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Commentationes Mathematicae Universitatis Carolinae 

13,4 (1972) 

FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS 

Jochen REINERMANN, Aachen 

V.V. Petryshyn has given in L73 some fixed point 

theorems on so called [3], [4] "generalized contractions" 

(Def. 1 (i)) and on "uniformly generalized contractions" 

(Def. 1 (ii)) proving them by a degree argument (and 

therefore function's domains must have interior points). 

We strengthen and generalize some of these results by a 

unifying and elementary approach, using methods discus­

sed in [3],t4),[5I,L8i,l9]. 

Definition 1: Let ( £, , II II) be a normed linear 

space and 0 # X c £ $ 

(i) f: X — • £ is said to be a "generalized contrac­

tion" : <=«> 

(*> K r»A* A c CX,^>6.XX.X -==$> ttfC.X)-fC^)I .£ cc:X-*r.0,1J *,/£«£ ' T w 

£ co Cx) Ix - ty ' 1 

(ii) £;E —*• E is said to be a "uniformly generalized 

contraction with respect to X "* <.sss> 

(**> Y_,™,, /S * t x ^ ) 6 E x X ^ llfCx)-fĈ >l ̂  

^ OC (x) lU-^.1 . 

AMS, Primary: 47H10 Ref. 2. 7.978.53 
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Remark 1: 

1) Contractions in the sense of Banach are generalized 

contractions. 

2) [4] : Let (E, III ) be a normed linear space and sup­

pose 0 -£ X c £ is open, bounded and convex; let 

f : JC —-* E be continuously (Fr^chet) differentiable. 

Then f is a generalized contraction iff I f£ I «< i 

for all * e X - A similar example may be given satis­

fying condition (*#), see f33. 

Theorem 1: Let (£, I I) be a normed linear space 

and suppose % is a Hausdorff topology for E , such that 

(i) CE , % ) is a topological linear space, 

(ii) A S convex A S # -compact ==-> S is norm-
Sc£ 

bounded, 

(iii) A A B(x, H,):xisiL\AL eE A II * - o*J t£/t J -=£ B(*,*-) 
*e£ K,*0 > r r 

is % -closed. 

Let 0 sfe. X c E be a convex % -compact subset of E 

and suppose £ ; X —* X is a generalized contraction. 

Then: (a) There is a unique ,x0 e X such that £(x0) * 

- *o \ 

(b) For z, £ X we have 2imv ii^(%)% = xQ 

m*~* co 

( s t rong ly ) . 

Proof: ( a ) : Let ^ ( s ^ S l j ? * 5 c JC , S convex, 

% - c l o s e d and £ C$ ) c S ? . 
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We have T 4* 0 C X £ T ) . Ordered by S^ & £% : <*=» 

<==.;> SA D 5J2 * it can easily be seen, (T9 & ) being 

inductively ordered. Let S0 Q T be maximal (Zorn). 

Defining cT? = cUavm> CS0) we have 0 & cf «z oo (ii). 

Assume cf > 0 and let x e S0 • we define c£, ; = 

;=qcCx)or and £, : » S 0 n 3 Cf Cx ) , d} ) . We have 

0 4t S4 c X CS0 c X A f Cx) c S1 ) and ^ is 2 -

closed by (iii). Finally, we have for z € S^ £ (x) & S0 

and II f C x ) - fC*,)ll £ oo Cx ) H x - * H ̂  at Cx ) cf* d* , 

i.e. f CS^) c SA : SA m S0 (maximality of S0 )• This 

implies 5 0 c B C f C x ) , c ^ ) . Now define 5 2 : m 

:« Q 50 n B C ^ ) ^ ' • Then # * S2 c X 

(S0 c X A £ Cx) c S 2 ) , S% is convex and V -closed 
— y. 

by (iii). It is easily verified that (#)cor t£ (S0 ) 1 = 

=- S 0 C 7 -olosed convex hull) [Take S 3 : » co-C£CS0)3* 

and prove S3 e T and S3 c S a J # Now let xĉ  e S2 

and /g, e S 0 . 

