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ON SOME CLOSURE PROPERTIES OF GENERABLE LANGUAGES
Ivan MEZNfK, Brno

Abstract: In this article it is shown that the in-
tersection of a class of generable languages is a gener-
able language and the necessary and sufficient conditions
are given for the union of two generable languages to be
a generable language.

Ke rds: G -machine, output word, word generated by
G -machine, language of a G -machine.
AMS: 68A30 Ref.Z2. 8.713

- - - — - - -

A generable language is the set of all "words" gene-
rated by a G -machine [3], which is a certain generaliza-
tion of machines introduced in [1),[2],[4]. In the above
references the term "generable set" instead of "generable
language" is used. Since a generable language is a subset
of I% (the set of all nonvoid finite or infinite se-
quences over a finite set I ) the‘term "generable langua-
ge" seems to be more suitable. We shall deal with some pro-
blems ccncerning the closure properties of generable lan-
guages. It will be seen that generable languages possess

closure properties analogous to generable sets studied in

f11,C2],041.
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Denotation. Let T, 7T, T, , T, denote the follow-
ing sets:
T =44,2,..3, T=10,4,2,...7 , Ty = 14,2,...,m 3,

T, = 40,4,2,...,m} .

Definition 1. Let I be a finite set (including an
empty set). Denote I the set of all nonvoid finite
and infinite sequences of elements of I . These sequen-
ces are called words. For w € I¥, me T, w=(hy,~q,...
veshmoq) Put ACw)mm , For wel®, w=(hy,by,e.)
put AL(wr) = oo . The symbol 4(ar) is called the
length of a . Instead of w = (Ag,44,c) Am.q) and
W om (bygy Aygees ) we write = Ay Ay cse b4 @and

ma

"= Ay Ay.., Tespectively or """,-,T.rp

o0
= J-ro A; « Considering an arbitrary word of finite or

»;, and ws=

infinite length we use the denotation T 4. .
+

By the symbol (4, - Am.q )* | where £ eT we
understand the word Ay dgee. Apm Pm g Pom P2ons1°*" Demeg 3
where b, .. = 4; for all 4 € Tgp.y oand alljeTp, .
Further, by the symbol (bp b4 ees b ,)® we understand the
WOTd Ko Ageee Ay Mppsqrs Pmom Pamasqses s WHETC by o= by
for a11 36 Tyn.q and all m « T . For m =41 we omit the

brackets and write b“: ) By .

Convention. In the relation C & I %  we suppose
every element from I is included in at least one sequen-

ce from C .

Definitiop 2. G -machine is a triple M =(S,I,d"),
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where

(i) S is a nonvoid finite set;
(ii) T S(I%S);

(iii) o is a mapping of I into the set of all

nonvoid subsets of S , i.e. J°: I into 25 .

In the following, M is to be understood as G -ma-
-4

chine M=(S,I,d").Let me T. A word 411'044 or
[
,;T_TD g respectively is called an output word of

the length m or oo respectively if »,€ I,
541_4 € (r1n 1 for all 4+ € T,,_q or for all
4 €T . An output word awr= Ta; is called a word
generated by M if either L(w)=00 or L(w)=m
and there exists ¥ € d (4, ,) N (S-I) . If it is ne-
cessary to specify that a word 11:/:,;, is an output
word of G -machine M = (S5,1,d") , we use the denota-
tion 1T/a,; (d") . The set of all words generated by M
is denoted L (M) and called the language of M .An
arbitrary set C, Cc I® is called a generable
language if there exists M such that C =L (M) .
Definition J. Let M = (S,I,d") be a G -machine.
A couple (»,» ) is called productive if sH el ,
o €ed(b)n 1 and unproductive if el ,vred (H)n
n(S ~1). Denote by P, the set of all productive

couples and N, the set of all unproductive couples.

Definition 4. Let I be a finite set, C & 1%
and TS (I$S5), where S is a nonvoid finite set,
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Suppose I = @ . Denote by ¢ an arbitrary element
(sequence) from C and by 4; the ({4 1)-th element
of ¢, ¢ =Tn; forall ieTy 4 if Me)=meT

and for all i+ € T if L(e)=c0 . For ceC , c =

m-4q

"JIO':"" (meT) put P(e) = %(b“,/a,“_,,) for all
s eT,_ , and N(c)=(4, 4,#), where » is an arbit-

rary element of (S ~1I). For ¢ € C,c:L‘l;(’o/a.;, put
Ple) = U (hy, 4k, ) for all h e T . Denote P =
oy PCc),Nac'l.lcN(c),a"fC]-PuN If I+f4 , put
JdLCl= 0. Define G -machine MLCI=(S,1,dLC]) .
Definition 5. Let I be a nonvoid finite set, C <
m-1
£ I% , Suppose ¢',c”eC, ¢ ’411;&"3 (meT), c”= '[Ih”,; .
Define partial operation @ :(CxC) into I® , where
(CxC)s CxC as follows:
(1) @ (c’, c”) - b°b4 oee lbm_4 bm ces 4
where b; = 4’; for all G € T 4 ;Sm-1oa=4"s for all
o €Ty ny o if 4(e”) < o0 otherwise for all
ReT.

