Commentationes Mathematicae Universitatis Carolinae

B. J. Pearson
Concerning the structure of dendritic spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 15 (1974), No. 2, 293--305

Persistent URL: http://dml.cz/dmlcz/105553

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz


http://dml.cz/dmlcz/105553
http://project.dml.cz

Commentationes Mathematicae Universitatis Carolinae

15,2 (1974)

CONCERNING THE STRUCTURE OF DENDRITIC SPACES
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Abstract: A dendritic space is a nondegenerate connec-
ted Hausdorff space such that each two of its points are
separated by a third point. In this paper we obtain some
structure theorems for general dendritic spaces and for
dendritic spaces satisfying certain weak compactness condi-
tions stated in terms of the convergence of nets of point
sets.
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1. Definition. Suppose {U, ,m €D} is a net of point
sets in a topological space. Then &m sufr Uy is the set
~ of all points X such that for each open set U containiné
..% . and each m  there is an m = m such that U,NU % @,
and Amy imf Uy is the set of all points X such that
for each open set U containing X  there is an m such

that if m 2 m  then u,,,nuq-ﬂ .

It should be noted that it does not follow, even for
sequences, that if X € lim imf Uy, , then for each.m the-
re exists a point x, of U, such that x is a cluster
point of the net {X,,m €D} . Consider the following coun-

terexamrple.

- 293 -



Example. For each positive integer m 1let U, be the
set of all ordered pairs (m,m ) of integers such that
Dem ém , let x =‘(0,‘0) and let X = U, U,U{x}, Let
¢ be the collection of all point sets. U in X such
that either x € U or xelU and X-U is a choice set
for the collection of all U, ,i.e., for each m there ex-
ists a point x, of U, such that U, ~-U=14x,3% .Take &
as a subbase for the open sets in X . Thus. X is a Hausdorff
space, and X - §x3 is discrete. Furthermore, {x}!=ALiminfll, =
= fm sup Un ,but x is not a cluster point of any sequence

XqyXgyore such that for each m , Xy € U,

The proofs of the following fundamental theorems paral-
lel the proofs of similar theorems on nets of points and are

omitted.

Theorem 1. If{Up,neDd} is a net of point sets with
the point x in its 4m Aup , then some subnet of
{Uy,med} has x in its m inf .

Theorem 2. If 4 'is a collection of point sets and %
" is & 1limit point of UY , then there exists a net of elements

of ¥ having x in ita Um inf .

Some very general classes of topological spaces may be
defined by stipulating that certain nets of point sets of a
certain sort have a non-empty JAim Aupr . In what follows
. we consider one such class of spaces, which is of interest :
in connection with dendritic spaces. If M is a point set,
then the boundary of M  is denoted by oM and the cardi-
nal of M  ia denoted by IM!| .
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Definition. If X is a topological space and & is
a cardinal, then X is /& -cohesive if and only if the
following condition holds. If {Upy,m €D} is a net of
connected open sets in X such that (1) if m % m , then
Um NUp =0 or Up = Uy ,(2) for each m, 0<13Uylehk,
and (3) lim imflUp+ J ,then Lim sup Uy + £

Theorem 3. If the space X 1is either compact or lo-
cally connected, then for each finite cardinal %, X is
% -cohesive.

Proof. Let {U,,m €D} be a net satisfying the con-
ditions of the above definition, and for each m 1let
OUy =4Xpq yeres Xmge I . If there is an m such that for each
m2m, Uy = Um ,then clearly im Aun dUy, =+ £ . Hence
we assume that for each m  there is an m >m such that
Up +# Uy o Let X € 2m imf U, o Thus for each m, x €
€X~Uy . If X is compact, then the net {xp,,,m 6D}
has a cluster point 4 and hence 4 € Lim oufy dU, . Suppose
X is locally connected and X is not a cluster point of
{Xps s meDd3 for 4 =4,..., % . For each 4 there ex-
ist an open set V; containing x and an m; such that
if m 2z mj; ,then X, ¢ V; . Let V be a connected open
set éontaining x and lying in ﬂz’ﬁ V; , and let meD
such that for each ¥+, m =zm; eand U, NV . Since V
is connected and cohtains both a point of U, and a point
of X-Um » V contains a point of 81U, , which is a
contradiction. Therefore x is a cluster point of

i%Xmi ym eD3 for some 4 , and hence Mim sup aum*ﬁ .
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2. Dendritic spaces

Theorem 4. If X is a point of the dendritic space
X and U is a component of x'- ix%, then UL is open
and X is a limit point of U .

