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Abstract: There is a canonical mapping from the free

complete locally convex space of a uniform space into the
space of uniform measures. It is proved here that a uniform

measure is in the image of the map if and only if finite
m o (CM)vEA M) exists for each uniformly continuous func-

tion £ .

) Key words: Grothendieck’s theorem on completeness, mo-
lecular measures, uniform measures, free uniform measures.
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Introduction. For a uniform space X there is a par-
ticularly important class of functionals on the space
"Up, (X))  of all bounded uniform functions on X . The theo-
£y of these functionals (called uniform megsures) was deve-
loped by Berezanskij [11, LeCam [10] and Frolfk [61,[71] .

It appears that several basic results (viz. those in §
2 below) of the theory are valid in more general setting
(see § 1). In § 3 I show that this general schema applies al-
so to the space Wl (X) (whose elements I call "free uni-
form measures®™ here) introduced by Berezanskij [1]. As the
space 49 . (X) is a completion of the free locally con-
vex space of uniform space X [ 121, it follows that

mF X is a free complete locally convex space of X .
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Both the space of uniform measures and the space of free
uniform measures were mentioned by Buchwalter and Pupier [51
and studied in the épacial cagse of fine uniformities by se<
veral aythors (21,(41,[8),[91,011),(131,(14],L16].

In § 4 free uniform measures are described by means of
uniform measures. § 4 is self-contained in the sense that no
results from §§ 1 - 3 are used there.

The notations and terminology concerning topological vec-
tor apaces are thoae of Schaefer [151; particularly all lo-
cally convex spaces are Hausdorff and Y *  denotes the al-
gebraic dual of E . All the vector spaces are over the field

R of reals. Occasionally I use V and A in place of

masx and mim .

§ 1. Approximation by molecular measures

1.1. Grothendieck’s theorem (dual characterization of
completion). Let ¢<E,G)> be a duality and let & be a
saturated family covering E of 6(E,G) -bounded sets. De-
noty be G, the vector space of all w € E* whose rest-
rictions to each S ¢ @ are €& (E,G) -continuous, and '
endow G, with the @ ~topology.

Then G1 is a complete locally convex space in which

G is dense.

For the proof see Schaefer [15, IV - 6.2].

1l.2. Setting. Let X be a non-empty set, E(X) be a
linear subspace of the space R* , separating points of X .
Denote by Mol (X) the set of all formal finite real linear
combinations of elements from X j; thus Mof (X) dis the
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linear space with the base X .

The elements of Mol (X) are called molecular measures.
There is a canonical duality <E(X), Mo€(X)>  given

by <£, DA, %> = JA; £(xy) and the topology

6(E(X), Mo (X)) is just the topology of pointwise
convergence on X .

Now consider any saturated family & covering E (X)
consisting of pointwise bounded (i.e. 6(E(X) , Mot (X)) -
bounded) subsets of E(X) and denote

mé(JC) ={@w eB(X)*| for each S € ® the reatriction

of @ to S is continuous in the topology of pointwise
convergence on X ¥ .
Endow My (X)  with-the @ -topology.

Grothendieck ‘s theorem then reads as follows:

1.3. Propogition. @ (X) is a complete locally
convex space in which Mol (X) is dense.

The general Ascoli theorem (see e.g. Bourbaki [3, § 2

- Th.2]) gives

1.4. The compactness criterion. A setDc @y (X) is
relatively compact if and only if (i) the restriction of D

to any Se€ @ is equicontinuous and (ii) the set D(f)c
cR is bounded for each £ e E(X) .

On every set S € @  the topologies 6'(E(X), Mo€ (X))
and 6(E(X) , Wy (X)) coincide. Hence the theorem of
Mackey-Arens (see Schaefer [15; IV - 3.2]) yields -

1.5. Proposition. The @& -topology on Wig (X) is
consistent with the duality (E(X), Mg (X)> if and only
if all sets in ® are relatively compact (in E(X) )
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with respect to the topology of pointwise convergence on X .

§ 2. Uniform messures. Given a Hausdorff uniform space
X denote by U, (X) the space of uniform (= uniformly con-
tinuous) bounded real-valued functions on X . Consider the
family U.E.B. (X) of all equiuniform (= uniformly equiconti-
nuous) uniformly bounded subsets of Uy (X) .

