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Commentationes Mathematicae Universitatis Carolinae 

14,4 (1973) 

CHANGING COFINALITY OF A MEASURABLE CARDINAL 

(An alternative proof) 

Lev BUKOVSltf, KoSice 

Abstract: Using the method of iterated ultrapower in 
Set Theory with a measurable cardinal, it is shown that 
there are model-classes tfco and its generic extension M 
such that for a cardinal X w the following holds: X«u is 
measurable in H& and Ko> is a Rowbottom cardinal in H 
of cofinality <o . 

Key words: Set theory, measurable cardinals, Rowbottom 
cardinal, model-class, generic extension, iterated ultrapo-
wer. 

AMS: 02K05, 02K35 Ref. 2. 2.641.5 

In the theory of extensions of models of the set theo­

ry, there is an open difficult problem: is it possible to 

change cofinality of a cardinal number not collapsing it? 

For a measurable cardinal it , K. Prikry in C61 answers this 

question affirmatively by constructing a generic extension 

in which ee is cofinal with o>0 . Moreover, in this exten­

sion, 96 remains to be a Rowbottom cardinal and all cardi­

nals are preserved. In this note we prove similar result 

by using the method of iterated ultrapower introduced by H. 

Gaifman C31 • Namely, we prove the following (for the nota­

tions, see the part 1)): 
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Theorem. Let ae be a measurable cardinal, % a nor­

mal measure on ae • Let Jf̂ , be the transitive class iso­

morphic to the /rt-th iterated ultrapower of the universe 

by using the ultrafilter % . Let Jf^ be the Gaifman's di­

rect limit of 1L, , m, e CD* and K • f*\ HM . Then 

a) Jf is a model of ZFC and jf̂ , e H . 

b) Cardinals of H are those of JL* . 
o 

c^ ^AS ( t n e measurable in JL> ) i s cofinal with a>0 o o 

in K . 

d) &,% is a Rowbottom cardinal in H # 

e) H is a generic extension of Jf^ • 

wo 

The proof of a) - d) will use only elementary proper­

ties of iterated ultrapowers already known to H. Gaiffr.an. 

For the proof of e), the theorem A of the author's paper Cl] 

will be used. 

The relation of our theorem to Prikry's result is clear. 

By my opinion, the assertion e) is a little surprising. 

Unfortunately, we cannot explicitly describe the set of for­

cing conditions for this generic extension. 

1. Preliminaries. We remind some notations and well 

known facts. We follow K. Kunen t5l with some modifications. 

Let &e be a measurable cardinal, % be a normal mea­

sure on ?e . It is well known that there exists an isomor­

phism Q of the ultrapower */m onto a transitive 

class H^ ( V is the universal class). If x e HQ » V 3 
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we denote by J? the function defined as y <§) m x for 

| c ae . The mapping £ 0 ^ s J(0 —* K<, defined by JL0^ (x)« 

;= 0 C * ) is an elementary embedding* Thus, x^m <i,0 ^ (&) is 

a measurable cardinal in S^ and ^ = 4/^ C*2t) is a nor­

mal measure on ot^ in JCf • One can construct the ultrapo­

wer C *N^) n H^ /ft and the isomorphic transitive class 

H2 • Going on, we obtain a system Jti0 3 H^ 2 H% & *.. of 

elementarily equivalent models of ZFC + "there is a measurab­

le cardinal" and a system i>m,fm , M* & m s <dQ of ele­

mentary embeddings ( i ^ ^ is the identity mapping). As H. 

Gaifman t31 has shown, the direct limit of the system H^ , 

/̂a,/nv -̂s a well-founded model* We denote by $<o0 *^e 

corresponding isomorphic transitive class and 4/^^ will 

denote the natural (elementary) embedding of K ^ into H& . 

For £ & a>0 , 26c =• <L0fc C1L) is a normal measure on 

**f 9 **o,% t*t) in He • 

Let us remark that all classes Kc , -£•<*,§ ® r e defin­

able from 11 . 

If Jt is a transitive class which is a model of ZF 

(i.e. H is closed under Godel's operations - see e.g. Go-

del C43 - and M is almost universal), then the superscript 

Jl over a notation indicates that the corresponding notion 

is considered in this model. 

The famous Los s theorem may be expressed as 

(1) l § v>itH<p<£ 1f..,f^)«<f citsfCfjCf),*.. 