Legma 1. Let 1 be a nonvoid finite set, C S I®
a generable language, c’,c¢” e C . Then w(e’,c™)e C .
Proof. By Definition 2 there exists a (G -machine
M=(S,I,0") such that C =L (M) . Suppose c’, c® sa-
tisfy the conditions of Definition 5. First consider ¢” e

Mad
eC,c” =, W, »"% (heT) . Using (1) it follows
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] ‘-
G.’(Co‘,C‘,)-balo"" Pm-q4 Py, 20 Pnamea » where A; = g

for all 4 € T, 4 sPm-1ss = by fOr all fee Ty . By

Definition 2 »;,4 € S (by)  for alli € Tpu,p_o and the-

re exists w e d (by,; ,) N (S-1I), Hence w(c',c”)e
€

eLM),wle,c”) €« C . Nowletc'eC, o”= T 4", .

By (1) w(c',e”) = hony-e Aoy Ay ece 5  WhETE H; =

= 4’3 forallje Tm-q4  and Ay g, g = »%, for all

# 6T .Obviously, Apeq €0(s;)n] for all L e T and
by Definition 2 w(ehe™ e L(M), w (e’ e?) e C .

Corollary 1, Let C & I® be a generable langua-
ge. Then C is closed under partial operation < .

Example 1. Decide, whether C = {a* ™2™ |me T3}
is a generable language. Consider c¢’,c¢”’ e ¢, ¢’=alra ,
¢” = aar¥aa . Words c', o satisfy the condition of
Definition 5 and by (1) w(e’e”) = alraa bhraa . Obvious-
ly w(eye™ & C and by Corollary 1 (C 1is not a ge-
nerable language.

Lemmg 2. Let C s I® . Then C s L(MCCI) .
Eroof. If I # j , then L(M[C1)=§ and the

statement holds true. Suppose I # § . Consider ¢ €
eC, ¢ "afo %5 . By Definition 4 (a;,n;, )€
ePle), (ry,m;,,) 6 Porpgy for all 4+ e T

and by Definitions 3 and 4 ¢ eL (M {CJ) ., Further, let

maq
ceC, c-ilfo »; (m eT) . From Definition 4 it fol-
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lows (n;, s, ,) € P(e) for a1l 1+ €T, _, and

44

(bpp_y, ) &« NCe) , which implies (»;,»; ,)e€Ryreg
for all 4 € T, , and (4, ,,v)eN o, - Hence

celL(MCCI) and CsL(MCC]) .

Propositjon 1. Let I be a finite set, C c I® .
C is a generable language iff C =L(MLCCI1) .

(See [3] as the consequence of Theorem 6 and Corollary 5.)

Theorem 1. Let {C; i « X § be a class of generable
languages. Then &QK Cy is a generable language.

Proof. From Definition 2 it follows there exist G -
machines M, = (S;,I;,d;) such that C;=L(M;) for all
ieX . Put C= N C; . We shall construct G - machi-

4Tek

ne MCC1=(S,I,JCC]) and show C=L(MIC]).If C =
=@ , then L(MLC1)= ¢ and by Proposition1l (C is
a generable language. Suppose C % 0 . From Lemma 2 Cs
s L(MCCI) . First, suppose wreL(MLCI), «ra-iﬁ'o a, .

By Definitions 2 and 3 (&, ,be,) € Pyreg for all

ReT. Further, by Definition 4 there exists to every
(bge,Apyy) aword c € C  such that (sg,4s 4) € P(e),
which implies (/g,Ap.q) € Py for all ¥+ € X and all
¢ T . From Definition 2 it follows ar e L(M;) for

all L1 e X , thus awr € C . Second, suppose a« e L(MLC]),
m-4

w= T

PP (m € T) . By Definitions 2 and 3

(b‘,b‘M) €Prroy for all eT, , and (bm_“ar)c)(“m .
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According to Definition 4 there exists to every
(g s s 4) € Pyre awrd ce C  such that
(b, Mg, 4) & PCc) . Then (b, op, )€ Py, for all
i e K and all R € Tm.-a. .Further, there exists c e

e C  such that (s, _4,»)eN(c). Since ¢ e«'.OK c. ,

there exists »'e (S;-1,) with the property
(bm-,,,ar"") e No; for every < € X . By Definition 2
wel(My) for all £+ 8K , hence weC, L(MICI) & C

and the proof is completed.

