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CHANGING COFINALITY OF A MEASURABLE CARDINAL

(An alternative proof)

Lev BUKOVSKY, KoZice

Abstract: Using the method of iterated ultrapower in
Set Theory with a measurable cardinal, it is shown that
there are model-classes Ng and its generic extension N
such that for a cardinal K., the following holds: Xe is
measurable in Ne» and Ko is a Rowbottom cardinal in N
of cofinality o .

Ke§ words: Set theory, measurable cardinals, Rowbottom °
cardinal, model-class, generic extension, iterated ultrapo-
wer.

AMS: 02KO5, 02K35 Ref. Z. 2.641,5

In the theory of extensions of models of the set theo-
ry, there is an open difficult problem: is it possible to
change cofinality of a cardinal number not collapsing it?
For a measurable cardinal s¢ , K. Prikry in (6] answers this
question affirmatively by constructing a generic extension
in which e¢ is cofinal with @, . Moreover, in this exten-
sion, ¢ remains to be a Rowbottom cardinal and all cardi-
nals are preserved. In this note we prove similar result
by using the method of iterated ultrapower introduced by H.
Gaifmen [3] . Namely, we prove the following (for the note-

tions, see the part 1)):
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Theorem. Let 9¢ be a measurable cardinal, % & nor-
mal measure on ¢ . Let N, be the transitive class iso-
morphic to the m -th iterated ultrapower of the universe
by using the ultrafilter U .Let Ng, be the Gaifman’s di-

rect limit of _Nm_, mew, and N "»f.‘»,"ﬂ . Then

a) N is a model of 2FC and N, = N .
b) Cardinals of N are those of N“’o .

c) s,  (the measurable in N“’o ) is cofinal with @,
o

in N .
d) ”% is a Rowbottom cardinal in N .

e) N 1is a generic extension of N, .
o

The proof of a) - d) will use only elementary proper-
ties of iterated ultrapowers already known to H. Gaifwan,
For the proof of e), the theorem A of the author ‘s paper [1]
will be used.

The relation of our theorem to Prikry’s result is clear.
By my opinion, the assertion e) is a little surprising.
Unfortunately, we cannot explicitly describe the set of for-

cing conditions for this generic extension.

l. Preliminaries. We remind some notations and well
knowr. facts. We follow K. Kunen [5] with some modifications.

Let 8¢ be a measurable cardinal, Y4 be a normal mea-
sure on ¢ . It is well known that there exists an isomor-

. phism © of the ultrapower ‘V/ﬁ. onto a transitive

class N,‘ (Y is the universal class). If X eNo =Y,
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we denote by X

the function defined as % (§) = x  for
g € 9¢ . The mapping 40’4:){,—»!{1 defined by 4’,0'1 (X)m
= O(X) is an elementary embedding. Thus, se = 4, 4 (se) is
a measurable cardinal in Ny and %y = 4,,(U) is a nor-
mal measure on s, in N, . One can construct the ultrapo-

wer ("'N,,) n Ny /71.1 and the isomorphic transitive class

Ny . Going on, we obtain a system Ny, 2 Ny 2 Ng2 ... of
elementarily equivalent models of ZFC + "there is a measurab-
le cardinal” and a system imm s ME M € W of ele-
mentary embeddings (L,n,m is the identity mapping). As H.
Gaifman [3] has shown, the direct limit of the system N ,
‘4m,m is a well-founded model. We denote by N, *ue
corresponding isomorphic transitive class and .Lm’ @, will
denote the natural (elementary) embedding of N, into No .
" For § £ wp, Ug = 46,g (U) is a normal measure on
% =4',,,’§ (oe) in Ng .

Let us remark that all classes Ng, ;"’"f are defin-
able from U .

If M is a transitive class which is a model of ZF
(i.e« M is closed under Gddel’s operations - see e.g. Go-
del [4) - and M is almost universal), then the surerscript
M  over a notation indicates that the corresponding notion
is considered in this model.