Thue one obtains the space WL, . ., (X) , shortly
MM, (X) , whose elements are called uniform measures.

Propositions 1.3, 1.4 apply; further the closure (in r*)
of any S e L.E.B in the topology of pointwise convergence
belongs to U.E.B. - hence (by 1.5) dual of %7, (X) iden-
tifies with ux,,(.X) . Moreover there is the following result,
due to Le Cam [10] (cf. 14, Th.2]):

2.1. Theorem. The topology 6 (%L, (X), U, (X) and

the U.E.B. -topology coincide on the positive cone of
mu (x) .

§ 3. Free uniform megsures. Given a Hausdorff uniform
space X denote by U(X) the space of uniform real-valued
functions on X . Consider the family U.E.(X) of all equi-
uniform pointwise bounded subsets of U(X) . Following the

schema in § 1 this gives rise to the space

My e.= {g-oe'll()()*ifor each S e U.E. the restriction of
o to S is continuous in the topolehy of pointwise con-

vergence on X ¢
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endowed with the topology of 1.E. -convergence.
This space will be denoted MF and its elements will be

called free uniform measures.
As in § 2 the following theorem follows from 1.3 - 1l.5:

3.1. Theorem. (a) . (X) is a complete locally
convex space in which WMol (X) is dense. ‘

(b) A subset D of PLp(X) is relatively compact if
and only if (i) the restriction of D to any S e U.E.(X) is
equicontinuous and (ii) the set D(£f)c R is bounded for
each feU(X) .

(e) (ef. [12]) The dual of W p(X) is UX) .

The fact in (a) together with the result by Raikov [12;
Th.1l] implies that @1 (X) is the free complete locally
convex space of X - this justifies the term "free"; the
name “freeuniform measures" was chosen as @f_ canonical-
ly identifies with a aubsét of 7, (see §4).

The following theorem is an analogue of 2.1.

3.2. Theorem. The topology 6 (7. (X),U(X)) and the
U.E. -topology coincide on the positive cone of MFCJC) .

Proof. As the topology 6’(?%'_.,11) is coarser one.
must prove it is finer.

Let w,, @ € Wg be positive and zgn‘cbx(g,)=‘¢¢(g,)
for each g & U(X), Choose any Se€lU.E and &> 0. Put
£(x)= sup{1g(x)| geS}. Then £eU(X) and

Lim C(£-(£AM))= 0. As the set4£-(£AM)|M>03is
M—>+oc0
in U.E, there is M, > 0 such that u(f-(fAMI<® .

The set S, = {(—M4)v9AM1]9,eS} ig in U.E.B. and

the restrictions of «  and @ to U$CX) are positive
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elements of 'mu(x) (cf. § 4). Thus from 2.1 it follows
that there is oty such that

I(p«,(h)-ﬂ(}u)k ¢ for any €S, and any o = ox 4
and lu (£-FAM)-@w(f-£fAM) | <€ for any oc Z X -
Then for any g€ S and o 2 ¢, one haa

e ()= (@) & I (o= M v g A ML+
+le (CMIvg Al ) - w(Mvgal)l+le (g - M) vgaM, l<

<@ E-fAMI+ e+ u(E-£AN V< be . Q.E.D.

The following example shows the free uniform measure need not
be order bounded linear form on U(X) ( or equivalently:

the space 1 (X) need not be spanned by its poéitive cone).

3.3. Example. Let X be the real line with the usual
(metric) uniformity. For £e U(X) put

€)= 5 2 i

((lr £) =m§2~n§ (£(ﬂy)—£(n+—”; ) .

Then @ € %4 (X) but for the function ¢ € U(X), g1 x —> lx1,
and for any m one can find £€ U(X) such that

0££<4q ,

£(m)=m,£(n+ 2)=0 for 24 m & om  and £0x)=0 for

A s th )= 3 4
xzm+4; then @(f)= = 2 .

§ 4. Connection of mr—‘ with mu. . Observe that

for any @ € m,,cX) its restriction to U, (X) is a uni-
form measure W € mu (X)
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4.1. Proposition [1 ; 1.91 ., For any Hausdorff uniform
space X the canonical linear map @+, ¥: @ (X)—>
- mu<x) is irijective.