Corollary 2. The class of all generable languages is

closed under intersection.

Lemma 3. There exist G -machines M, = (S,,I,,9;) ,
My =(S,,I,,d3) for which C-L(M,,)ul.(!lz) is not

a generable language.

Proof. Consider G -machines M, = (S,, I,,dy) ,
N, =(5,,1,,d,) , where Sdaszz{a—,xr,c,ui, IL=1,=

={a,¥, e}, d;:[a.->ur,x},k-,{bi,c->{o31,d;_t [a»f0;x3,
&+ ix},cric3]l ., Then L(M I=4ia,at™, &%,c%3, L(M)=
={a,al, #,c%3,C= L) 0LU,) = {a,ab™ ab, &, 57,c%F .
By Definition 4 M[C1=(S,I,dLC]) ,where S={a,0;c,x]i,
l=fa,#,c3,d[Cl:fla+{0;x3}, 8->, x3,c+4c3] . From here
LULCT) ={abl’a,at™ 68 Ik eT} .Thus € 4 LIMLCI)

and according to Proposition 1 ~ ¢ is not a generable

language.
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Corollary 3. The class of all generable languages is

not closed under union.

Lemma 4. Let M =(S,,I,,d;), My=(S,,1,,d,) be
G -machines, C=L(M,) v L(M,) . Let for every i,j ¢
€ 4,233,443 @and for every me T

() mghyere bp_4(d3) and (mp_4q,v) e Py
implies

Py By eee Py 4 (Iy) oT (Am_,',ar)el’d-_‘,' .

-

Then for every m e T  there exists fo €41,23} such that

RgPyee Am (FLCT) implies rg g sae P, (g ) -

Progf. For m = 1 the statement holds true trivi-
aily by Definition 4. Let m > 41 . We shall prove the
statement by induction. Put m =2 and suppose
kg by sg(LCI) . By Definition 4 there exists fe e i4,23
such that (4,, A4) & P"':n . Choose &, € {1,23% such

that (»,, s )e P"-&.o and suppose (4, ,s,) € P"'A,,‘ , Whe-

re M, ,e (44,23 -4{%,3%) . From Definition 2 and (S)
it follows (4, 4,) ePd;‘o or A, A, (d‘h4) . If

(ry, Ay e Pd-ho , then b, A, /bz(d'ho) . In case

by Py (d"*w) by Definition 2 4, b, A, Cd"h‘, ) . Thus,
there exists &R € 44,23 such that s, A, 5, (% ) . Now

suppose that m = e (T-44,23) and A, » ... Aa,’,_(d'EC])
implies there exists MR € £4,23 such that 4, 4, ...
oo 2 (I ) . Choose %, €{1,23 such that /ao/a,‘..-b%(dio)
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and assume there exists v such that (4,,7)e ?45,1, Ay €
€ (41,23~ {%,3) .From (S) it follows (/o,,,,ar)e?di.a or

then by Definition 2
By By e "’4»(‘6;,, ). If (bﬂ,fr) € P‘q“o y

. I
Ry Byese bp»ﬁﬂ (d;"a) , where b, ., = ¥ .In case
b,/b4...b¢(d;.1) by Definition 2 4, A .coby by y (d“"ﬂ ).

Hence 4, /a4...,§%/b4;+4(d"h) holds true for at least one

% €£4,23 and the proof is completed.
Theorem 2. Let M,=(S;,I,,d7),My=(Sy, I;,d3) be
d -machines, C=L(M,)uL(M,) .The following statements

(A),(B) are equivalent:

(A) For every i,4 €{4,23, v 43 and every me T

() if pyhge by_q (93 ) and (g _g,@)e By, then

ko /34... n-q Cd‘:‘-’) or (bm_,' ,ar)e Pdvj‘-

and

(B) if mysidy ,(I5) and (/a,,,_,,,ar"') € Ny, then

. &
By ogeee by o (d5) or there exists (b, _,,v )sNd; .

(B) €C=L(MILCI) .

