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13,2 (1972)

BAIRE CLASSIFICATION AND INFINITE PERCEPTRONS

Miroslav KATETOV, Praha

In this note, some connections are established between
descriptive set theory (Baire classification) and mathema-
tical theory of perceptrons.

Results applieable outside mathematies have been neit-
her aimed at nor achieved. Most theorems contained in the
note are rather easy, however, the investigation of possible
links between both fields, which are seemingly remote, may
be of some interest.

Some approaches of the theory of perceptrons can be of
use in the descriptive theory of functions and sets; on the
other hand, some ideas of the descriptive theory might sug-
gest, though only indirectly, new viewpoints in the mathema-
tical theory of perceptrons.

For the theory of perceptrons we refer to the books by
F. Rosenblatt [5] and M. Minsky, S. Papertl4). The neurophy-
siological background is sketched in F. Rosenblatt s mono-
graph. A number of references concerning the connections be-
tween the theory of perceptrons and the problems of pattern

recognition are contained in the book by Minsky and Papert.

AMS, Primary: 26421, 54 €50 Ref. Z. 7517, 3.969.5
Secondary: 94 A20 51:155.001. 57: 612.82
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As for the descriptive set theory, we refer to K. Kuratow-
ski s book [3].

No definition of a perceptron (in the current sense)
will be given in this note. However, in fact, a finite
"perceptronic net" (as defined in § 2) is a perceptron with
constant thresholds and weights.

On the whole, we use the current terminology and nota=-
tion. The deviations are, as a rule, in accordance with E.
Bech s book [2]; e.g.y an ordered pair of elementa X, 1is
denoted by (X, 4 ) . The terminology and notation connect-
ed with the descriptive theory will be introduced in § 3.

§ 1.
1.1. Definition. A graph (A, @)  will be called a per=
ceptronic graph without loops (or simply a perceptronic graph)

if, for any non-void Xc A, we have X ~ o [X] * 4 .

Remark. The condition above is equivalent to "there ex~—
ists no sequence {x, Im eN} with x, , @ X,  for all
m ". The claas of graphs fulfilling this eondition is well
known. However, in view of concepts introduced later on, a
term ("perceptronic"”) different from the current ones, is us-
ed.

1.2. Proposition. Let A = (A, > be a graph. If there
exists a family of ordinals, {§(w)lu e Al such that
§(w)=< §(a) whenever w @ then A is a percept-
ronic graph. If A 1is a perceptronic graph, then there ex-—
ists exactly one family of ordinals {A (w)luw e A? auch
that (1) A(w)< A(w) vwhenever « @ » , (2) if §(u),
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s € A, ere ordinals and f§(w) < § (o) whenever
Mm@, then A(u) £ §(w) for every w 6 A .

This proposition is well known.

Definition. The srdinal A(w) will be called the or=—
der of 4. in A and will be denoted by o¢d (w,.A) or sim-
ply by oxd 4 . The set of all pointa w e A  of order §
will be called the § =—layer of .4 and will be denoted by

Lg A
1.3. Definition. A perceptronic graph A =(A,@) will
be called gtar-infinite at g point x € A  if, for any fi-

nite set K, punfowd y +1 1y o x , 4 mon eK¥ =otdx ,
gtar-infinite if it is star—infinite at every x € A .

Observe that if A ia star-infinite at x € A with
owd x > 0, then ©~'[x] 1is infinite.

As usual, we call A =<A,@) finite, countable, etc.,
if A is finite, countable, etc., respectivelye

1.4. Definition. Let A =<A, p)> be a perceptronic
graph. Let A’ be a partial graph of A (i.e. ﬂl=(A,6>

with 6 c @ ). We shall call A’ pormal with respect to
A if od (X, AV motd (x, A) for every X e A .
1.5. Example. Define graphs §, for countable ordi-

nals ¢ as follows. Put G, = <(0),0>. I£G,=<G,,@,>
have been defined for all (3 < o« and (i) ord x & (3
if xe Gy, (11) B eGy , LyGy = () , then construct
Gu = (Gx, ®.? 1in the following ways

(1) if « = 72 + 1, then G, = Nx Gy v (),

(m,y>@x for all me N , <m,x> @ <m,y> ire
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(2) if o 4is & 1imit number, then G, :onsists of
« andall (§, x> where f<e,x€G;<§,§)o «
for all f < o ; (§, XD @ <N, %> iff fwon <o,
XQ¢ 4y -
Then (., are star-infinite countable perceptronic
'grephs, and the relations @, are single~valued.