We shall need the following simple facts (see I3],f5]): 
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(2) x c f < a e / n , X 6 > r < r t — f r ^ ^ C * ) - « - , * , a > / * > - * 

(3) x £ N, , eewui Cx) ^ «e — > x e M . 

(4) -ae,. » S&m, ac~ 

C1T ) ( i . e . the claas N- constructed in JL* 

from %mu ) i s 

<wv 
(5) equal to ^ + m , C ^ > f ) » ^ + ^ , ^ * j 'or f * 4>0 , 

m, e o>0 and CN^ >Nim- - N ^ , K ^ « K . 

^ denotes the set of a l l functions defined on x with 

values in n^ . iPCx) i s the set of a l l aubaeta of x , If £ , 

<£, are functions, we define £ e * fym CVAA, € &C£))(£(M,)C g^Cu,)) 

and f & £ ^ s (VA4 e # ( £ » ( £ (4c) s <^(AJU)) . We denote 

WctC£) » the least cardinal.c& aucti that 

( Y l t c A C f ) ) fOOfcoUf CA4,)) < Ot) . 

If M^s M2 are two transit ive models,. Afi^M w (oc) 

means (see VopSnka-Hdjek C83 and also Cl3): for every func­

tion £ c Jl , there ex is ts a function £ e M r> ?Cil ) such that 
M f e e ^ and UTot 4 (9^) *= cc . 

I t i s well known (compare C83) that 

(6) A>fî w ^ (00) implies that every cardinal cf of 

M̂ j , oT ̂  06 , i s a cardinal in ik . 
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In tl3, the following has been proved: 

(7) ÂfLK/jyi M (oc) implies that there is a partially 

ordered set P e M^ satisfying cC -chain condition 

and a generic set 6 £ P such that M a «• M.^ C G) . 

Moreover, Jil a M ( ?<oc) n M2) • 

2. Some auxiliary results* We remind the definition of 

the sets V ($) f $ m Om,i VCO) ** 09V(oo) ** <P(U^V ($)) . 

By the axiom of regularity, V « U V ( f ) . For any transi-
f«On J 

M 
tive model class M , VCf) ;= V(§) n JA. . Thus, especi-

ally VCf) » V C f ) n K K . By (5), we obtain 

Therefore VCf) A N € K K . By the definition of K , we 

have 

(8) for every ordinal f , VCf > A H e N . 

Let F-ix^ - 4 £ e 0<n,j ̂ f d > 0 C f ) » f } . It is easy 

to see that P-tx© *-s a proper class, P*'*© s T^x^ £ ... 

. . . c P ^ . . , . Evidently f e P t * c — » 0 c f > * £ . . 

F-^JC,^ is a class definable in K^ from %ni , thus 

Let us consider a function £ such that &(£)£. Fix0 

and x m WC€) € K^ . For ̂  6 ,x , let * ^ e * T be such 
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that OCHqJ * ty, . For f e ae , we set 

By (1) , one can eas i ly show that OC^) 2 f , ^^9^) i s a 

function and £)(&(&)) s P^oc^ . If we denote E«xi(£)» 

m &(<fr) nCOti, x * ) , we have 

(9) for every function f such that <0C£) s T^X0 >WCf>6 

e X^ , there ex is ts a function EociCf) 6 K>j such that 

f & E * i Cf) , <2K£* i ( f ) ) fi TiXj and WC£) . 

» WC£*tC£)) . 

If X e N-f > eoxtfl * ( # ) ^ ae ^ , then there exists 

• set ty-« Jf0 such that X fi i 0 4 (y,) and voJuL 0(<jp ^ 9C0 . 
a€ 

In fact, by (1), there is a function Jb, c °T such that 
(Vf e ae0) CooiuiCJbCf )) ̂  ae0) and eCJh,)~«x . We set 

This observation may be generalized as follows* 

Let f 6 N^ be a function, !Ei (£) <k vt ^ . Then 

%. 

there i s 

(10) a function <j, c Jf0 such that HVfct C9J ^ ae"Jj and 

Since f 6 N^ , there i s a function Jh, e N(> such 

that © ilh,) m £ . We may suppose (by (1)) that for every 

? € 9 € 0 , > U C ^ ) i s a function and Wd *CJfcC$)) £ ae£ . 