Then || £ Cu,) - £Gu.) II .6 lf,u,-/u. (I £ cT4 , i . e . f C £ 0 ) c 

c B ( f ( ^ ) , ^ ) . I t follows S0 « c < r C f . C S 0 n * c 

c B Cf Cu,) , c^ )* c BC£(u,),<£i ) by ( i i i ) , i . e . 

f Cu,) € PL BG*, <?* ) n S0 , i . e . f (w) e S 2 . The 

maximality of S0 gives S^ = S 0 . Finally l e t AC,/ir€ 

€ S 2 5 we have 4t g B (nr, d^ ) (or 6 S0) implying 

H.U.-.V II £ cTj and duvm, CS a ) .£ <£j -< GT-S d^rrt, CS%) -

a contradiction: We have c f« 0 , i . e . there exis ts x0 6 

€X such that S 0 « *X 01 . Because of f C S 0 ) c S0 

we have £ Cx0) » x 0 . (b) Let x 6 X and /n 6 IN . 

Then Hfm 'Cz)-x0 l l6 l£m-(x)-£ Uon* c t f x ^ l f ^ C * ) - * . * * 
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implying (by induction) U^Cx >- X0II -S Cot C*0 )$* tx ~.X0 ft 

such that & ^ ^f^C*)}-* y0 CO £ oc C,x0 ) < 4 ) . (b)is 

proved. The uniqueness of xd is an immediate consequen­

ce of (b) or, directly of £ 's contraction property 

O f C*)~£(<y,)l£ tJx-4-l for * 4- /y. . 

Corollary 1; Let CE, II 8 ) be a normed linear spa­

ce, let % be a Hausdorff topology for E with (i) -

(iii) of Theorem 1. Let K 2z 0 and suppose B(0 , .K.) 

is # -compact and £ ; BC0,K ) -—> E is a gene­

ralized contraction such that II £ Cx ) II -£ K if llxR-» 

« R (i.e. £CJerol(B(0,JL)>) c 3(0,X)) . 

Then: (a) There exists a unique x0 6 B (0,31) such that 

£Cx0) » * 0 5 

(b) For x6B(0,Ji) we have 

Je^-CC-idd+f )r*<*)J« *<> (strongly). 

Proof (see C4]): Define $.;B(0,.R)—»E by 

g,; ar 1 Clct + f) .Then we have <^(BC0,JI)) c 3 (0, -H ) , 

g, is a generalized contraction, the fixed point sets 

of £ and <^ are the same. Theorem 1 completes the proof. 

Remark 2: 

Examples for V 

1) Let CE,I 0 ) be a conjugate space and let % be the 

weak* topology for £ • Then (i) - (iii) of Theorem 1 co­

mes true. 

2) tet CE, II II ) be a reflexive Banach space and let % 

be the weak topology for E . Then (i) - (iii) of Theo­

rem 1 comes true. 

3) W.A. Kirk 141 proves Theorem 1 and Corollary 1 in the 
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case of a conjugate space CE, I I ) and the weak* 

topology for E • 

Theorem 2: Let C.B, II II ) be a normed linear spa­

ce, suppose 9- is a Hausdorff topology for £ , such 

that 

(i) (£ , 9 ) is a topological linear space, 

(ii) A B convex A S ¥-compact 4 5 is norm-
ScE 

bounded, 

(iii) A A B(x,&): » <nf\ojL e E A % x ~ <wl£ ri^lbix, tpis 
.*€£t.ao ' 

% -closed, 

(iv) The norm topology for E is finer than .X , 

Let 0 =*= X c E be a convex % -compact and 

V - (sequentially compact) subset of E , let i '. X —*• 

—> E be a generalized contraction and ^ ; C X , 7 1 —> 

—>CE, II II J sequentially continuous such that 

(K •A) A e Cx, ̂ > e X x X «> fCx) +q-C^) e X -

Then f •*• £, has a fixed point. 

Proof; Let /̂  e X . We define it^ .< X — • X (K^) 

by h^ (a ) ; «r £ Cx ) + <fr (^ ) ; Jh,^ is a generali­

zed contraction. By Theorem 1 there is a unique .x« c X 

such that Jh,^ ( x ^ ) s ^ , Defining T J X —*• X by 

T ( ^ ) ; = p<̂ . we have for /̂ , % c X 

I T (< .*)- T ( * ) | | & l x ^ - x^l * i l ^ C ^ J - ^ C ^ ) ! .4 

-.£ IIfCXy.)-«<**) + <^C^.) - g . f c ) l l * l l f C x ^ ) - f Oc*>l + 

+ II <J, C/̂ ) - <^(X)|I -̂  OC Cx,^) II x ^ - x^ 11 + II o^C^)- 9,(2,) II j£ 

6 ocCx^l lTC^) - TCiOII + l\&(ty)-q,(z,)K , 
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such that 

