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ON WEAK HOMOTOPY

Jan MENUY Antwerpen

Abstract: If the definition of homotopy is weakened
by using the cross-product instead c¢f the usuasl cartesian
product of spaces, all connected polyhedra become contrac-
tible.
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The cross-product X ® Y (the space obtained from
the cartesian producf of the underlying sets by the condi-
tion that £: X @Y —> Z is continuous iff it is conti-
nuous in each variable) is well-known to be a tensor pro-
duct ‘in the category of topologicsl spaces. Thus, we can
base on'it a notion similar to homotopy - we will call it
weak homotopy or W-homotépy - defined as follows:

£,9: X— 7Y are said to be W-homotopic if there
isan S : X ® I— Y such that h(x,0) = £(x) and
A (x,4) = ¢ (x) .

Thus, W-homotopy is a weaker equivalence than the nor-

% This work was done while the author was supported by a
scholarsnip of.ered in the framework of cultural relation-
ship Czechoslovakia-Belgium.
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mal one. In this paper we are going to show that it is ac~
tually much weaker: e.g. all connected polyhedra are W-ho-
motopically trivial.

It is evident that every W-homotopically trivial spa-
ce has to be arcwise connected. The converse is probably
not true, but we do not have a counterexample. I am indeb-
ted to prof. Pultr, who suggested this problem, and who ga-

ve me valuable help.

1l. Conventions and notations

Throughout this paper the circle is considered as the
interval [ 0,4J , with identified endpoints. The closed
(open) unit-interval will be denoted by I(J) . The closed
unit-ball (sphere) in the m -dimensional Euclidean space
R™ will be denoted by By (S, ) . The polyhedra will al-
ways be connected, and they are supposed to be embedded in
a suitable Euclidean space. The points of this Euclidean
space are sometimes considered as vectors - in order to sim-—
plify the notation. For every point p € R™ , we define
Up) =R /NF 0 . Given two pointed spaces (X, x,)
end (Y, n5) , (X,%,) % (Y, 4,) is the topological space,
obtained from X X  identifying the points (x, %)
with X = Xy or g = 4, (with the quotient-topology).

Proposition 1. The products of W-homotopically trivial
spaces are W-homotopically trivial.

Proof. Given a family (Xg)q  of W-homotopically
trivial spaces with homotopy-functions £, , consider the

following diagram:
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(n,x,)er X, ®1
a.rlAfa’ %
_—
ig X)) x‘e,

where wle_(A fo is defined in the following way:
aldafa ((Xale,t) = (£, (x, , %)), . This function is
continuous.

Proposition 2. The long line is W-homotopically tri-

vial.
Proof. Let L = {(x,4)|lxeR,yel0,1L # be endowed

with the lexicographical order, and the associated order-
topology. The function #:L®@ I—1L ; o((x,4),t)=(xt, 4t),

is continuous, and L is W-homotopically trivial.

Proposition 3. The circle is W-homotopically trivial.
Proof. Consider #:S®1—> S defined by:

L/
nes, ) =" ir tx0

= 0 if t =0
Clearly, %, is continuous.
Corollary. Every torus is W-homotopically trivial.

3.

Suspension
Proposition. The suspension of an arbitrary space is

W-homotopically trivial.
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Proof. Let (X,x,) be an arbitrary pointed space.
Define h: ((X,x,) < (5,,00@ I —> (X, x,) > (S ,0)
by

o ((Cx, 90,80 = (x,87%)  if 40

(x,0) ift=0 .