1.6. Proposition. Every star-infinite countable percep-
tronic graph < A, @) has a star-infinite normal partial
graph <A, ¢’> such that ¢’ 1is single-valued.

Broof. Let {<a;, %) |{ € N? be a sequence consist~-
ing of all <4 ,x> € @ . We are going to define relations
@ ond elements c,, & & N , in the fallowing way.

Put ® =@ Suppose that, for some %, @,,..., Py ,
end Cy,000y Cpy have been defined in such a way that
1) =@ 5... 2 , (2) (p-g,Y"[A] 1s rinite,
(3) for 0 g 4V < %  we have aicA,omdciﬁotda.i,
<°’+’a‘e"¢£ > € Rivq > <C4,@>Mﬂ-¢ Piva for 4 = 'b;'- and
c; = a, whenever <a; b:>€e @, ,(4)for 0 i<j<h
we have <¢; , &> e @; .

We are to define Parsqs 2 She in such a way that
(1) - (4) are satisfied with M replaced by & + 1 , If
Cag, Y €@, ,we put & = ap , If <a,, 8> non € @ ,
we choose an element Cg  such that {cu, &, > € @, , oed Cp =
& ovd a, ¢ this ie possible since <A,@> 1is star-infi-
nite, hence, by (2), we have sup ford g +11 4y @, by % =
= ovdl b, > oed ay . Now let pg ., consist of <c, ., &y >
and of all <4,x > € @,  such that 4 =% ¢, .
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It ie easy to see that @, ,...,@4,4 s Chs--2s Che
satisfy (1) - (4).

We construct @, , Cc, for all & e N and put ¢ =
= f\g“ . It 1a easy to prove that 9’ possesses the proper-

ties required.

§ 2.

2.1. We denote by R the extended line (- m)u R v
U (+ 0) endowed with the usual order and topology. As usu-
al, e put 0. (+00)=m 0. (-0) =0, c.(+®) = +
if ¢ > 0, etc. The sum of a finite family {§,%,§, € R ,
is defined (in the usual way) iff there are no % , £  with
o=+, §p=~-00 . If§,n,4 oerein K and ei-
ther § & 7 & § or § Z 7 &= } , we shall say that
7 1is between § and §

Mappings into R  #ill be called functions. A function
€ with values in R will be said a real-valued function. A
Punction £ assuming values J,1 only will be called a
041 ~function.

"Space" will mean a topological space. The set of all
functions, real-valued functions, 01 -functions on a space
(or a set) P will be denoted by F(P), F(P), F,, (P) ,
respectively; C(P), C(P), C,  (P)  will designate the
corresponding sets of continuous functionse.

2.2, If {§ (k)i o eX ? is a countable family of
elements of R , then S{§n)heK? will designate its
sum (if it exists); more explicitly, nw Z{§(h)lbk eX 1},
where 7 € J_i , means that, for every neighborhood U of
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m 4in R , there exists s finite set X c X  sueh
that Z{§(y)lyg €Y} is defined and belongs to U
whenever Y 1is finite, X c Yc X . If £ ¢ Fep), P
being a space or a set, then X {f, '4 € X } designs-
tes the function £ defined as followa: £(p)= Z{if, (n)l
{oeK? for all p P .

2.3. We denote by M the set of all monotone fune~
tions £ € F(R) such that £(g)e R whenaver e R .
The set F,, (R) A M will be denoted by M,, .If
T € MM and ¢ 1is non-constant, then there exists exact-
ly one ¢ € K such that every neighborhood of ¢ inter-
sects both £-"[01 aend £7C1] ; this ¢ will be cal-
led the threshold of ~ .

2.4. Definitiop. If < A,p > is a countable percep-
tronic graph, aMd % = {z,la e A}, 8 ={f3’_¥\,g,gn.x t are
families, © e M, Byx € R, then t=<A,p,x,B>
is called a pseudo—~perceptronic net.

Conventiops. If X =<A,@, *, 3> 1is a pseudo-per-
ceptronic net, then (JL@ will denote the relation consis-
ting of all <4 ,x> e @ with (., 0; @ % will de-
note the relation consisting of all < u,e) such that,
for some m € N and some X, ,..., X, , We have
Mom Xy ) Xy @ Xy @ors Py Xy =y (HEI™E
is defined analogouslye.