21_‘90_f. Let g €U ., There is a point s+ such that
X ~-4pnt dis the union of two disjoint open sets V and
W such that x eV and g e¥W . Since WU{Ipf is
connected and does not contain x, WUifn?2 € U . Hence U
is oren. Since X is connected and each component of

X -4{xt is open, X is a limit point of U .

Theorem 5. For each two points x and 4 of the den-
dritic space X there exists one and only one component
of X-4{x,43 with x and 4 as limit points.

Proof. Let C be the component of X - {x} con-
taining 4 . From Theorem 4, x ig a limit point of C . The-
re is a point 4 of X such that X ~4{f} is the union
of two disjoint open sets U and V with xelU and g e
. €Y . Clearly, p€C ~443.Let X be the component of
C-443} containing £ .Now C is dendritic, and hence
A4 is a limit point of K .Since C -X is a connected
subset of X ~4pn %  containing 4, C~K c V . Hence X
is not & limit point of C -X , so that x is a limit
point of X . Suppose H is a connected subset of X -
-{x,4 3 containing X . Since peHaX-4xt, BHeC .
Since peHsC-443, HEK , Hence H=X , 80
that K is a component of X - 4x,4 % with limit points
% and 4 .If L is a component of X —4{x,4 § different
from K with limit points X and ¢4 ,then LN X = g ,
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and hence no point of X separates x from 4 .

Definition. If a and & are two points of the connec-
ted space X , then the interval a# of X ,6denoted simply by
afr , is the set of all points x of X =such that x=a ,

X = & or x separates @ from & in X.Ifx,4 € alr,
then x < ¢ if and only if x=a and ¢ # a ,0or x aepa-

rates a from {g,&% in X .

Simple examples may be given to show that intervals in
dendritic spaces may be neither compact nor connected. It
follows from the next theorem that they are, however, closed.
An example is then given of a dendritic space in which each

interval is totally disconnected.

Theorem 6. If @ &and & are points of the dendritic
space X , then there exists a collection & of disjoint
connected open sets in X such that X- U¥=alr and for
each element U of ¢ there exists a point x of o such
that U =4x3 .

Proof. For each point X of alr let Y denote the
set of all components C of X -4{x?% such that C con-
tains neither @ nor & and let Uy = UYy . Let & =
= U{Y, | x € @k} . It follows from Théorem 5 that for each
two points x and 4 of X there is a unique component
Cxgyg ©of X =~ 4x,4} that has x and 4 as limit
points and such that if x and 4 are in adr ,then x <4 .
Let Xygq = Cxq Ufx,43 . Suppose f ¢ X~-WSUak) .
Since X=Ug UUgp UKoy 5 t €Kgp . Let T be the

collection of all Kyg Such that a £x <4 £ 4 eand
v;rp . x‘x@ . Partially order ¥ by set inclusion. Let 2
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be a maximal chain in J , and let X = NP, Ifea<sx < &,
let Vx be the component of X - {x? containing a if
*%a andlet Vy=f if x=a ,and let ¥x be the
component of X - {x}] containing & if X+ & and let
V=0 if x=4& .

Case 1. For each two points w and o such that

ecw<x £ &  and Xy, € P there exist two points

X and 4 such that w<x<nmg <z and Xy, & P . Let

Y _be the union of all Yy such that for some point 4 ,
ao<x<my<® and Xyy € P . Let W be the union of all
Wa such that for some point X, o <x <y < & and
.J(,w'e Po X=X = (UL UMW, UL ) e V UV, .

Furthermore, Vy, and W,* are disjoint connected open sets
containing @ and A respectively. It follows that X -X =
=VYUw eand V and W are diéjoint connected open sets
containing @ and & respectively. Suppcse X contains
two boundary points x and a of V . Some point g of
X separates x from &4 . Since V U {x,4 § is connected,
9 €V ., For some ar and » such that Kyy,e P, g €V, -
But K,y is a connected subset of X~ 4{q? containing x
and 4 . Therefore X contains only one boundary point X
of Y and only one boundary point z of W ,Clearly,
w<x<zm<Xi and K =Ky, .There exists a point g such
that x <4<z .Now peKyy or neKy, ,say 4 €
e K‘,w_ . Hence K‘"“V' € J, eand K‘-’W— is a proper subset
of every element of J , which contradicts the maximality

of P .
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Cagse 2. There exists a point « such that a € w < &
and for each two points X and 4 such that w&x<g & g
and Kyy € P, x=a . LetV=V,UU, .Let W be the
union of all Wy, ~such that w< g < & and X, € P .
It follows that X - X =V UW , ¥V and W are disjoint
open sets, W is connected, & e W , and if w4 a, a2 €V,
We again arrive at a contradiction if X contains two boun-
dary points .of ¥ . Hence X contains only one boundary
point z of W . Clearly, a gw<z < & and X = Kypy
There exists a point 4 such that w < <z, pe J(,,,’_ .
K‘n‘, is then.a proper subset of every element of d’,

which is a contradiction.