We set 
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Evidently Wot (fy) & eej . Using (1), one can easily show 

that f £ £ i 0 4<9"> * 

A cardinal cT is said to be Rowbottom cardinal if, for 

any K -< cT and £ % CcT] (L-* X there exists a subset x S 

^ cf having power cT such that £ M L x l ° is countable 

(compare e.g. Silver T73)» The notion of an M -ultrafilter 

has been introduced by K. Kunen (see C5J, p» 181). 

Using intelligently a classical idea of ErdSs-Hajnal 

(see E2], D. 126)9 it is easy to prove: 

(11) Let M be a transitive model of ZFCf x S U. , ca^olCx)^ 

4*4Kn — > x e M . Let <x=» X£ro, ac_ , cc,, < oc. -c ... . 

If there exists an M -ultrafilter on every oc^ ,then 

oo is a Rowbottom cardinal in Jl . 

This assertion is a trivial generalization of the theo­

rem 1,29 in f61. Replacing the measures m-(L* n in Prikry's 

proof (see C63, pp.14-15) by " M-ultrafilter on oc^ ", we 

obtain a proof of (11). 

3» Progf of the theorem. Since an intersection of tran­

sitive and closed (under Qodel's operations) classes is such 

a class, by (8) K is also almost universal, we have that H 

is a transitive model of ZF. 

For to prove H \F* A C , it suffices, for any x 6 N , to 

find a functionfelf such that$C£> S Oft, and W C £ ) » X . 

Thus, let x e H and let £ e Jf0 be a function, 
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0C£) GFlx0 and WC£)«x . Let FC£)« <£„,,; m, e co0 } , 

where f0 ** t and f ^+4 ~ Ext ""(f^,) (see ( 9 ) ) . We se t 

**•%.& £ ^ ' B y ( 9 ) > *"* e * * ' 0 C £ ^ C ^ a n d 

VCf^) « x . Since P **( £^) - -Tf^: /n, 4 Jfe, e o>0 ? and 

fci * U £* .we have £.. € K^ and therefore . £.* m H . 

Thus the axiom of choice AC holds t rue in H . 

Now, we show tha t 

(12) A4>*N # Cae^ ) holds t rue* 
o0* 0 

Let £ e )f be a function. We denote f̂  m i<x9^> : 

: £ (<im ^ (x)) =s <c^ ^ 0^) J . By the def in i t ion of the d i rec t 

l imi t IT,, , we have £ s U i ^ , . (£-.) and £„ € JC . We se t 

J l i ^ C x ) * ^ ! ^ ^ ) } for x €. HXi^) ' For every m, e c*>0 , by 

repeated appl ica t ions of (10), there ex i s t s a function g ^ e 
H 

£ X0 such tha t Wd °f 9,^) 4 * ,+ and ^ £ £ +Q,«,<fm? • 

Thus £^e € < i ^ f g ^ > • 

We se t 

Jfe(x)* 44, m C3/n,)(,x c 0 Co*,,')) & ** « U o^C*; . 

IV 
Evidently Wd, ° (A) & &,* and ^ £ £ Jh, . Since 

4s0 ^ is an elementary embedding, we have 

WdL •*• ̂<j,4> CM,)) ^ «e£ . By the construction of the 

function ku , one easily obtains £ m 6 <£ CJfe) . Since 
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*** ,* (to*) G Nfi> f the asser t ion (12) follows. 

Now, the par t b) of the theorem follows by (3) , (6) and 

(12). The par t e) follows by (7) and (12). 

Let a, s <&„,* m* 6 <*>0* • E v i d e n t l y <* =* * «K* > ** 6 

£ m, e o>0 J e K^ . Since c i s -C ae^/r t^JfeJua* ,we have 

O/ e K/L . Thus also 

(13) < eem ; m, c o>A 1 « JC . 

The par t c) of the theorem follows by (4) and (13)• Sin­

ce %nv i s an K ^ - u l t r a f i l t e r on e e ^ , d) follows by (11), 

(3) and (13). 

Final ly , l e t us remark tha t by (7) and (12), J<ss JĴ % <oc) , 

where x 9 & (ee»"t\ ) n H . The author was not able to pro-

ve or to disprove the following conjectures: 

(14) H * JT Cx) , where x « H n (P (ee^ ) , 

(15) HmH,%(x), where a ^ K r ^ a e ^ . 

Neither we know the r e l a t i on of the generic extension It 

of K. to tha t constructed in £61, p . 24. 
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