2.5. Conventiop. In what follows, ! will always de~
signate a pseudo-perceptronic net < A yPs ®L 3 D> .

2.6. Defipitiop. Suppose that, for every X € A aof
order > (0 , the following holds: if, for every
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ye (e)rfrxl (g lies between %, (- ), %y (+ @),

them {61}“ («."I 4 ¢ x3} hes a sum. Then L is called a Qua—
al-perceptronic net.-If, in addition, ¥, & M,, for all u s 4,
then (I 1is called a perceptronic pet. - If, for every X &

€ A ,either ,,/“(g)-o for all fci or ((/Lg)"'[xl

is finite, then ¢! will be called finitary.
Remarks. 1) (L 1is quasi-perceptronic iff, for every

X e A of order >0, both = 1Byx Ty(-)ly px} and
Z{fyxTy (+)lgy px } exist and if one of them equals

+ 0 , then the other is distinet from - o , - 2) If, for
every x e A,®, €M, and {pB ., lgpx3 has asum
then (! 1is a perceptronic net. In particular, (X is a per-

ceptronic net if all &, ,, x € A , are in. M,, and, for e~

'z
very X € A , either all (3., are non-negative or all 3,

are non-positive.

2.7. Convention. Terms and symbols introdueced for percep-
tronic graphs A = (A, @) will be applied to corresponding
nets (L =CA, 9,7, 3> , |unless the contrary is expli-
citly stated. E.g., Li a will mean 1’5 A, etc.

Convention. We shall write Lf instead of L,(L , etec.

2.8. Defipitiop. & family {1,z € L, # 3 , where
.ﬂze R , will be called an ipitisl numerical inp:% (or simply.
inout) of (L , If P is a space (or a set), then a family
im lz el A} ,where %, & F(P), will be called an initial
input of real-valued functions (sometimes simply input) of Of.
2.9. Definition. Let {1, § be an initial numerical in-
put of X . Let w e A, Put B w (0&9)'“’[“'] . Assume that
there exist families {u,lxe B}, {9, I1xeB? sueh that
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1) w,eR, »,eX, @it xeBnal, , them
Ux= Ay, (3) G = 24(5.*. ”»’.W' @ x§ whenever X e
€B, xmomn €L, , (4} =7, (u,) whenever x &

¢ B . Then we shall say that the net ¢{ and the imnitial inp-
put {A, 3 generate ihe aummary ipput ©, and the out-
out v, at « .

The summary input and the output (at a point w e A )
generated by an initial input {4, 3 of functions (on a spa-
ce or set P ) are defined analogously.

Convention. Any function £ € F(P) generated, as
an output (summary input) at a point «+ € A , by L and
an initial input of econtinuous functions om P will be

called a contipuously geperated output (input) functiop of
the net (! at « , or, for short, an gutput (input) function

of & at w« .

2.10. Proposition. If a net C/ and an initial input
{2,% or {h,} (where A, € R, e F(P) ) generate a
summary inmput @, € X (or g, « F(P) ) at a point
M € A , then both the input and the output at « are de-
termined unequivoeally (in more detail: if e.ge fg ¥, 9,3
as well as -{(4;3, f», 3 satisfy conditions (1) to (4) im
2.9, then w, = @) , » = ¥ for all x € B ).

In fact, this proposition is almost evident. A formal
proof proceeds by a standard transfinite induction.

2.11. Proposition. Let fA,% , where A, € R , or {h}
A, &« F(P), be an initial input of CL. Let C Aenote the
set of points w ¢ A such that the initial input genera-
tes a summary input and an output at u ,Then (“PT‘ECJ cC.
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The proof may be omitteds

2.12, Theorem. If (L = CA, e, T, 3? is a gquasi-per-
ceptronic net or a finitary pseudo-perceptronic net, then
every initial numerical input or an input of real-valued
functions on a space P generates an input and an output
at every point of A .

The proof proceeds by a standard transfinite inductione

2.13. If a countable perceptronic graph < A,¢> is gi-
ven, we may consider various T« {2,}, 3= {(3,_,! sueh
that <A,p, 7, > 4s a pseudo-perceptronic net, and al-
so various inputs {A, 3%, ‘ih._! . In what follews, we shall
investigate mainly the case when ~ , 3 are fixed and
U»,; are continuous functions on a given P .

However, first we consider two cases where ¥ or (3 may
vary.

2.14. Defipition. A quasi-perceptronic net (! will be
called (1) mopothetis if (L@ i aingle-valued, (2) porgal=
1Y monothetic if (Lp is single-valued and (A,Ap) 1is a
normal partial graph of A,p?> .

