (0) = u , 

6 (tafr ) = x(u \ u) , 

€ ((S) = (u / u) x , 

tf ( ^ ) = X / (u \ u) , 

<r(cf) = (u / u ) \ x , 

5 ( e ) = uu • 

2.1* Theorem* The classes 5P* and £ * are ration-, 

ally equivalent under t: , 6? • 

Proof > Let Q € tf * . As i t i s well-known, the a l ­

gebra T& (Q) i s a loop with respect to • and u i s i t» 

unit . Albert's theorem, together with Q m tf** , implies 

that this loop i s a group. Now i t can be verified easily 

that Te (Q) belongs to Q* . Obviously, T^ (A) « Jf* for 

any A e §,* 

It remains to prove T# (T^ (A)) « A and T^ (Te (Q))« 

"a Q for any A c Q.* and Q e tf* . If A c g * , Q * 

» T^ (A) and B - Tg (Q) , tken 

x •g y « (x / u) ((u / u) \ y) « cc ( y (x - fi (u) - • ) ) • 

• e • /& ( ©T ( - e - cc ( y (u - ft (u) - e)) + y)) « x - u • 

• y « x - 0 • y » x +A y , 

cc fi(x) * x(u \ u) * ot (x) • e • fi ( cT (- e - cc (u) • u)) « 

• «$ (x) - «c(0) • 0 « ^ A ( X ) * 

/8B(x) » $ A * X ' similarly and 

eg « uu * oc(u) • e • (I (u) » oc(0) • eA • /3 (p) = eA . 
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Now let Q € V + , A * % (Q) and H = Tr (A) . The­

re exists a group Q( + , - , 0) and its two permutations 

A , (tx, such that xy = A (x) + p(y) for all x,,ye Q . 

We have 

x /y = XA (x - p(y)) , 

x\y = ^ ( - A (x) + y) , 

x +A y = (x /u) ((u / u) \ y) = x - ft (u) - (u - t̂,(u)) + 

+ y = x - u + y , 

ot A(x) = x(u \ u) = A (x) - A (u) + u , 

fi ̂ (x) = (U / u) X = U - (U, (u) + {L (x) , 

eA = uu = A (u) + (U,(u) , 

x .H y ~ <*A(x) +A eA +A /3A(y) = A (x) - A (u) + u - u + 

+ A (u) + p, (u) - u + u - ,«t, (u) + (Ct(y) = A (x) + ft̂ (y) = xy, 

uH = 0A = UQ , 

so that H = Q . 

2-2» Corollary. The class if is a variety. 

Proof. This follows from 1.6 and 1.5(iii)* 

Let Q be a quasigroup. A mapping A * Q —*• Q is 

called left regular if there exists a mapping A* : Q — > Q 

such that A (xy) = A * (x) . y for all x, y € Q . Clearly, 

the sets LQ of all left regular mappings and L? of the 

corresponding .-R -mappings are groups with respect to the 

composition. Similarly we define right regular and middle 
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regular mappings and we obtain groups BQ , I& , 1U , l£ • 

The following proposition is well-known: 

2*3* Proposition. The following conditions are equi­

valent for a quasigroup Q : 

(i) Q 6 9 . 

(ii) At least one of the groups L~ , L~ , BQ , Ri* , Ik , 

Vl£ operates transitively on Q • 

(iii) Every of the six groups operates transitively on Q . 

3. Linear auasigroups. A quasigroup Q is called left 

linear (right linear) if there exists a group Q( + , - , 0) , 

its automorphism A and a permutation (it cf Q such that 

p, (0) = 0 and 

xy = A (x) + <u,(y) (xy • ̂ (x) + X (y)) 

for all x, y € Q • 

Denote by iCg, the class of all left linear quasigroups 

and by %£#, that of the right ones. Further, let Q^ ( (^) 

denote the subvariety of Q. determined by the identity 

oc (x + y) * 06 (x) + 06 (y) ( /& (x + y) * (I (x) + (I (y)) • 

3«1* Theorem. The classes SfiJ and QjJ^ ( *t* and 

(^K ) are rationally equivalent under t, C • 

Proof. It is sufficient to show that A c <£fe implies 

T^ (A) € $C£ and Q e *t£ implies T$(Q> c £ $ . If 

A c <#% then T^ (A) c £% evidently. Let Q e ^ , Put 

A a Tg. (Q) . There are a group Q ( + , - , 0) , its auto-
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morphism A and a permutation (U- of Q such that 

(0,(0) « 0 and xy » A (x) + (O'(y) for all x, y e Q . 