( * ) IITCV)- T(*n * - — — \\%>(*i,)- <fr(%)\ . 
1 - oc (Xy) 

M 

T i s continuous in the norm topology: l e t 4 x ^ } e X 

and Xo fi X such t h a t x ^ —> x 0 ( s t r o n g l y ) . Then by 

( iv ) 7 - Zum, ix^J =* x 0 . Now <j, Cx^) —> <fr 0< o ) 
•tV* "*• at? 

and -CTCx,,,,)*-* T ( x 0 ) ( s t rong ly ) by ( # ) . Let 

^ T c ^ ) } € %* t *x«i-* € •** • There i s a subsequence 

^ ; i e X W of -Cx^i * Xw and x^ € X such tha t 

7 ~ Xc*rt> "Cxi 1 *s XA ( X i s ¥ - ( s e q u e n t i a l l y com-

p a c t ) ) . Then *j„ (x^) —• $* (xA ) ( s t r o n g l y ) , c<waae<ju#ntly 
by (x) \\T(x^)-T(x^)ii^T^——»9,C<)-^^)ll-*0^.e. 

§ -* cC Cx^, ) 

•(TCx^)} has a (strongly) convergent subsequence. Fi­

nally X is norm-bounded (ii) and norm-closed, because 

X is % -closed and 7 is coarser than the norm to­

pology. Schauder's fixed point theorem completes the 

proof (for let *g. e X such that fy*T(ty) then <ty**T(y,)s 

m x ^ and x^ » to, Cx^J = £Cafy) + $-C<y-) ,i.e. rjj, = •£(<̂ ) + 

+ %>(%>) )• 

Remark 3: 

1) V/.V. Petryshyn L73 proves Theorem 2 in the case of a 

reflexive Banach space (L f II II ) and the weak topology 

for E (satisfying all conditions of Theorem 2) for a 

subset X c E additionally satisfying -imt (X) 4s 0 

(degree method). 

2) In the case of a conjugate space ( E , M 1 ) and the 

weak* topology for £ ,. a ^ -compact convex subset of 
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E need not be 7 - (sequentially compact). This, how­

ever, is true, if C E , ft II ) is strongly separable 

([103, p.209). 

3) The Krasnoselski condition (K.) is very restrictive, 

as the following simple example shows: Let E s -~* JR. 

(absolute value norm), X : == C 0,41 • f, <£"* X —> E defi­

ned by f Cx) i m j x , <frCx). = 1 - j JC . Then C <f - 0 ) e 

6 X x X but £ C 4 ) + 9̂  CO) = -|" 4 X . In the case of a 

Banach contraction £ and a compact g, and a closed, boun­

ded (strongly), convex subset X c E (K,,) can be weake­

ned to M C£ + Q,)(X) c X " (£13,t83). In our situation this 

could be done also (see the proof of Theorem 4), if 

(i) Id - f is demiclosed [8] , or (ii) CId-£)(X) is 

closed, or (iii) (Id-£-a,) (X) is closed, or (iv) If 

0 e C I d ~ £ - ^ ) (X ) * * * " * then 0 e C Id - £ - <fr) CX ) . 

With the same method employed in Theorem 2 - now using 

Corollary 1 - we can prove 

Theorem 3: Let (E,H II) be a normed linear space 

and suppose 7 is a Hausdorff topology for £ , such that 

(i) C E , 7) is a topological linear space, 

(ii) A S convex A 5 7 -compact .==-.> S is norm-
»e £ 

bQunded, 

(iii) A A BCx,/c): » %!/* S E A HJC-^II^I «,$.-» B (*,/t) is .xcg K.S0 > y* T w ' 

1? -closed, 

(iv) The norm topology for E is finer than # • 

Let & 2 0 and suppose B C 0 , . H ) is ¥ -com­

pact and If - (sequentially compact) and £ ; m 

i m BC 0 , % ) — • E is a generalized contraction, let 
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9* i t X , ̂  3 —• £ E , 1 I 3 be sequentially continuous, 

such that 

(K«) A 1 X 1 - » R / K I « J A.* =-» £Cx) + ^Gy . ) € B CO,H) . 