2.15. Iheorem. Let (L = (A, , v, ) be a quasi-per-
ceptronic net such that (A, @ > 18 star-infinite. Then
there exists a (' such that <A, @, 2, 3”> 1s a nor-
mally monothetic quasi-perceptronic net and (3"“ = 0 when-
ever (3., = 0 .

The proof is similar to that of l.6. ‘

2.16. Given a perceptronic graph (\A,;a) , Wwe may eon—
sider all output functions generated by (A, ?,.%, B> at
a given point 4 €A, where (3 = (p*“i is fixed
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whereas «, (and possibly also the initial imput {h 13 ,
s, « FCP) ) vary. If A ia finite, then there is a cer—
tain connection with problems of so—called linear superpc-—
sitions of functions. For a survey and bibliography concer—
ning these we refer to [6]. Only ons theorem from this field
will be paraphrased in terms of perceptrons here.

Theorem. Let A consist of points 0, <1, £i) <2,4?,
$(3,£41),4  where & = {,2,3 ., Let arelation ¢ on A
be defined as follows:

D@p<1,2i),¢4,2i)>0<2,i >,2,4)p<3,24), (3,2id>p4. 15
(y,x>ep ,and a4 = <4,-4> or 4 = <3,-4) ,then we
put /&"“ = ~ 4 ; for all other pairs (4 ,x)> e ¢ , we put

[3,,,“ =1.

For a=0,a=<2,1>,a =4 let 7, be fixed,
T (§)=§ for all § € X . For other pointa a € A , let
To belong to M and be contimious non~decreasing; other-—
wise let 7, be arbitrary.

Let P be a set, and let & be a real-valued function
on P, Then the set of all output functions generated by %
at the point 4 of the borceptronic net deseribed above
(with © = {7,% satisfying the conditions mentioned) is
squal to the sel of all functions of the form g o f , whe—
re @:R~—> R is continuous.

We omit the proef since the theorem is, in fact, a para=—
phrase of a theor?m proved by N. Bari (1]l. The perceptronie
graph described in the theorem (and some weights /3,,_, ) are
represented on the following diagram (we write 42 inatead
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of <1,-2> ete.), 0

Remark. The above theorem is more complicated than the
original one proved by N. Bari. The theorem given here may be
of some interest, since it shows interrelations of seemingly
quite different topics, and perhaps also since similar refor—
mulations of known theorems could help to ecompare the degree
of their complexity (expressed e.g. in terms of the complexi-
ty of the pertinent perceptronic graph).

§ 3.

3.1. We introduce some symbols and terms eonecerning des-—
eriptive set theory. Then we shall state some well known theo—
rems and also some less known (or perhaps not occurring in
the literature as yet) propositions whieh will be needed la-
ter on. Current propositions of the descriptive theory will
be applied without reference. A detailed exposition can be
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found e.g. in K. Kuratowski’s book [31.

Conpvention. If £ is a furctionon P, and c € R ,
then [f > ¢ ] will designate the set of all x € P sueh
that £(x) > ¢ ; and similarly, [f<cl, [f=c], etc,

Convention. If ¥ 1is a collection of sets, then ¢ X%
denotes the collection of all U{X,ImeN?, and JE de-
notes that of all N4{X_ Im e N} , where X, ¢ X .

Conventiones A collection of seta % is called f£inite-
ly multiplicative if u,«%,u,eu implies U, nU, €
€ U . The gultiplicity of a family of sets {X,|% e X} is
the least cardinal v such that N {Xg | % e B} = #
whenever B c K , caxadl B > 4 ,

Definition. Let P ba a space. Sets (£ > 0] where
£e¢ C(P) will be called seta of additive class (or € -class)
0 , their complements will be called sets of multiplicative
class (or o’-class) 0, If o« is a countable ordinal and seta
of class (3 have been defined for all 3 < a« , the sets of
class o are defined as follows: sets UB, and NB,
where B, 1is a set of class (3, , 3, < « , are of addi-
tive class o and multiplicative class o« , respectively.
We shall say that X is a set of & —-claas (d-class) « «
if 1t 1s a set of O -class (o ~class) 3 for some 3 < o .

Observe that according to the definition every set of
€ -class (J'-class) 3 1is a set of & -class (of-class) «
for every o« => f3 .