As in the proof of 2.1, we have 

x + A y - = x - u + y , 

t*A(x) m A (x) - A (u) + u . 

Since A is an automorphism) we get 

<*>A(x +A y) =- A (x - u + y) - A (u) + u * A (x) - A (u) + 

• A (y) - A(u) + u * A(x) - A(u) + u - u + A(y) -

- A (u) • u « «^A(x) +A °*A(y> > 

so that oCA is an automorphism and A s Qj% • 

3*2. Corollary. The classes m£^ and «-?̂  are vari­

eties. 

A quasigroup Q is called linear if it belongs to 

3«3. Corollary. The class it is a variety. The va­

rieties &+ and ( $£ O Q^ ) * are rationally equiva­

lent under t: , tf • 

3-4. Proposition. Let Q be a quasigroup. The follo­

wing four conditions are equivalent: 

(i) Q is linear; 

(ii) there exists a group Q( + , - , 0) , its automorph­

isms Jl,f and an element g c Q such that xy * A (x) + 

• g • (My) for all x, y * Q ; 

(iii) there exists a group Q ( • , - , 0) , its automor-
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phisms A, (-4 and an element g c Q such that xy * 

• g • A (x) • (tfc(y) ; 

(iv) there exists a group Q( +, - , 0), its automorph­

isms A , (tu and an element g m Q such that xy = 

« A(x) • <a(y) • g . 

Proof. (i)sss> (ii): Choose an arbitrary element uc 

e Q and denote Te(Q( . , / ,\ , a).), by Q( + , - , 

0 ,«c,|i , Y > c T , g ) . By 3.3, ce and # are automor­

phisms of Q( «* , - , 0) and xy « ec (x) + g + /3 (y) . 

(ii)—> (i): 7l is an automorphism and y *—-*• g • 

• (it. (y) is a permutation, so that Q is left linear; si­

milarly, Q is right linear. 

(ii) -==> (iii): put (/& (u> and 3\f (x) « - g • 

• A.(x) • g . 

(iii) =«=> (ii), (ii) *=--> (iv) and (iv)«-»-> (ii) simi­

larly. 

A quasigroup Q is called T-quasigroup if there ex­

ists an abelian group Q( • , - ,0) , its two automorph­

isms X ) ĉ and an element g e Q such that xy s 

= X(x) • g • p. (y) for all x, y c Q . 

We denote by 3* the class of T-quasigroups and by Ot, 

the subvariety of £ determined by the identities 

x + y * y + x , 

xc (x • y) a xaC (x) • *c (y) , 

(i (x -i- y) s fi> (x) • (I (y) . 

3.5. Theorem. The class f is a variety. The vari­

eties JT* and CL* are rationally equivalent under tr, ff . 
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Proof follows from 3.3 and from Albert's theorem 

The study of T-quasigroups in £53 and [41 was founded 

on several propositions and lemmas which were stated and pro­

ved in the introductory section of t5l. All the applications 

of these propositions and lemmas can oe replaced by appli­

cations of the present Theorem 3.5. 

Theorems 2.1, 3.3 and 3.5 allow us to formulate many 

problems concerning the varieties £f , £ and T in the mo­

re familiar terms of Q,, <+t n %>K and CI . For example, 

the description of free algebras in the varieties $-, 9.C ̂  

O <J^ and Ou is very simple5 Propositions 1.2(iv) and 

1.7 show how to describe free quasigroups in the varieties 

if} X and JT« However, we were not able to give answer 

to the following 

Problem. Let V be one of the three varieties tf9 *£ 

and CT . Is it true that subquasigroups of free V-quasi-

groups are tree ? 

Let Q be a quasigroup and a, b, c c Q . Then we de­

fine four permutations of Q as follows: 

yCa» b, c j * < Lac Lab Lc > 

yГa, b, c ] * < Чt L ab R c > 

ç>ta, b, c 3 * < чi в bc L a > 

<цГa, b, cЗ » ЧЃ ЧÎ Rbc Ra 

Clearly, 

ab . cd =- ac . b Ф [ a , b. c 1 (ñ 1) 
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ab . dc =- a y f a, b, c 3 (d) . be , 

ad . be = ab . £>[ a, b, c 3 (d) c , 

da . be s ij t a, b, c 3 (d) b . ac 

for any a, b, c, d c Q . 

