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FIXED POINT THEOREMS FOR GENERALIZED CONTRACTIONS

Jochen REINERMANN, Aachen

W.V. Petryshyn has given in [7] some fixed point
theorems on so called [3], (4] "generalized contractions"
(Def. 1 (i)) and on "uniformly generalized contractions"
(Def. 1 (ii)) proving them by a degree argument (and
therefore function’s domains must have interior points).
We strengthen and generalize some of these results by a
unifying and elementary approach, using methods discus-
sed in [3],(43,(5],0(8),019].

Definition 1: Let (E,lIl I} be a normed linear

space and f§ # X c E

(i) £:X—F is said to be a "generalized contrac-
tion": <=>

= - | P
(%) ‘\:/x_’[a’u "/:’\V‘E (x,0)eX x X = f(x)-£(gy)

£ (x)x-gl ,
(ii) £:£E — E is said to be a "uniformly generalized

contraction with respect to X ": (=>

(**)«.:\é-uo,v Q@et (x,y)e Ex X=p f(x)-£(g)} <
£ o6 (x)Ix-al .

AMS, Primary: 47H10 Ref. Z. 7.978.53
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Remagrk 1:
1) Contractions in the sense of Banach are generalized

contractions.
2) (4): Let (E,i ) be a normed linear space and sup-
pose f % Xc E is open, bounded and convex; let
£: X — E be continuously (Fréchet) differentiable.
Then £ 1is a generalized contraction iff 1£5 1 < 1
for all x € X . A similar example may be given satis-
fying condition (xx), see [3],

Theorem 1: Let (E, I 1) be a normed linear space
and suppose ¥ is a Hausdorff topology for E , such that

(i) (E,¥) is a topological linear space,

(ii) A S convex A S ¥ ~-compact =»> S is norm-
Sc

bounded,

(iii) *é\e AOB(.X,'L):={@I4}. eEAlx-glsrnti=Blx,n)

is ¥ -closed.
let f £ X cE be a convex ¥ -compact subset of E
and supf:ose £: X - X is a generalized contraction.
Then: (a) There is a unique x, € X  such that £(x,) =
= X5 3
(b) For x € X wehave Um {£™(2)% = x,
n -y 00

(strongly).

Proof: (a): Let 7: =4SIf & Sc X, S convex,
¥ -closed and £(S) = St .
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We have 7" 4 g (X & 7°) . Ordered by S5, £ 5, ;<=
> 5,2 8, , it can easily be seen, (9", £) being
inductively ordered. Let S, & ° be maximal (Zorn).
Defining d': = diam (8,) we have 0 =d'< oo (ii).
Assume J”> (0 and let x € 8, ; we define J, : =
i=(x)d” and S;:= S5, AB(f(x),dy) . We have
P +ScX (SgcX Aflx)e Sy) and S, is ¥-
closed by (iii). Finally, we have for z € S, f(z) & S,
and ME(x)~f(2Mlcx (X)) lIx-2llge x (x) = % ,
ice. $(8)c S, 8, = 8, (maximality of S, ). This
implies S, ¢ B(£f(x),d, ) . Now define S, : =
:=*Qso$° nB(@,d‘;,) « Then £ % 8, e X
(Soc X Af(x)&S,), S is convex and ¥ -closed
by (iii). Tt is easily verified that (x)oo [£CSs0] =
= $, (¥ -closed convex hull) [Take S4: = m’
and prove S; e T and S5 c S, . Now let w € S,
and 4 € S, .

Then () -~fyIll<llu-4ll2d;, ice. £(S5,)c
c B(£(w),d7) . It follows S, = ZLE(B,03 ¢
c B(ECw), ) c B(fw),d)) by (iii), i.e.
e(me*g\so;ac%a;) NSy , i.e. £(u)e Sy . The
maximality of S, gives S, = S, ., Finally let w«,we
e S, ; we have e B(wr,d7) (areS,) implying
lu-arlls dy and diam (S,) £ Iy < O = diam (S,),
a contradiction: We have o"= 0 , i.e. there exists X, €
€ X such that S5, = {x,} , Because of £(S,) c S,
we have £(xo) = X5 ; (b) Let z € X and m e N .

’
Then €™ (2)~ %ol € N£™(2)-£ (%o £ & (xo )£ (2)-xo 1
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implying (by induction) Mf™(z) -, Il € [ox (x, 1™ Nz —x( H

such that fm {f"(2)i=x, (0eax (x,)< 1) ., (b) is
m-= o o (4 H

proved. The uniqueness of X, is an immediate consequen-

ce of (b) or, directly of £ ‘s contraction property

(HE(x)~f(y e llx-gl for x+aqy .

Corollary 1: Let (E,I ¥) be a normed linear spa-
ce, let ¥ be a Hausdorff topology for E  with (i) -
(iii) of Theorem 1. Let R = 0 and suppose B (0,R)
is ¥ -compact and £ : B(0,R) — E is a gene-
ralized contraction such that I€(x)Il £ R if lxh=
=R (i.e. £(&d(B(O0,R))) cB(O0,R)) .