Definitiopn. A function £ on P will be called a func~
tion of class (e, *) (of class (o, 4 ) ) if all
[£ >c) (all Lf<cl ) are sets of additive class « .
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If £ is both of claas (e« ,T) and (e« ,d) (hence,

if all £-'1631, 6 X open, are of € -class e ),
then £ will be called a function of class e ., If every

(£ >c) and every [f<c] 1ia a set of & -class «
or o -class o , then £ will be called a function of class
Ce, %2 ,

Remarks. 1) Every £ ¢ M (see 2.3) is a function of
class (0, *), = 2) Every function of class (&, x) is
of class o« + 1 .

3.2, We recall two important well known theorems of
descriptive theory. Observe that these theorems are usually
proved (e.g. in K. Kuratowski’s book [31) for metrizable
spaces; however, the statements and proofs remain valid for
arbitrary spaces if deacriptive classes of sets and fune-
tions are defined as above (3.1).

A) Theorep (see e.g. K. Kuratowski [3), § 30. V). Every
set of additive class <, « > 41 , is a union of countably
many disjoint sets of multiplicative class o«

B) Theorem (see loc. cit., § 31). Let o« > 0 be a
countable ordinal. Every pointwise limit of a sequence of
functions of class o« ia a function of clsas o« + 1 . If
o is a limit ordinal, then every function of class o« is
a pointwise limit of a sequence of functions of classes «< oc;

if o« 1s isolated, then every function of class o« is such
a limit of functions of class o - 4

3.3. Lemmg. Let X be a countably infinite set. Let
iBp ! % € X} be a family of non-negative real numbers and
let {¥p | % € X} be a family of countable ordinals. Put
& = pup {op + 47 and assume Z {p;lieK
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q'g:f,pi.cc‘i-w for every o <
<o and every positive real number € , Let P be a set,
U  a collection of subsetsa of P, g a natural num
ber. Assume that (1) U is finitely multiplicative, (2)
if Wel ,then P-UeO®U , (NirVeeU ,
then there exists a countable collection ¥'c %  with a
multiplicity & q  such that U? = V , Assume that
there are given sets $(y), y< x , of 01 -functionm
on P such that 0 € $€0), d(y) c (") when~
ever ¥ < < o« 8nd that U{d ()l < o} consists
of all £ 6 Fo, (P) with [f=41e U .

Then, for any non-negative function £ € F (P)  such
that [f>cle 6&U for each ¢ € R , there exists a
family {£, |% ¢ X3 such that £, « ¢ (7, ) eand £ =
= 5 P gy -

Proof. Let ¥  denote the set of all non~negative £ €
€ F(P) suchthet [f>cle &% for ell ceR ; let
¢ denote the set of all g € Foy (P) such that [g = 41]e€
€U .,

I. We are going to prove: if f e ¥, £& q + 1 , then
there exists a sequence {q, Im € N} such that g, € &
end g 6f,f-9 & q,f-qg 6 ¥ , where g = T g, .

In fact, by (3) there exists a sequence {Y, 3 such
that ¥, € % , the multiplicity of {¥, 3 does not exceed
2, VY, =L[f>q]. Let gy € Foy (F) be such that
[gn=11= Y, .It is easy to see that {q,3 posseases pro-
perties mentioned above; e.g., £ -~ § € ¥ followa from
the property (2) of the collection U .
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II. From the assertion above, it follows that if £ ¢
e ¥  ia bounded, then there exist families {Q@mm IMme
eN, meN}, 12, ImelNt such thatg, €&,

A, are non-negative reals, £ = Z1{A g, ,|lm eN meNi.

III. If £fe¢ ¥  is not bounded, then, for m & N,
neP ,weput: £ (p)=0 Iif £(p)& m ; £, (p)=
mfp)-m Af mo< £(p)< mady £, (p) =1
if £(p)2m +1 . Then £f= Zf £, €% £, €1

IV. By I - III, the following holds: if £ ¢ ¥ , then

there exist countable families {g. |l» e S3 fa,lbe 5%
such that ¢, €& , “u,6 R , @, %20,f= Zw,9, -

V. Choose, for each 5 ¢ S , an index & (») e X
such that g, € § (94 sy) . The assumptions on {3, Ik ¢ X}
imply that there exist disjoint seta Z, c X auch that
thm.-.z,,a-&,, and that, for every » €5  and eve~
ry. & & Z, ,we have 7 Z 2., ,henece g, ¢ (7 ) . Now
putfu- §p, If R € Z, amd £, = 0 1if R eX, omme
€ U2, , The family {f, [k e X1} possessess the proper-
ties required.