3.6. Theorem. Let Q be a quasigroup. Then the fol­

lowing are equivalent: 

(i) Q c £z , 

(ii) If u, v, w, x, y, z c Q and uv . z « uw • y then 

xv . z = xw . y ; 

(iii) yta, b, c3 =- y C d, b, c3 for all a, b, e, d c Q ; 

(iv) yta, b, c ] s y [d, b, c3 for all a, b, c, d e Q ; 

(v) $->fa,b,c3*-J->td,b,c3 for all a, b, c, d c Q • 

Proof, (i) implies (iv) and (i) implies (v). This fol­

lows from the simple fact that 

ab . cd » A 2 (a) • A <u, (b) «• (a( X (c) • ^(d)) 

for all a, b, c, d c Q • 

(iv) implies (ii). There are a, b c Q such that 

vb « y and ab » z . Then uv • ab « uw . vb , and there­

fore iff t u, v, b 3 (a) » w • According to the hypothesis, 

ifr L u, v, b 3 s y t x, v, b 3 . Thus 

xv . z = xv . ab = x y[ x, v, b 3 (a) • vb « 

= x f [u, v, b3 (a) . vb s xw . y . 

The implication (v) -=-=» (ii) can be proved similarly 

(it is also obvious from the fact that §D C a, b, c 3 = 

= (y [a, b, c 3 )"*). 

(ii) implies (iii), Let a, b, c, d e Q . Then 
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ab • cq = ac • by t a, bf c 3 (q) for all q € Q • How, set­

ting a » u f b * v , cq « z , c « w , x « d and y « 

« by f a, bf c J (q) we get db . cq * dc . by t a, b, c 3 (q) 

« dc • b <p Cd, b, c 3 (q) • Then gp[ a, b, c ] (q) « 

9 p I d, bf c 3 (q) • 

(iii) implies (i). By the hypothesis, 

y [ a , b, c ] - ? t c / c , b, c ] « L^ L~ L ( c y c ) b LQ , 

and hence Rp R̂  (a) • d « a . L" L ( C / C ) D (<-•) • F*om *----s 

-1 

we see that the mapping RD Rc is a middle regular permu­

tation of Q . In particular, the group MQ is transitive 

on Q , and consequently Q e Sf • Now, let x e Q be ar­

bitrary and a • b » Bxvx(a) • *-~ (b) for all a, b e Q • 

Then Q( +) is a group and ab = 71 (a) + <u,(b) , where A « 

* R^j. and (JL » Lx • Moreover, A (x) « x and x is the 

identity of the group Q( •.) • Further, 

y Ta, b, c 3 (d) « fC4 (- A (b) • ^ (- A ( A (a) • (*(c)) «• 

• A ( A (a) • (it (b)) • (C4( A (c) • <ct(d)))) 

for all a, b, cf d e Q • Using the equality yCa, bf c3(d)« 

« yC z, b, c J (d) for every z'e Q we obtain 

- A (a • c) • A (a • b) * - A (z • c) • A (z • b) . 

In particular, 

- A (a) • A (a • b) » - A (x) • A (b) « A (b) , 

and consequently A (a • b) = A(a) + A (b) 

Combining 3*6 with its dual we get: 

3*7* Theorem. Let Q be a quasigroup. Then the follo-
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wing are equiva'«nt: 

( i ) Q c £ ; 

( i i ) 9> C a, b, c3 * f t d, b, c 3 and r^ I a, b, c 3 * 

* % C a, b, d 3 for a l l a, b, c , d £ Q ; 

( i i i ) V" C a, b, c ] « y C d, b , c ] • y C a, b, d ] for a l l 

a, b, c, d c Q ; 

( iv ) f t a, b, c ] « 5& C d, b, c I * p C a, b, d ] for 

a l l a, b, c, d e Q . 

3 . 8 . Theorem. Let Q be a quasigroup . Then the f o l l o ­

wing are equivalent: 

( i ) f C a, b f c ] » g> C a, b, d 3 for a l l 

a, b, c, d € Q ; 

( i i ) y C a, b, c 3 = g? C a, d, c ] for a l l 

a, b f c, d e Q ; 

( i i i ) f C a, b, c 3 « f C a, d, c 3 for a l l 

a, b, c, d e Q ; 

( iv ) p t a, b, c 3 * f>l a, d, c ] for a l l 

a, b, c, d € Q ; 

(v) 7J, C a, b, c 3 « % i a, d, c 3 for a l l 

a, b, c , d e Q ; 

(•*) % C a, b, c 3 « 7i C df b f c ] for a l l 

a, b f c f d c Q ; 

( v i i ) ab • cd « ac • bd for a l l a, b f c , d c Q . 
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proof. A8 one may check easily, 

f Í a, b, b3 (d) * d * q t b, b, a 3 (d) « y I a, d, b3 (d) 

• c* [ a, d, b3 (d) . 

The rest i s c lear . 
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