Then: (a) There exists a unique x, € B(0,R) such that

£(xy) = %4 3
(b) For z e B(O,R) we have
”%{E%(Idwfﬂ"‘(z)} = x, (strongly).

Proof (see [41): Define ¢ :B(0,R) — E by
i= 4 (ld+£).men e have g (BCO,R)) B(0,R),
¢ is a generalized contraction, the fixed point sets
of £ and @ are the same. Theorem 1 completes the proof.

Remark 2:

Examples for ¥

1) Let ¢CE,l ) be a conjugate space and let ¥ be the
weak* topology for E . Then (i) - (iii) of Theorem 1 co-
mes true. ‘

2) Let CE, I I) be a reflexive Banach space and let ¥
be the weak topclogy for B , Then (i) - (iii) of Theo-
rem 1 comes true.

3) W.A. Kirk [41 proves Theorem 1 and Corollary 1 in the
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case of a conjugate space (E, N N) and the weak *
topology for E .

Theorem 2: Let (E, Il | ) be a normed linear spa-
ce, suppose ¥ is a Hausdorff topology for E , such
that

(i) (E, %) is a topological linear space,

(ii) SAE s convex AS ¥ -compact = S is norm-
A v
bounded,

1i1) A, o Bx 1) = {yly eEAlx-gleni=B(x, 1)is
Y -closed,
(iv) The norm topology for E is finer than ¥ .
Let @ £ X cE be a convex ¥ -compact and
¥ - (sequentially compact) subset of E , let £: X —»
—> £ be a generalized contraction and g: [X,¥]1—>

—>[E,lIll] sequentially continuous such that

(X4) u,//;,eE (x,g)eXxX = f(x)+g(y)eX .

Then f + g  has a fixed point.

Proof: Let o € X . We define h,‘*: X— X (K1)
by h,,’ (x): = £(x) + ¢ () ; h,y, is a generali-
zed contraction. By Theorem 1 there is a unique Xy € X
such that h,,* (x,‘}) = Xy . Defining T: X — X by
T(y): = Xay we have for a4, z € X

KT () = T2l £ Uy =0, h € N2y (xy )= by (x )0 £
€ U£lx) ~$(x )+ ¢ () g (2N & Wflxy ) - £0x 00 +
+ g ()= g2l £  (xy ) 3y - x U+ lg (g)-g(2)le

€ ot (X ) I TCop) = T2+ g (g)-g (2l
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such that

1

(%) ITCq)=TC2) £
* * *® - (x)

g ()~ g () .

T is continuous in the norm topology: let X, % e X“
and %, € X such that x, — X, (strongly). Then by
(iv) ¥ -@&hg fX,3 = %, . Now @ (Xn)—> @ ()
and {T(xp)¥ - T(x,) (strongly) by (x ). Let

{Tix, )} € IN, {xgat € X" . There is a subsequence

4&,:,'56)(“ of {x,,,?ex" and X, € X such that

¥ '»% {xpn¥=x4 (X is ¥ - (sequentially com-

pact)). Then g.(x,)—> @ (x,) (strongly), comsequently
1

by (x) I T(xp) =T(x, & Ty nd- g M 0 e

1- o (xy,
{T(xy)3 has a (strongly) convergent subsequence. Fi-
nally X is norm-bounded (ii) and norm-closed, because
X is % ~-closed and ¥ is coarser than the norm to-
pology. Schauder 's fixed point theorem completes the
proof (for let ¢ € X such that ¢ = T(g) then g = T(gy)=
= X, and xu=h (x,,):f(at’)i-g.(q.) yiees g = £(g) +
+9(yg) ).

Remark 3:
1) W.V. Petryshyn (7] proves Theorem 2 in the case of a
reflexive Banach space (E, |l ) and the weak topology
for £ (satisfying all conditions of Theorem 2) for a
subset X ¢ E additionally satisfying imt (X) + g
(d‘egree method).
2) In the case of a conjugate space (E,H ) and the

weak*® topology for E , @ 4 -compact convex subset of
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E  need not be ¥ - (sequentially compact). This, how-

ever, is true, if (E, 1 1) is strongly separable

({103}, p.209).