3.4. Lemmg. Let X be a countably infinite set. Let
{ﬁb‘ % € K3 be a family of non-negative reals, and let
{Tb I% ¢ X% be a family of countable ordinalse. Put o« o
==bwpf)'h+4} and suppose that Z{ﬂhlke](, T ti=w
for each 7y < « , Let P be a set and let % be a col~
lection of subsets of P ., Suppose that there are given sets
) , ¥ < <, of (4 -functions on P such that
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0ed0), d(y) c &y whenever 7 < 7 <
<o andthat ULP(g)l o < « § conaista of
all 04 ~functions f on P suchthat [f =1] 6 % .

Then (I) if X 6 & A4 and c € R , then there ex-
iste a family {£, |% e X? such that £, € ¢ (7, ) ama
[2[3‘“£~> el=X, (II) if % dis such that every
Ve €U 1is a union of a point-finite ecountable collec—
tion ¥ c % ,then, for every Y € o"d % , there ex-
ists a family 4£, | w6 K% such that £, € ® (7))
and [ X 3 £y = 01 = ¥,

Proof. We are going to prove the assertion (I). Let
X=U{X ImeN? , X, €U . Let g, be 04~

functions on P , [g, = 11= X, , Then g, is in some

m
$(d,), o, < « . The propertiea of the family if,7 im
ply that there exist disjoint finite sets Z, c K sueh
that = {B, 1k €Z,% >c and 7o Z J, whenaver

% eZ, .Put £, = g, Iif ReZ, ,and f, =0 if
heK , o mneUZ, . Clearly,
[Z2Bntp=>cl=UXy ,f=q,cdd)c dlyy) .

We now prove assertion (II). We have Y=Y, , whe-
re Yo &0 U ,Yy 2 Ymey for every m & N . By
the assumptions on. YU , we have Y, = U{Y,,, Im 6 N }
where Y,, & %  and the families {Y,, Ilm e N} are
point-finite. Let Gmm & Foy (P) , [@nm =11 = Ynm -
Choose a d,,, such that g, .. & & (d},,,) .The assumptions
on {343 imply that there exiat diaioinfl finite sets 2, <
K suchthat S4Byl h 6 Zppt>1 and 9 & Inm
whenever ¢ € Zp,, - We put fo = gum 1if & € Zom ,
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‘f,g,'o it R eX , omone UZ,, .It is ecasy
to show that {fh 3 possesses the properties mentioned
in the assertion (II),

3.5. Lemma. Let P bhe a spaces If X c P 1is a set
of additive class 4 , then there exist seta X,,, of
multiplicative class 0 such that the multiplieity of
the family {X,_, Im eN,meN} qoes not exceed 4 and
X2 UdXpmlmeN, meNi .

Proof. There exists a sequence {Y, 7 auch that X =
= UY, and Y, are seta of J'-class 0 . We may sup-
pose that Y, ¢ ¥,,, for each ‘m € N . There exist
non-negative functions g, € C(P)  such that [g, = 0]=
=Y, Put Z,,=lg,84), 2= laEg, 3 1

m +1
tor m =4,2,... . Pt Xpo=Y,,X,, =4 for m =

=1,2,000, Xnm=Y¥n N Zm_a,m for me N, m >0,
m e N . It is easy to see that §X,,, 3 has the properties

mentioned above.

§ 4.

4.1. Copvention. If o is an ordinal, then o - 4
designates the least g such that § + 412 « , and 2 x
designates the ordinal defined as follaws: 2.0 = 0, 2« =
=mrupfilf+2If<a? ; this 2 = « if x 1s & li-
mit ordinal.

4.2. Theorem. Let & = <A,@, 7, > be a pseudo-
perceptronic net. Let P be a space. If x € A,otd x =  ,

then (1) every continuously generated input funection at x
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is of class 2« if « is finite, and of clasa 2« +
+ 1 if « 1is infinite, (2) every continuously generated
output function at x is of class (2 , %) if <« 1is
finite, and of class (2c +4,%) if o« is infinite.