Proof [4; 4.8.21 . Suppose «, = 0, i.e. @{g)=0 for
any g € Uy (X), Choose any £eU(X): £= Mm (-MIvEAM
pointwise and the set 4 (-M)v£AM}{ is on U.E. ,hence

In the theorem 4.5 below the image of the map{@ > @}
is characterized. Particular cases of 4.5 were proved by Be-
rezanskij-L1; § 8] and Berruyer and Ivol [2], however, these
suthors deal with order bounded measures. As example 3.3
shows there are, in general, unbounded forms in Wig(X) -
and this is where the difficulty lies. The following facts

are more or less needed in the proof of 4.5.

4.2, Lemma. Given a Hausdorff uniform space X , @ e
eMy(X), e>0. Let 4f43zep be a net,0é£; eUp (X)),
such that z«kwfﬂ = 0 pointwise and the set {£5§ is in
U.E.(X). Suppose ly(£@)|> e for each feB .

Then there exists a strictly increasing sequence<{[3(m)3
of indices 3(m)e B  such that

‘”)\4$mém§)l>m--—§— for m =4, 2,... «

\(L(mﬁf&{fn

Proof. Observe first that given conditions imply the
index set B cannot have the largest element.

Now as |w (€50l > ¢ for each BeB 80
@(£,)>¢ for some subnet {£y% of the net 1£33 or
@(f7)<— € for some subnet {f,} of the net {fp? .
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™hus- I can -suppose without any loss of generality that
u(fs)> & for each 3eB (and the case w(fy)<—¢ then
follows by the substitution @ > - @ . '

This assumption being made construct B(m) inducti-
vely:
Choose any 3¢4)e B .
Ir (1), f(2),..., 3(m) are found such that w (4%, ) >

>m. %- where A, = W{fﬂ(m ld&£m £m 3% then
Z%m(hm/\f‘ﬁ) = 0 peintwise and the set {4, A £f3} is in
u.E'B L]

Hence (M, Afpe . 40) < _i— for some f3(m+1)>
> RBm) .

Since (B, A £,y )+ (I £acmyny) = Mo+ £4 (my 4y

this implies w (f,, vV £5(m4q? = 4 (Bepm) + (4 (£ oy =
€ [ £
'(‘“’”’m"fn(mu»”m'f +e-o = (m + 4)--5_- - Q.E.D.

Por w e M (X) and £feU(X) say that ffd(«, ex-
ists and [fdw = & iff the finite wlm @ (Mv EAM) = %
exists. (0f course, [folw = w(£) for fely(X) o)

Warning: In spite of the notation, £ —> [£du need
not be additive (unless it is defined for many functions
£elU(X) enough - see 4.4 and 4.5) ! Nevertheless, the

following result is in force:

4.3, Lemma. Give) a uniform space X, w € 9%, (X) ,
£ ely(X) and g eU(X) such that [gdu exists.

Then [(£+g)dw  exists and [(frg)dw = [fdw + [pdu .
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Proof. For M >0 put
By= GV (£4g) AN-£-(-M)vg aAM .

J £ |£(x) £ V£ (o)l
For xeX one haa bﬁfplbmfx)l 1€£(x) m T

hence the set {NM} is in U.E.B..

Moreover M_R:‘/g &y =0 pointwise and soMf,_”';’g(u (k)=
= 0, that is  [(f+g9)de = «(£) + [gde . Q.E.D,

In the proposition 4.4 below the set Se¢U.E.(X) is
said to be full iff it is of the form

S=4£eUX)] I£(x)-2(y) | & @ (x,4)  for any X%, g eX
and |£| £ g3

where ¢ € U(X) and @ is a uniformly continuous pseudo-
metric on X . Any set in U.E.(X) is contained in some

full set.

4.4, Proposition (Monotone convergence). Given & Haus~
‘ dorff uniform space X , full set SelU.E.(X) and we
€ WM, (X) such that [odu . exists for any g€ S .

If {gefnen is a net such that g, e S  for each
«€A and ¢, N0 pointwise then 1«;»» fgf_cd,(u, =0.