Case 3. There exists a point 2 such that @ < W
and for each two points x and 4 such that e £Xx<gy £2x

and Ky € P, 4 =2 . Thus Case 3 is similar to Case 2.

Exsmple. Let X be the set of all points X= X;,Xj,--
of Hilbert space such that x4 > 0, for eack m y X =0,
and for all but finitely many m , X, = 0, For each pointix
of X and for each positive number x let 4 be the lar-
gest integer m such that Xm >0 and let Dy, be the
set of all points 4 of X such that (1) X, = 4, for
m*+1i endmti+d, (2) 0£€Ix-gl<rn , and
(3) if X% Ay, ny,4 >0 . Thus D,,  is the inter-
section with X of a semicircular region together with the
point x . Note that if g4 € Dyy , 4+ x , and » >0 ,
then Dyy NDy,=14? and Dun LDyp o For each x in X
and each map £ of X into the pesitive reals let U, =

=4{x} , let U, = Dy,eesy » for each m >4 let
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Un = ULDyseyy | % € Upog = Upog b, and let Uyp = Up Uy
Now if zeUyp N Uyq and h=fAg , then Uyy & UyeN
NUyg . The collection of all such seta Uye  is then
taken as a base for the open sets in X . In order to show
that X is connected suppose X is the union of two dis-
joint open sets U and V and first show.that the set of
all points X of X .such that X, =0 for m >4 ia a
subset of one of the two seta U and V', say U, then
show that for each positive number t the set of all points
X of X such that x4y =t and Xp=0 for m>2 is a
subset of U , and finally conclude that V = # , Now sup-
pose @ and & are two points of X, ay = 0 for m >1,
and M is the largest integer m such that f, # £ . For
mw=0,.., % let p™e X such that g’ = @ and for
m>0, py=0;, for iem ad pym=0 for i >m .
The interval afr of X is the union of the straight line

intervals [ 4™, a1

of Hilbert space for m = 0, ...
veayM =4, In the space X , p is a limit point of al

. if ané only if for some m such that 0<m < h , pa= £~ .
imilar considerations vwill sht;w lthat each interval of X
has at most finitely many limit points and hence is totally

disconnected.

Theorem 7. If X is dendritic and 4 -cohesive, then
each interval of X is connected.

Proof. Let @ and & be two points of X , and sup--
pose aflr is not connected. Since it follows from Theorem
6 that af is closed, alr is the union of two disjoint

closed sets X and X . Let ¥ be the collection mentio~
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ned in Theorem 6, let ¥, = {U e ¥IoU c H , let.
h={ledloU sX3, let H' =UY, , and let X'=UY .
Since X is. connected, some point of H is a limit point
of X/ or some point of X is a limit point of H’ . Assume
the point p of H is a limit point of X’ , It follows
from Theorem 2 that there exists a net {Up,m €D} of ele-
ments of % having 4 in its Aminf . Now since for
each m , |18Upl=4 and X is 4 -cohesive, there exists
a point @ in fLimaup {8U,,meD} . Since X is closed,
.q €K , 80 that g % q . From Theorem 1, some subnet

- 49Um, s+ €E} of 13Uy, ,meD} has ¢ in its Lminf .
Thus {um‘.‘ ,4 €E % is a net whose range is a collection of
disjoint connected sets in X such that both # and ¢
are in its fim imFf and for each 1, pe X -Tf;: .It fol-
lows that no point separates p from q in X, which is a

contradiction.