Let g:(X,xg)x(S5,,0)—>(x,x0) # (S, 0) be
the natural quotient-mapping. % is usually not continu-

ous, but g o & is. The commutativity of the fiagram

(X, x) % (S, 0NBT___ ooy,

(X, %) # (S, ,0)

h*
(X, %) #= (S,,0081

defines uniquely a continuous mapping H* (because

¢ ® id is a quotient mapping).
Corollary. Every sphere is W-homotopically trivial.
4. Polyhe:

Proposition 1. All one-dimensional connected polyhedra
are W-homotopically trivial. If x, is an arbitrary ver-
tex of the polyhedrdn P , then the homotopy functions can
be chosen in such a way that YteI, £(x,,t) = x, -

Proof. The proposition is trivial for all one-dimensio-
nal polyhedra with at most two vertices. Suppose it is pro-
ved for all one-dimensional polyhedra with at most m - 4

vertices, m = 3. Let P be an arbitrary but fixed poly-
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hedron with m  vertices, embedded in a suitable R s
and suppose all segments of P have length 4 . Choose an
arbitrary vertex X, of P , denote the vertices of P by
(‘xi)Oé»{.én—4 ‘

The seguments [x;,x31eP, x; and x3 % X, , form at
most m -4 maximal connected one-dimensional polyhedra
Posw&ip£n-4; Pp NPy =/ if & 4 %’ . Choose
%30 € B,  such that [xj ,x,1eP, Vh e4p . Consider
the polyhedra P, , consisting of the vertices of Py and
Xo » and all the segments in P  between these vertices.
By induction, the P}  are W-homotopically trivial, and
there exist continuous functions fg : PR @I —> P, such

that
fk(u,'ﬂ:.-.x, V.xeP;’
fu(x,00=x;. , VxePy
f,b(.xé*,t)—_-.x,-,h, Ytel .

We will define the homotopy functions gy, on the po-
lyhedra Pg, . Suppose % fixed for the time being.
1) Consider the segment [“o’“ihj .

Define q,h(‘x,t)_e t. xou' if xe E.xo,xéb]’.

2) Consider the polyhedron P;@ .
Define dg, : By <Py —> R by

m-1
d/*’(rw,,y")== M{q'gq"‘x X ] x1=q,’xm=’y:’

@ Ca-4

?
X ePo , [xg, %0 ,41c P 3 .
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A) t =4
put 9’&.("‘7“" £ (x,1) = x
B) t%1

a) if d (£, (x,t), %5, ) 2 1/2
put Qg (X, t) = £ (x,t)

B) if 4/4 £ dy (£, (x,t), %5 ) & 172
(x,t) = 2<W> - (1/74).

e S

put % e X;) , where

Y

E4

c) it 02 dk(f”(.x,t)-,xg-_b) £ A/4

) ) S . ined
£ (x,t) € f\x?&, x1] and X_; 1is uniquely determine

———
put g (x,t) = 4—.d.h(fu(x,t),x?~*) cExg Gt Xg

3) Consider the segments
Exo,.x,j_],x,iel‘;t; [\xo,xé_lel’, 5—*3.'&

Define My : (?“—P;‘)(SI-—PK*_ by

4
Hhy (x,t) = oy X1 " ift+0,and xelx,,x;]

0 if t=20
if t=4,put g (x,1)=x
if t4=4
a) if 1/2 £ My (x,t)
put g/b(x,t)ahb(x,t).&;?; X € L'xo,xd']
b) if 4/4 £ hh(.x,t)é 1/2
Put g (X,t)= 2 (g (x,4) = 1/2) . X3 X

a, b

) if 0£ M (x,4) % 1/4
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i) t=0
put %(&,0): xo
ii) t 40

put Q:’»,h"j—’x+ by

m=4 =
q,é,k(‘!:)= W{-“,gd llg,k(xa-,t_é)g«k(.xa-,t_-w,,)l meN, (t;);

partitions of [t,41[, Egzb(xé,t‘i), gfh(xé,t,“,,)l cPy¥ .

Define 2 %t J”"‘(Qg,k,) —> P, by

%5 4 (95,0t = gg(x;,t) ,

define /ba-)k’ﬁfx&,xt,éj-—-) [0’ 9'9"’*] by

230t O = Qsg (B (M=biiag (X, £) if xe& [x;, x,]
and where X . is that peint on [x;,Xo] such that
hh(.xt,é’,t)z 1/4, Define gg (x,t)= %50 ©m t (XD
if xelx;,x,73.

4) The polyhedron P . Define @ (x,t) =gq (x,t)
if x € Py . It is clear from the construction that g :
: P®I—> P is a continuous function such that
=M =ddy , g(~,0)=x, -

Proposition 2. All connected polyhedra are W-homotopi-
cally trivial.