Proof. If C % # then by Definition 4 L (M LC1)=0.
By Proposition 1 C is a generable set and the statement
holds true trivially., Suppose C % g .
I.(A)=>(B)., By Lemma 2 C g L(MLC]) . First, assume

(-4
there exists ce L(MI[C]), ¢ = .'n'a %, . From Definitions
4
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2 and 4 it follows Ay my -+« bm (FLCT) for every
m € T and by (A) and Lemma 4 there exists f & {4,2%
such that Ay 4.0 by (I ) for every m 6 T . Therefore
ceL(My) for some % e {1,23, ce C . Second, sup-

]
pose ¢ e L(MLCCI), e = 0% (me&T) . By Definition

Fy

e

2 Ko bgecedq.g4(FLC]) and there exists z such that
(bp.4,%) € Nocey - By Lemma 4 there exists S e £4,23%
such that Ay Agec by_g (Ip ) . From Definition 2 it
follows there exist f% & 4,2} and ™ such that

(b, ™) & N‘fk . Choose ke {4,2% with the

property Pybygeee Ay _y (d;"a) and suppose there exists

Como 37 V8 Ny s Ioge (14,25 = {deg3) . By (&) gy -
.
...b,,_,,(d'.,o) or (A, v ') @ Nd-“‘, I Ay a

s Pop_q (Jho) then by Definition 2 ¢ GL(M"‘o) .In case
S st a3
Copgo? ) & N‘rh" by Definition 2 c e L (Mg ) .Hence

there exists % 44,23 such thatceL(M,),ceC .
Thus C = L(MCC1) and (B) holds true.

II. (B) ==> (A). We shall prove the reverse implication

by contraposition. Suppose C=L (M )uvL M,;)=L(MLCI)

and (B) does not hold. Let us admit (ec) does not hold,
ieee Mo byeei by g () , Py gs@)e Ry s (0p_g, ) € ?"i and
Pohyeeeby_q (J; ) does not hold. By Definition 4 there ex-
ists ar eL(MCC]) beginning with the output word &y A4 -..
cesdp_yom ,wWhere A, = ¥ . Under given assumption
(bn-g:4m) € Pg; , thus ar TLM,) .If b Agees Bg_ (d7)
does not hold, then w € L(M;) ,hence w € C . Now sup~-
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pose (3) does not hold, i.e. AyAy:ee bp.q(d}), (b,,_,,qr")e
€ Nd'_‘., ,(h,,,.,,w"')eﬁd". . for every n?e (Sé‘-I’:) and

AoAyes by 4, (d:)  does not hold. By Definition 4 there ex-
m-1

ists w e L(MCLC]), w =T _ A, . Since there does
14e0
not exist +* e (S;-1;) such that (b, ,,v*) 6 Nop

then by Definition 2 ar & L (M ). Further,s,5,... 8 4 )
does not hold true, thus w € L(M_;) . Hence w & ¢

and we reached a contradiction.

Corollary 4. Let M4 = (S, 1,,d%) and M, =
= (S,,1,,0;) be G -machines. The following statements

(4), (B) are equivalent:

(A) For every 4,4 €141,2%, < 4 7 and for every me T

() if by byeee by 4 (d;) and (Bpy_y,7) e ?J::
then
By Pogers By 4 CI,) OF (g 4 r) € P"a‘- and
. +
(B) if oy Ay by 4 (d3)  end (/a“_“ar)c.ﬂq
then

by Byeee By (d;) or there exists
(bﬂl-d ,m"-') [3 Nd-i .

(B) L(M,') vl (Mz) is a generable language.

Corollary 5. Let C,, C, be generable languages.

C= C,, (3] Cz is a generable language iff (G -machines
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MLC1=(S,,1,,dCC,1), and MLC1=(S,,I,,a°[C,1)

satisfy the condition (A) of Theorem 2.

Example 2. Let M= (S,I ,d), My=(5,,1,,4,)

be G -machines given as follows: S = {a,&,¢c,d,x 3 ,

L=ia,¥,c,d}, d=la>ia,cd, rsid}, c+ie},

d—+{x3, Sza{zr,c,c.,f,q!, I,=4i%c,e,£3, d) 1

1lr+4{ed, c+4{Y, e+ 4{£3, £+ 443 ]
By Definitions 2 and 3 ac®(d)), (&,e)eFy ,(#,e) & By
2 1

hold true. Further, ac® (d, )  does not hold true. By
Corollary 4 L(.M1) u L([dn) is not a generable language.

(11 w.
2] w.
(3] 1.
41 z.
Katedra
FE VUT
Hilleho

References

KWASOWIEC: Generable sets, Information and Cont-
rol 17(1970),257-264.

KWASOWIEC: Relational machines, Bull, de 1 Acadé-
mie Polonaise des Sciences,vol.XVII,no.9
(1970),545-549.

MEZNfK: G-machines and generable sets, Information
and Control 5(1972),499-509.

PAWLAX: Stored program computers, Algorytmy 10
(1969),7-22.

aplikované matematiky

6, Brno, Ceskoslovensko

(Oblatum 19.12.1972)

- 55¢=



		webmaster@dml.cz
	2012-04-27T21:53:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