Theorem 8. If @ and & are two non-cut points of
the connected 2 -cohesive space X and every point of
X ~-4a,&1 separates X into two connected sets one
containing @ and the other containing & , then X is an
arc from @ to & . '

Proof. It follows from known results without the use
of 2-cohesiveness that X is an arc from a to & in its
order topology and that each order int‘erval of X of the
form Ca,x), (x,4), or (4,&] is open and connected in
the original topology of X . It remains to be shown that
the original topology of X has a base whose elements are

intervals of the above type. Let U Dbe an open set contai-
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ning 4 , and suppose that for each x .in (a, &), (x,&1-
- U % £ . There exists an increasing well-ordered se-
quence X, ,x<A3 of paointa of X -.'LI converging to

&  in the order topology. For each o let Uy = (Xy,Xxyq) *
Since (x,, &#J] is open, & is not a limit point of
La,x,), and herice & ig a limit point of Uy Uy . Fur-
tﬁormore, for each o¢, U, = fxx, Xx4q ) . Therefore the-
re exists a net {U,,meD} of elements of {Uyloc <At
having & in its Am imf . But % ¢ Lim sun {3U,,meD},
which contradicts the assumption that X is 2 -cohesive.
Therefare (x, & ] is open, and similar considerations will
show that intervals of the type [a,x) and (x,q) are

open.

Theorem 9. If X is dendritic and 2 -cohesive, then
each interval of X is an arc.

Proof. lLet @ and & be two points of X . From Theo-
rem 7, afr is connected. If e <n <&, [a,y)=U{la,x]|
Jao<x<® ¥ and hence [a,4) is connected. Similarly,
-(ay, A ] is connected. Therefore alr - f43 is the union
of two disjoint connected sets one containing a and the
other containing A , Let ¥ be the collection mentioned
in Theorem 6, and for each subset U of af let U’ =
=UUU{VedlaYcU}  , Itis easily seen that if U
is open and connected relative to a#& , then U’ is open
and connected and that for each point f2 , # " is a bounda-
ry point of 1 relative to af if and only if n is a
boundary point of U’ . Furthermore, if U,V & af , then
unvse=4g if and only if U’ N.V' = f . Therefore the
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2 -cohesiveness of X implies the 2 ~cohesiveness of atr.

It then follows from Theorem 7 that afr is an arc.

Exemple. Let X be the set of all points (x,4) in
the plane such that 0 < x =< 2 and 4 = Aim 1/X
together with the point (0, 0) . In its subspace topolo-
gy X is dendritic and 4 -cohesive but is not 2 -cohesi-

ve, and X 1is an interval of itself but is not an arc.

Theorem 10, If. X ia dendritic, arcwise connected,
and 4 -cohesive, then X is locally connected.

Proof. Suppose X is not connected im kleinen at
the point p . Then there is an open set U containing 4
such that for each open set V containing 4 and lying in
U there is a point z of ¥V such that no connected set
containing both 4~ and x lies in U . Hence there exists
an indexed set M = {z, | e A ¥ of pointa of U - 4{p}
such that 4 is a limit point of M and for each o« in
A the arc pz, intersecte X - U . For each o« let x,
be the first point of U on pr. , let gy e X-1U such
that X 4. 2, 2and let C, be the component of X — {Xx?
containing %z, . Now for each o, X, separates g2 from
Ze » 80 that Cyu Npx,=f . Hence if x5 x; and
Ce NCp#+p , then px, Upx, andl UCs are two
connected sets with intersection {x, ,Xz3 and therefore
no point of X separates % from Xp o It follows that
for each o« and f3 in A either Ce=Cs or G NCs=F .
Since X is 4 -cohesive, there is a net {3(Cy,neD} of
elements of {3C, loc € A} with a point g in its fim Aufd «
Hence some subnet {Cp ., AeBt of {C,,meD}? heas
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both 4 and g in its &m imf , and f % ¢ since
ael and ¢ € X - U . It follows that no point of X
separates 4 from g . Therefore X is connected im klei-

nen at each of its points and hence is locally connected.

Theorem 1ll. In order that the dendritic space X be
locally connected, it is necessary and sufficient that it
be 2 -cohesive.

Proof. Theorem 11 follows from Theorems 3, 9, and 10,

Theorem 12. If the dendritic space X is 2 ~cohesi-
ve, then for each finite m , X 1is m -cohesive.

Proof. Theorem 12 follows from Theorems 3 and 11,

It follows from Theorems 9 and 1l that every locally
connected dendritic space is arcwise connected, a result
which is already known from Whyburn ‘s extension of his cyc-
lic element theory to non-metric spaces in [31 and which is
mentioned by Proizvolov [2] and attributed to Gurin [1].

In connection with Theorem 11 we note that Gurin [1] proved
that in order that a dendritic space be locally connected
it is sufficient that if be locally peripherally compact.

The condition is not, however, necessary.
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