3) The Krasnoselski condition (K,‘) is very restrictive,

as the following simple example shows: Let E : = R

(absolute value norm), X:=L[0,4]; f,9:X — E defi-
1

ned by f(x): = 12.\( , q,(x):z'l—y.x . Then (4,0) e

€eXxX but £(4) + g (0) = %_' ¢ X . 1In the case of a
Banach contraction £ and a compact g and a closed, bot‘m-
ded (strongly), convex subset X c¢ E (K,) can be weake-
ned to "(£+¢)(X)e X " ([11,(8]). In our situation this
could be done also (see the proof of Theorem 4), if
(i) Id ~ f§ is demiclosed [8), or (ii) (Id -£)(X) is
closed, or (iii) (IaL—:E-g,) (X) is closed, or (iv) If
Oe(Td-£-g) (X)™™™ then 0 & (ld-£-g)(X) .
With the same method employed in Theorem 2 - now using
Corollary 1 - we can prove

Theorem 3: Let (E,{ II) be a normed linear space
and suppose ¥ is a Hausdorff topology for E , such that

(i) (E, ¥) is a topological linear space,

(ii) 9/\5 S convex A S ¥ -compact == S 1is norm~
c
bgunded,

i) A DNy Blx,n): = dyly eEnlix-yls nd=yBlx,n)is
% -closed,
(iv) The norm topology for E is finer than ¥ .
Let R 2 0 and suppose B(0,R) is ¥ -com-
pact and ‘¥ - (sequentially compact) and £ : =

1=B(0,R) — E is a generalized contraction, let
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¢:[X, ¥ —> LE,I}L] be sequentially continuous,
such that

(Ky) ’/\ Ellxl-RAﬂg,IAR = £(x)+ q(y) e B(O,R) .
"y €

Ihen f + - has a fixed point.
~ Remark 4:

W.V. Petryshyn prov3s Theorem 3 in [7] in the case of a
reflexive Banach space and the weak topology (see Remark
2).
The method developed in [3] yields

Lemma 1: Let (E, ) be a reflexive Banach space
and suppose X 1is a nonvoid, closed, bounded, convex sub-
set of E ; let £f:E — E be a uniformly generali-
zed contraction with respect to X and {x,te X™ such

that ”% {%y ~ f(xp)¥ = 0 (strongly).
Then (a) £ has a unique fixed point x, € X ,

(v)  tm {x,‘,‘i = Xg (strongly).
myo

Proof: See [3], proof of Theorem 2.
As a corollary of Lemma 1 we obtain

lemma 2: Let CE, N l) be a reflexive Banach space
and suppose X is a nonvoid, closed, bounded, convex sub-
set of E ; let £: E — E be a uniformly generalized

contraction with respect to X and let {x,%e X" ana
4 <E such that _4m LxXn-£(x)} = o (strongly).

Then (a) There is a unique x, 86X such that x, -
- £(x4) = 4 ,
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Proof: Define ¢:E — E by ¢ (x): = £(x)+ 4 .
Then @ is a uniformly generalized contraction with res-
pect to X and ,,;.",‘:‘3 {xp - g (Xp% =0 (strong-
ly). Thus, by Lemma 1, there is a unique X, & X such
that g (x,) = x, , i.e. %, - £(x,) = and

“ﬂin:o {xnd = x4 (strongly).

Theorem 4: Let (E,\ {) be a reflexive Banach space
and suppose X is a nonvoid, closed, bounded, convex sub-
set of E ; let f:E —E be a uniformly generalized
contraction with respect to X and let g: X — E be
compact such that (f+g)(X)e X .

Then £ + g has a fixed point.

Proof: Without loss of generality we may assume 0 e
€X .Let fA,%e (0,  with tim {Apt =4 .
We define £, 1= Apf, qu:=Ang for ne N and we
have (£, + g )(X)c X . Because of £, (x)~ £, ()&
£ Ay (XMx-pll €A, Ix-y and qm being compact,
there is a sequence {x,} & X" such that £y (X ) +
+ g (Xp) = X, (see [11,[8]). Because of ¢ ‘s compact-
ness there exists a subsequence {x,36 XM of fx,? and
4 e E such that “% £ (xpn)3 = 4 (strongly). Now .
we have for m € N : Xp - £(xp )~ ¢ (x3) =
='(.‘h;,-4)(£ (xp) + g.,(x,',‘,)) . The boundedness of X imp-
lies n% {xp,-£(xg)% = g (strongly). By Lemma 2 we
have a %, e X with x, - £(x,) = and&{a;;ls
= X4 (strongly). Finally the continuity of g . induces
2 4g (% )3 = g(x) such that 4 =q(x,): We have
¥ -£(x) = g () , ieee £(XV 4+ @g(xg) = xg , qeeede
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The same method uséd in the proof of Theorem 4 yields
Theorem 5: Let (E, Il 1) be a reflexive Banach spa-
ce and suppose X is a closed, bounded, convex subset of
EF and %, €imt(X); let £:E — E be a uniformly
generalized contraction with respect to X and g¢: X —

~— E be such that

(Kq) J‘{’\'.E Dexetrd CIALeg) ) 2 Ax+ (1-MIxp md A & 1,

Then £+ q has a fixed point.

Remark 5:
Theorem 5 is proved by W.A. Kirk in [3] for xo =0 (u-
sing a method of F.E. Browder [2]) and by W.V. Petryshyn
in (7] (degree method).
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