Proof. The assertion is evident if o = 0 . Let o
be a countable ordinal and assume that the assertion has been
proved for all points 4 € A of order <« . Let x € A,
oedb x = oo ; let g be an input function at «x genersted
by an initial input { h, 3%, h, € C(P) ., Then ¢ =
- E{(s,’“ £y ly @ x3 ., where £y 1s an output function
at 4 generated by {hgi . Put 7" - oxd g -

By the assumption, £, 1a a function of elass 27'*1- 1
if 7y 1s finite, and of class . 24, + 2 ir 7, 1s
infinite. Then, by 3.2 B, ¢ 1is a function of class
(2(x =1) +N+1= 2 if « is finite; if e« is infi-
nite, then g is a function of class sup {279, + 21y Pxi+
+ 1 ‘,'hence of class 2o + 41 .

4.3. For some kinds of nets, the above estimate of the
class of input and output funetions can be improved; see the
following theorems 4.4, 4.5. However, for a certain rather
general class of nets, the estimate in 4.2 is,in essence,
precise; see Theorem 4.7 below.

4.4. Theoreg. Let (L = <A,p, %, 8> be a pereeptro-
nic net. Suppose that ., = 0 forall <4,x>ep and
that all 7v,, x € A , are functions of class 0, 4 .
Let P be a space. If x € A, ovd X = &« , then (1) ir
< >0 , then every continuously generated input funetion
at X is a function of class (2« -1, ¢) if o« is
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finite, and a function of class (2« , 1) if « ia infi-
nite; (2) every continuously generated output function at x
is a 04 -function of class (2« , !) if o is finite,
and of class (2« + 1, ) if o« is infinite.

Proof. The assertion is trivial if o = 0. Let «
be a countable ordinal and assume that (1),(2) have been
pfoved for all ordinals < o ., Let x @« A, ovd X = o« .
Let @ be an input function at X generated by an initial
input { M, 3, , € C(P) . Then g = Effy fyly pxi,
where i‘,’_ is an output function at 4 . By the assumption,
g, are O0f-functions of eless (2 o0wd 4, ¢ ) . Since
/3.*, are non-negative, this implies that every [g < c¢]
is of ¢ -class o , where y=sup{ordylny pxi +1
if « 1s isolated, 7= mup {ovd 4 |l 4 @ x } if «
is a limit number.

In the first case we get y = 20 ~ 4 if o ia fi-
nite, 7 = 2 &« if « ‘13 infinite; in the seecond case,

7 = 2 c , This proves that g 1is of class (2x ~ 1, %)
or (2«,?t) according to whether o is finite or infini-
te. Thus, (1), and henece also (2), holds at X .

Remark. Assuming, in addition, that é¥ery funetion =,
is nomn-increasing, we obtain a stronger result: input fune-
tions at x are of class (oxd x, T) , output functions
are of class (ovd x, 4 ) .

4.5. Theorem. Let X = <A,@,?, 37 be a pseudo-
perceptronic net. Suppose that every 2, , 4 € A , is con~
tinuous. If x € A, ovd X = «
output function at. X is of class &« if o« 1is finite, and

, then every input or
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of class a +4 if o« 1s infinite.

We omit the proof, which is similar to the proofs of 4.2
and 4.4.

4.6. Definition. Let L = <A,@,7, 3> be a pereeptronic
pet. Let X € A . We shall say that O is (1) gum-infinjte st
x if, for every g<ord X, Zif,lyex, ord ¢ = o }
is infinite, (2) fipely sug-infipite at x if, for every g <
< ocd x and every real.e >0, Z{p*xlg/;ax,mdfy,;a'; lﬁ’al<s!
is infinite, (3) goarsely sum~ipfinite gt x if it is sum-in-
finite at X without being finely sum-infinite. If & is sum-
infinite (finely sum—infinite, coarsely sum—infinite) at every
x € A of order >0 , we shall call O gsup-infinite (finely
sup-infipite, coarsely sum-infinite).

4.7. Theoremp. Let (f be a normally monothetic sum~infini-
te perceptronic net. Assume that every ﬂ',x is non-negative,
and that every 2, , X € A , is right-continuous non-decrea-
sing and has a positive threshold. Assume that all z,,z2€L,,
have a finite threshold and that %, has an infinite threshold
whenever (! 4s coarsely sum-infinite at x.Let a apace P be
given.

Then for any x€A of order o we have

(1) ie ¢.>-0 and (I is finely sum-infinite at x , then
the set of all econtinuously generated input functions at
coincides with that of all non-negative functions on P of
class (2o -4,1) if o is finite, aml of class (2« , 1) if
o¢ 1a infinite; ‘

(2) the set of all cont inuously generated output functions
at X coincides with that of all (4 -functions on P of class
(2ax,d) if o« is finite, and of class (2x+1,4) if x 1=
infinite.
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Proof. The assertion holds for « = 0 , since =z, ,
zel, are of clase (0, ) and have finite thresholds.
Suppose that o > 0 ia a countable ordinal and that
the assertion has been proved for all points 4 of arder
< o, Let x e A be of order « ; we are going to
prove (1),(2) for the poimt x .