Proof. Suppose there is © >0 and a subnet {%?Beb
of the net {qgy fcea  such that lfgbd(-o’> € for each
BeB . As f?’p de = M% “$9s A M) there are con-
stants P; such that lw(gpAT3)l > € for each 3€B -
For fB = gg A ?B pick a strictly increasing sequence

£B(m)3 such that (see 4.2) |((L(hm)l > €. % (where

M, = maxif,, |14m &m3) for m =4,2,.. . It holds

Blm)
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P, €8 for m=1,2,... , hence there exists % =
=Mhmgb0 and heS .

I am going to show that neither b#p% <t ® nor
supr By oy= + 00 is possible.

(1) wugy Pam)<+ 0 : Then % & Uy (X) 2nd {hnm3e
.E.B. = M | =+ c0 , contra-
€ U.E.B. ,hence |g (h)) m% la Chpy) ’

diction.

(i1)  A»up P{J(n) =+ 00 : for any M pick up m (M)

L3
such that %(M(M)) 2 PNM for m =14,2,...,m (M) and
Fotmemn = M -
Then S A Pﬁ(m.(M)) = ’%nrM) for any M and consequently

l[hd&l:mgﬂz l‘w(h/\f,““m»)ls’d% '(“('ﬁ’m(M)) = 400 ,

contradiction.

4.5, Theorem.  For a Hausdorff uniform space X and
(@ € @, (X) two conditions are equivalent:

(i) there exists w, € #-(X) such that ‘a.(f)-@4(£)
for any f e U”(X) .

(i) [fdg  exists for any fe UCX) .

Proof. The implication (i)==) (ii) follows from the
fact that for any € € U(X) the set{(-M)VEAMIM>01%
is in U.E. and so p_,(f):M&'/g @y MV EAMY = [l -

For the inverse, suppose‘(ii) holds and define

@ C£)=[fdg for £e U(X) y it is to show that g, e
cmF(JC). Clearly ‘u,‘(.ﬂ.i‘)a.’ﬁ..(aa(f) for A €eR and
fel(X).
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Thus two more things remain to be proved: (I) If {£.% .4
is a net such that the set {£,_% is in U.X. and ,Q:C':rn £ =
=0 pointwise then zggnffx du = 0.

(I1) @, is additive on UCX) .

ad (I): Since for every £ € U(X) one has ffd(u. =
=Jr£+d<¢¢-f£'d(u it suffices to prove ngff:d@ =0.1¢f
this were not so there would exist e > 0 and a subnet

+ + +
{£ﬂ }BeB of the net 4£ %, o, such that | £B dul>¢€

for each 3e€3B .

Hence there are constants P = such that
If(s;/\ Pn)d(a,l >€ for each Be B and Lemma 4.2 implies
there is a sequence {4, 3% such that Dem, < Uy (X) and

e () | > me _i_ for me=d,2,. , i, % e LE.(X)

and M, 7 & e U(X) .

Now for g, =% - h,, one has Ggum, N 0 , and from Lemma
4.3 it follows thatm&bz lelgp,) | = + @ 5 as the set{gp¥
belongs to U.E.(X) (and consequently it also belongs to

some full set in U,E. ) this contradicts Lemma 4.4.
ad (II): Let f,¢& U(X) be arbitrary. For M >0 put

,%M= (~M)v(£+q,§/\M-(-.M)vaM—(-M)quM .

Then the set { %, % is in U.E.(X) andm% Ry=0
pointwise, henceM% “ Rp) =0 from (I), that is

fte+g)du = ffdu + [gdu . Q.E.D.

.

4.6, Remark. M- (X) may be treated as a subset

of ’mucx) but not as a (topological) subspace. In fact,

b}
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\

the uniform topology ( = U.E.B. -topology) and the "free"
topology ( =1UL.E. -topology) agree on g (X) if and
only if Ug (X) = U(X) . For, if there exist x, € X ,
m=4,2,.. and £ € L(X) such that £(x,) >m? , put

Gom = —:1- X, € Hot(X) . Then @, —> 0 uniformly on

every set in U.E.B  but (um(f) does not converge.
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lated subjects.
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