Proof. The theorem is proved for all one-dimensional
polyhedra, suppose it is proved for all d -dimensional ones,
with d£m-1,m=2,Let P be an arbitrary fixed m =-di-
mensional polyhedron embedded in a suitable Rﬂ'. P’ is the
(m - 1)-dimensionel sreleton of P , with a homotopy func-
tion 9,’ B

- 109 -



A) Define g (x,t) = ¢'(x,t) for xeP’

B) 1) There exist £,:B,—> X", 44 k <m , suchthat
f(Bnlc®, Yh 2m

fle,w is a homeomorphism onto the image
£h(’5nc P

fk(Bm)n f0 (B VP k%i&

-~ 1]

be(Bm) vP'=P .

2) If B, is the unit-ball, define A’ :B,XI—3B,
as follows:
a) R’ (0,0,...,00,t) = (4-t,0,...,0)

b) 4 $€0,0,...,0): W (y,t) e [41-t,0,...,0), Uly)]
and ’

2 = I8 (ay,t) = (4 ~1,0,...,0)1
NA—%,0,...,00 - Uca)l

teke an A : B &) —> B,  such that
W ((0,0,...,0),t) = £%’00,0,...,0),t)
hiyg,t)el4-¢,0,...,00, Uly)], 4 *(0,0,...,0)

and .
—_— —_—

—

It (g, t) - UCa) ( L& (g, t) - (g

)
— ~ —e —
B(A=t,0,.0.y 0) = Ug) | Ied=t,0,..,0) = UCy) 1

3) If x eP-P’, then 3! % <« on such that z e

e £4, (B,) . Define the functions Mg : £, (Bp) @ J—
— £ (B,) by
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-
Mg (z,t) = £, 0 (£ (2),t)) .
4) xe?P .

Define Qx‘I__’R- by

wat —>
Qx('b)=»ufu{,24u ¢ (x,t;) ¢ (x,t;, 41
A=

a+1
where (t,).  are partitions of [t,11%
Define x, : Im (qQ,)—> Im(gl(x,~-N c P’ by
Ry (e (t)) = ¢ (x,t) .
5) ’55%(3@)'?’3 % fixed.

a) Put gp (z,4)= 2 and gy (z,0) = x, , where
.xo = 9,’(—,0)

b) te J
Notation:
—_——
vy, t)=1(4-t,0,...,0) - Wi, y€B,, 4+ 0,0,...,0)

(g (2, ) = d (g2 ), t), UCgT (20

Let 'A'z t,% and Bz,t 4% De the points on the segment
’ ?
[(1-1,0,..,0), W(£,%2))]  such that

Wyt - A=%,0,.., 001 = » (£ ¢2),4) /2

"Bz,t,; - (4-9,0,...,0—)11 = 31’(f;4(z),t)/lr
1) 1t g 2), 802 4 wg Ca,t) put

Y (Z,0) = Iy (2, %)

-1
2) I »(£](2),4)/4 & @wg (2,t) & (£4,(2),£)/2

define the linear functions
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%,t;k= [t s Bapmd LAyt g, U(EL (2001
such that

Vart, ke (Axt,e) = Aot i

Vyt a (Bag ) = UCE(2))
define g, (z,4)=f o v, o o AL (x),1)) .

3 I 02 @, (=,8) £ » (g (), t) /%

define Pyt ot fu(@),Bz‘t)&J-* 00,94 (t)1 , where

z=£,(y) and x=£f, (U(y)) , to be the linear func-

tions such that

’by,t,k(Bz,t,h> =0

Pyt s (U(y)) = g, (t) ,
define gp (2,t) = x, o Aot (z), where z=£ (g),
.xafnfu.my,))

4) 2z eP-P’
put g(z,t)=qp (2,%t) if ze £,(3B,) -

The function ¢:P® I— T is continuous.
Department of Mathematics

University of Antwerpen
Antwerpen

Belgium

(Oblatum 14.12.1973)
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