Put yc = 2 x -1 if « > 0 1ia finite, Yy« =
= 2 if oc is infinite.

Denote by U the collection of all sets W c P of

o -class < Yy &« . Clearly, U is finitely multipli-
cative. If UL € % , then P - U is a set of soms @ -
clasa J" < ¥ < , hence it is the union of a sequence of
sets of . o"-class < J°  and therefore belongs to €U .
If aset V is in 69U , then it is a set of & -class
Yo . If « > 1 , then, by 3.2 A, V 1ia the union of &
disjoint sequence of sets of “-class <y ; if « =
=4 ,then ¥ x = 4 , and, by 3.5, we have Va U{V, Im «
€ N3} , where V,, are sets of o'-class 0 and the mul-
tiplicity of fV,, ? does not exceed 41 , Thus, U posses—
ses properties indicated in 3.3.

Clearly, U consists of all sets Wc P of € -
class ¥ oc , hence the set of all f ¢ F(P) such that,
for every c € R , we have [ f > cle 6 U coincides
with that of a1l £f e F(P) of class (yoc, T) .

Put. D = (Up "1 rx1 ; for every d € D , put
Yq =0l d , Since (¢ is normally monothetic, we have
rupp (g + 1) = « , For every g < Ep', let $ () denc-
te the set of all (4 -functions on P of class
(yy +1,4) . It is easy to see that U{P (9) Iy < o« }
consists of all 04 -functions £ on P such that
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[t=1)6 x© o,
We are now going to prove that assertion (1) holds for

the point x , Since, by the assumption, ¢/ ia finely sum—
infinite at x , it is easy to see that the assumptionsof Lem~

ma 3.3 are fulfilled (with X replaced by D ).

Now let ¢ « F(P) be a non-negative funection of

class (y o<, 1) . Then [ >cle €U for every

¢ €R , hence, by Lemma 3.3, there exiata a family

{£, ldeDi such that g = Z1f3,, £, Id €D} ,snd,
for each d eD ,f, €« $(2,) , hence £, is of
class (yy, +1,3) .

For every d & D, put By=L,n (Up)"“[d]l . Sin-

ca U/ is monothetie, 1By $ is a diajoint family. Since it

is assumed that (1),(2) hold for all points of order < « ,
there exists, for every d &) , an initial input

{hy,lzel,3, by, € CCP) , which generates the out-
at d ; we may assume that &,y = 0 if z6l,,

put fd.

x mon € By . Fowput h} = &
if z € L,- UB, . The initial input { k% § genera-

tes the output £, at d , hence the summary input ¢ at x.

We have proved that every non—negative function of class
ia an input funetion at X ., The faet that every

(yec , )
ias of class (o, T) follews easily

input function at X
from Theorem 4.4, Thus we have shown that assertion kl) holds
for X .

Now we prove that (2) holda for X . By the assumptions
in the theorem, two cases are possible: (i) (I is finely
sun-infinite at X , and the threshold of 7, is finite, (ii)
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the threshold of %, 1is infinite, hence ¢, (§) = 0 for

§ <o, T,(0) = 1.

Consider the first case. We may suppose that the thres-
hold of %, is equal to 4 ., Let £ be a (4 =function on
P of class (yo +1,4), Put X=[£f=4] It is easy
to show that there exists a function g & F(P) of class
(yoc,?) asuchthat 0 g &1, [g=1] =X . Accor-
ding to already proved, g is an output function at x . Thus
f =2, o g 1s an output function at x .

Consider the second case. Let £ be a 01 =function on
P ofclass (yo +1,4) . Put Xwl[f=41].It 18 ea-
sy to see that X € 6 % . Hence, by 3.4, there exists
a family {f, |d e D} such that £, & $(7y) and
(S pyfy=]l=X .Forevery d D, £, isa 0=
function of class (y g, + 1, ) , hence an output function
at d ,Since (! is monothetic, this implies that gw X 3, £y
is an input function at x , hence f= %, » g is an output
function at X .

In both cases, it is easy to see that, conversely, every
output function at x is of clasa (yoc + 4, 4 ) . This con-
cludes the proof.
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