The famous Los’s theorem may be expressed as

(1) “V/y b= @ (Eyyerry ) mA§ € 00t @CELCED, o
ey EpC§NIE U .

We shall need the following simple facts (see [3],[5]):
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(A xs§<o,,xeN,—> Ay p,g(x)= Lm’a,o(x)-x .
(3) xe N, card (x)<oe —> xe N, .

(4)%0 = Um 2

) mew, ™

N

mnv
(N,) (i.e. the class N, conatructed in N,

from U, ) is

. Nm
(5) equal to Nrn«ym»("'m,g) = dmim,msf T § £ @,

N N
m e w, and(Noa)m-Nao,N”-N.

“y, denotes the set of all functiona defined on X with

values in Yy . P(x) is the set of all subsets of X, If £,
9 are functions, we define fe e g = (Vi € D(£))(f(w) 6 g(u))
and fe s ¢ = (Ve D(EN(£(n) s ¢ (w)) . We denote
Wol(£) = the least cardinal o« auch that

(Y e D(£)) (card (F(u)) < ) .
If Mys M, are two transitive models, A'f”“M‘,,M.z ()

means (see Vop¥nka-Héjek (8) and also [1)): for every func-
tion £ e N , there exists a functioni‘e)llza (P(M4)5uch that
feeqg and W¢M"(9,)éec .

It is well known (compare [8]) that

(6) Apry (<)  implies that every cardinal d" of

My, 2 « , is a cardinal in .M2 .

40 M
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In [1), the following has been proved:

() implies that there is a partially

(1) Apxy

ordered set P € M, satisfying o -chain condition

12 My

and a generic set G € P  such that M, = M, (G) .
Moreover, M2 = M4 (Plx)AM,) .

2. Some guxiliary results. We remind the definition of
the sets V(§),fe 0n:V(0) = 4§, V(x) = P VIED .
By the axiom of regularity, V=_U V(g§) . For any transi-

feln
tive model class M,V(g)M =V§)n M . Thus, especi-

N
ally V(§) * = V(§) n NK . By (5), we obtain

Ny e M
VEIANY "= V(§) "AaN = V() AN AnN=T(§)n N,

Therefore V(§) n N e Ny . By the definition of N , we

have
(8) for every ordinal §, Y(§)n Ne N
Let P&xm-ﬁge%:bm,wo(§)=§} . It is easy
to see that Pix, is a proper class, Fix, s Fix, € ...
e. € PAxp ... . Evidently § € Fix, —> G(é): £ -
Fix, is a class definable in N, from %, , thus
(Vx e NV (x A Fix, e N,)

Let us consider a function £ such that &(£)g Fix,
and x =W(€)e Ny . For g &x, let ﬁv@e"‘V be such
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that G(hv)sry,.For § e , weset

¥(§)= 4<e¢,u):(3:y,ea<)(u,=h,*(§) &£f(xx) =)} .

By (1), one can easily show that ©(g) 2 £, 6(g) is a
function and H(O(g)) g Fix, . If we denote Ext(£)=
=08(g) N (0n x x)

) we have

(9) for every function £ such that D(f) & Fix, ,W(f)e
e N, , there exists a function Ext(£)e Ny such that
£s Ext(£), D(Ext(£)) s Fix, and W(£) =

= W(Ext(£)) .

If xe Ny, wtoLN" (X) & ¢4 , then there exists
e set y e No such that x & 4'.0’,, () and ew:.d,“"(ry_) & R, .
In fact, by (1), there is a function A e *y  such that
(Ygew) (card (n(§)N<oe,) and 6(h)=x. We set

U &Kh(g) .

Y=ot CE

This observation may be generalized as follows:

- N

Let £ € Ny be a function, wi(g) & oef,, . Then

there is
N, .

(10) a function @ & N, such that Wi (g) € a7 and

£fs € &0’4 (¢ .

. L/

Since £ & N4 , there is a function Sv € °N, such
that @ (h) = £ . We may suppose (by (1)) that for every

N
§e€%x,, M(§) isa function and Wd *(M(§)) & sy .

