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NOTE ABOUT ATOM-CATEGORIES OF TOPOLOGICAL SPACES

M. HUSEK and J. PELANT, Praha

Abstract: Minimal members of the "lattice" of epire-
flective subcategories of topological spaces are investi-
ated. They are in a close connection with subspaces of

ech-Stone compactifications of discrete spaces.

Key-words: Epireflective subcategory, Cech-Stone com-
pactification.

AMS: 18A40, 54 020 Ref. Z.: 3.969

All topological spaces are assumed to be completely
regular Hausdorff; the category of all such spaces toget-

her with continuous mappings will be denoted by T"f"cw. .

We are going to investigate the ordering given by in-
clusion between epireflective subcategories of Tmc?\
(by Kennison theorem, { K], between closed-hereditary and
productive classes of topological spaces). We shall use
without references simple facts about epireflective subca-
tegories (see e.g.: (M,),[H,]1,[H;1). The epireflective ca-
tegories X (E) of E -compact spaces will play a great
role in the sequel ( E -compact spaces, [l(,l], are homeomorphs
of closed subspaces of powers E™ ). The first fact that
is relevant to our consideration is due to Mrowka, EMQ]:
Let N be a countable discrete topological space and let

D(2) be a two-point discrete space; then there is no
- 767 -



epireflective subcategory X such that X (D(2)) §
§ X § XIN) . We take this property as a foundation

for the following definition:

Definition. Let ¥ , & be epireflective subcate-
gories of Top¢p . Then & is said to be an atom-ca-
tegory above ¥ if & 3 X and there is no epire-
flective subcategory M  of Ton ., such that

r1gmsgg .
Atom-categories above ¥ (D(2)) will be called

briefly atom-categories. The Mrdwka ‘s result quoted above

asserts that X (N) is an atom-category. It is clear

that atom-categories are of the form ¥ (E) for a sui
table space % and that they are minimal in the sense
that the only epireflective subcategories of Ton g
strictly contained in them are the categories X (D(2))
and W D(1)) . R. Blefkb was interested in the quest-
ion whether X (Tw,) are atom-categories ( Tw, is
the o'rdered- space of all ordinals less than w, ); the
answer was negative [B,],[B,], ifcw, # @, , of cour-
se. Nevertheless, it is proved in [Pl that there is an
atom-category X (A,) contained in X (Tw,) for any
D and, moreover, .A«_ can be chosen in such a way

that W (Px A)) (cand P > 2) is an atom-category above
X (P) for regular ordinals w, provided ocomp X (P)>
> &, (by comp B , B a class of topological spaces,
wemean min {x!3Xe B, 3AcX, cardA =, x*

is not compact} if it exists, i.e., if $ contains non-
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compact spaces).

The aim of this paper is to exhibit other examples of
atom~categories and to give properties of a topological
space I sufficient for X CE) to contain an atom-ca-
tegory.

We have mentioned that atom-categories are simple but
we can say more about "generators" of such categories
( BP is the Cech-Stone compactification of' P , °X =
= ULAlAcX, card A < x 3) s

Proposition 1: Let X  be an atom-category contain-
ing noncompact spaces. Then there is an objeet X of X
such that %X (X)=%,DcX § pD, “T - X where
D  is a discrete space of cardinality o = compn ¥ .

Proof: Put X = 8,D , the reflection of D in X.

We do not know whether the following converse of Proposi-
tion 1 is true: Let D be a discrete space of cardinali-

ty «, DeX g D ,“f’nsx, Byeexy? = X, then

K (X) 1is an atom-category.

We can prove the converse in special cases, e.g. if

«=w, or X = *J A , codd = is regular.

(P 1is a strongly discrete subset of 8 if there is a
disjoint open family {unl@ eP} in 8 with p €
€ U.,b .)

Theorem 1. Suppose that ] is a discrete space of
. . <¥F 3D
cardinality « ,DecX § 8D ,*X"° =X, Byexy) =X and
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that each subset of X of cardinality e« &and with non-
compact closure in X contains a strongly discrete subset
of the same cardinality. Then X (X) 1is an atom-category.
Proof: Let E e X(X) , E be noncompact
(X(D(2)) is a class of all compact spaces contained
in ¥ (X) ).We have to prove that X € X (E) . We may sup-
pose that £ 1is a closed subspace of X% . There is an i e
€ I such that mx is not compact and, thus,
caxd o, LE1 = « ., By the assumption, there is a strongly
discrete subset A  of sy LE ], canolA = ¢ , with the cor-
responding disjoint open family {Ug % . Making use of
the equality (ycy,D = X we can prove that A% is
homeomorphic to X (if @ : A—>D 1is bijective, there
is an £:D—>D such that the continuous extension ¥ on

[ into @D  extends ¢ ; then g/xx is the

homeomorphism).Now, let g :A—>E be a bijective map-

ping with the inverse 'M"i'/q,[Aj . There exists a conti-

X
nuous extension ?;:: A" T which must be a homeomorph-
ism then. Consequently, X can be embedded as a closed sub-

space into © .

As mentioned above, the condition about strongly dis-
crete subsets is clearly fulfilled if o = @, or if X =
=-°‘-5 /3:0’ col ) = o is regular. In the second case we
receive atom~-categories ¥ (X ) contained in ¥ (Tedy )

and described in [P]. The first can give:

Theorem 2. If X is an epireflective subcategory

of 'I‘o—;wck containing an object which is not strongly
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countably compact (i.e., comps X = w), ), then there exists

an atom-category &£ < X .

We do not know whether Theorem 2 holds generally with-
hout any assumption on comps ¥ . To prove a more general
version one must remove condition on strongly discrete sub-
sets in Theorem 1 because as Hajnal and Juhdsz [HJ] proved
under generalized continuum hypothesis, for any infinite
cardinal « , there exists a set A in D, cadD = x,
such that cond A = 22“ and no uncountable B cA is

strongly discrete.

Theorem 1 for o = @, suggests the following construction
of spaces X generating atom-categories (we write 5‘4 for
the continuous extension of £: N—— AN on BN ).
Let Xo> N and all X¢ , § < m , be defined; then we

put X, = J4FL LU X_1l£:N— U X_3 .
) f<'q' f(ﬂ,

§ §

It is easy to prove the following properties of <x€3 :
if ¢ ¢  , then XF c X, ;if f‘:N—-—»XE then

ki

~

f[xgl € Xeyq s X.Q' = E)‘,“xi . It follows that

£
xa,m = .X.a,“ and (3”“”1,!{ = JCQ' , i.e. by Theorem 1 that

X (XQ1 ) is an atom-category provided I.wq + (BN . This

o

last condition is guaranteed by the assumption ca.uLXo & 2

@
(then wwl.xw« e 2° ). One can deduce that there

QO
is exactly 29' different atom-categories X (X) ge-

nerated by the spaces X with properties NeX § AN ,

)
By N=X, caxd X & 2 ° .

- 771 -



Remark: Proposition 10 of [P] can be generalized: Let

% (A) be an atom-category, comp A=oc, D(x) c A € D ().

Suppose that each non-compact set of A contains a strong-
ly discrete subset of cardinality o . Let J° be an epi-
reflective subcategory of Tonqp , .comp P > oc .Denote by
X (A) v P the least epireflective subcategory of Tofeg
containing both ¥ (A) and P , This catego:':'y is an

atom-category above P .
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