Theft £ + <j, has a fixed point. 

Remqrk 4: 

W.V. Petryshyn provSs Kieorem 3 in [7J in the case of a 

reflexive Banach space and the weak topology (see Remark 

2). 

The method developed in 133 yields 

Lemma 1: Let CE , II II) be a reflexive Banach space 

and suppose X is a nonvoid, closed, bounded, convex sub­

set of E •, let f $ E — • E be a uniformly generali­

zed contraction with respect to X and ix^} e Xm such 

that Mm, ix^- £(*-,)> m 0 (strongly). 
ttir -«T CO 

Then (a) £ has a unique fixed point %0 e X , 

(b) fUm, <X~,i m x0 (strongly). řCù 

Proof: See C3], proof of Theorem 2. 

As a corollary of Lemma 1 we obtain 

Lemma 2: Let C E , I II ) be a reflexive Banach space 

and suppose X is a nonvoid, closed, bounded, convex sub­

set of E i let f : E — • E be a uniformly generalized 
N 

contraction with respect to JC and let ix^} « X and 

AL c E such that JUmu ioi^-^Cx^)} * (*, (strongly). 
W , <ti- "-%' CO 

Then (a) There is a unique x4 c X such that x^ -

- £CX^) m ty , 

(b) Kim, iXm,S m xA • 
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Proof: Define 9,: £ —# £ by 9-Cx)? •» £Cx) 4- 4. -

Then ô  is a uniformly generalized contraction with res­

pect to X and JUm {x^ - q. (*<„, ) J -* 0 (strong­

ly). Thus, by Lemma 1, there is a unique n. € X such 

that <j. (x^ ) m x^ , i.e. #,, - £C^) *• ̂  and 

J&m< -Cx^l SB *A (strongly). 

Theorem 4: Let (E-.lt) be a reflexive Banach space 

and suppose X is a nonvoid, closed, bounded, convex sub­

set of E j let £ % E — > E be a uniformly generalized 

contraction with respect to X and let $,* X —-• E be 

compact such that (£ •*• 9.) (X) a X . 

Then f + g, has a fixed point. 

Proof: Without loss of generality we may assume 0 e 

fil .Let i%m,\ c (0,4)* with jt*tt \ fr- I • <f . 

We define £^ $ =. X^£ , $* s * A** 4* f or <n- * H and we 

have (£«, + €^)(X) a X . Because of H i^ C# ) - £„„ C^) ft * 

-6 A ^ c&Cx)!*-^!! --» A ^ i x - ^ H and ty» being compact, 

there is a sequence 4x^1 * X such that £fe(x*) + 

+ tyn-^O ** *4* ^see tll,C8])« Because of Q, 's compact­

ness there exists a subsequence 4 xjj-, f ct X * of •Cx̂ T and 

^ e £ such that XJbn> £%*<*Jii,)i 9 ^ (strongly). Now 
11* -«• 00 

we have for m, c W J x^ - £(«»)-- 9^x4,) * 

« (A*-4)(£(x£|,) + 9»(*m,)> • ^® boundedness of X imp­

lies ^i*"* **£>-£ dx^,)* sr ̂  (strongly). By Lemma 2 we 

have a x4 e X with *A - £(,x\.) =* <*> and itm 4x^1 -» 

a x,j (strongly). Finally the continuity of <j* induces 

iiw- i^(»^)} » 9-^4 ) auch that /̂  -5.9^X4): We have 

xA-£(x/i) * ĉ Cx,,) , i.e. £C^)4- <j.Cx̂ ) « x i , q.e.d. 
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The same method used in the proof of Theorem 4 yields 

Theorem 5: Let (E, SI 8 ) be a reflexive Banach spa­

ce and suppose X is a closed, bounded, convex subset of 

E and #0 c imt C X ) • let £ * £ — * £ be a uniformly 

generalized contraction with respect to X and 9-; X —• 

—• E be such that 

(K*) A A.xelreLCJC)Af£+aX^)»^ + «---i\)^w»A6l. 

Then £ -*• 9, has a fixed point. 

Remark 5: 

Theorem 5 is proved by W.A. Kirk in t33 for x0 » 0 (u-

sing a method of F.E. Browder [2 3) and by W.V. Petryshyn 

in [73 (degree method). 
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