We set

¥n)=u=(3fese,)(ne I(h(fIN& u= L M (Er(y) .
0

§
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N
Evidently Wd °(9,) £ ae;' . Using (1), one can easily show
that £ ¢ “’0,4(9’) .

A cardinal J"° is said to be Rowbottom cardinal if, for

any A <d and £:LF1 %, A there exists a subset x
€ Jd” having power J° such that £“[.x1‘x° is countable
(compare e.g. Silver [7]). The notion of an M -ultrafilter
has been introduced by K. Kunen (see [5], p. 181).

Using intelligently a classical idea of Erdés-Hajnal

(see [ 2], p. 126), it is easy to prove:

(11) Let M be a transitive model of ZFC, x € M , conel (X)=

c¥, —> xe€M . Lot x= tim e, ,x, <o, <.. .
mew,

4

If there exists an M -ultrafilter on every «, ,then

o is a Rowbottom cardinal in M .

This assertion is a trivial generalization of the theo-
rem 1.29 in [6]. Replacing the measurea " i“'ﬁ. " in Prikry’s
proof (see [6]1, pp.14-~15) by " M -ultrafilter on «, ", we
obtain a proof of (11).

3. Proof of the theorem. Since an intersection of tran-
sitive and closed (under Gddel’s operations) classes is such
a class, by (8) N is also almost universal, we have that N
is a transitive model of ZF.

* For to prove N = AC , it suffices, for any x € N , to
£ind a functionfe N such thatD(£) s On and W(E)= X.

Thus, let x ¢ N and let £ e N, be a function,
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D(fYePix, and W(£)=x, Let F(f)=4fpsme o},

N
where £, = £ and f,,,= Ext "(£,) (see (9)). We set
£a,°=mL‘/%£,,‘, .By (9), £, € Npo , 9(£,,) s On and

‘ N
W(£,) = x . Since P "(f,) ={fgima«hk ew,’ and

£¢o=m%‘%£h ,we have £, N,  and therefore, £, ¢ N.

Thue the axiom of choice AC holds true in N .

Now, we show that

(12) AMNQO’N (azz,o) holds true.

Let £ ¢ ¥ be a function., We denote £, = {<x,4) :

: £ (J«“’“’o (x)) = "’"""o (y4)§ . By the definition of the direct

limit N"o , Wwe have £=nEJQ°4'¢n,%(£”) and £, € N, . We set
b, (X)=4£,(x)} for x € D(£,) . For every m € &, , by
repeated applications of (10), there exists a function n €
e N, such that Wd.N"(g«,w) £ ey and M, S € io,m,(?mp)'
Thus £, € € ".’o,m Cgm?) -

We set

n(x)= u =(Am)(xe D(g, N &u ==ka00 Gm (x) .

A N,
Evidently Wd ° (&) & 9&;' and g, €S % . Since
4',0, @, is an elementary embedding, we have
Wel N, (g (M) £ ee, . By the construction of the
&0 o

function % ,one easily obtains £ € € 4 (&) . Since

0,w,
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“o,0, () e Nf"o , ‘the assertion (12) follows.

Now, the part b) of the theorem follows by (3),(6) and
(12). The part e) follows by (7) and (12).

No

Let a = {9, ,;mew,t . Evidently o =da,;Rh <

Ng

£ mewo3¥ e Ny . Since a =49, ;m<ffva " ,we have

as Nk . Thus also

(13) {e, ;mew,3s N .

The part c) of the theorem follows by (4) and (13). Sin-
ce U, is an N, -ultrafilter on ee, , d) follows by (11),
(3) and (13).

Finally, let us remark that by (7) and (12), N= No, ‘%),
where x = P (oat,o) A N . The author was not able to pro-

ve or to disprove the following conjectures:
(14) Nern(.x) , where x=Nn (P(”coo) ,

(15)  N=N, (x) where x = N~ %o .
0

1 @,
Neither we know the relation of the generic extension N

of N

., to that constructed in [61, p. 24.
o
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