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MORSE-SARD THEOREM FOR REAL-ANALYTIC FUNCTIONS

J. SOUCEK, V. SOUCEK, Praha

In this paper we will prove that the set of all criti-
cal values must be countable for every real-analytic func-
tion, which is defined on D c E .

Definition 1. A real-valued function f(x) defined
on an open subset D c EN is called real-analytic, if
each point «w e D has an open neighborhood U , w €
e cD such that the function has a power series expan-
sion in U .

Theorem 1. Let f be a real-analytic function defined
on an open subset D c E, . Let us denote by Z the

set of critical values of f , i.e.
of , N
Z={X€D',-m(a()-0, b= 1,2,...,N%

then the set £ (Z A X ) is finite for every compact
subset X c D and hence f (Z) ia at most countable.
Remark. The Morse-Sard theorem for (< -functions gi-
ves us only
| Hy (£(2)) =0
for all oo > 0 (where H, is the « -dimensional Haus-

dorff measure). But we can construct an uncountable subset
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M c E, suchthat H, (M) =0 foreallo >0, On
the other hand, there can be easily constructed a real-
anelytic function defined on (0, 1) such that the set
£§(Z2) 1is infinite.

The proof of Theorem 1 ie based on some theorems a-
bout germs of varieties from the theory of several complex
variables. We recapitulate for the reader the necessary
definitions and theorems from [G-R] in § 1.

§ 2 contains then the proof of Theorem 1.

§ 1. Germs of varieties

This parugruph is only a recapitulation of the facts
trom [G-R] (in brackets we shall refer to the numbers of
definitions and theorems in [G-R] ).

Definition 2 (II.E.4). Let X,Y be subsets of C"
(the Cartesian product of N copies of the complex plane).
The sets X and Y are said to be equivalent at 0 if
there is a neighborhood U of 0 such that X A ll =
= YA U . An equivalence claaa of sets is called the
germ of a set. The equivalence class of X is to be deno-
ted by X . '

Ir X1 , X2 are germs of a set, we can define
X,uX,, X,~n X, by the natural way.

Definition 3 (II.E.6). A germ X is the germ of a
varijety if there are a noighborhood U of 0 and functions
£o,000, By holomorphic in U , such that

ixell; £,(x)=0, 1£4i £t}

is a representative for X .
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We shall denote the collection of germs of a variety
at 0 by B

Definitiog 4 (II.E.12). A germ V € B is said to
be irrequecible if V=V, v V, tor V,,V, e B in-
plies either V = V,, or V = Vz .

Theorem 2 (II.E.15). Let V € 5 ., We can write
V = V1 U see U Vlo where the V»i are irreducible and
vV, ¢V, tor L4 4. V,,.., Vp,  are uniquely de-
termined by V .

An open polydisc in €Y  ia a subset Alw, r) CN
of the form

A(ruf,lb):: A(fw:,,..., WN ’”'15"" MN) =

=tzec g, ~uyl<n;, 123 €N .

Definition 5 (I.B.8, I.B.10). A subset M of C' is
a complex wubmanifold of CY if to every point peM
there correspond a neighborhood U of f , & polydisc
A(0,d) in C™ (4 £ N) and a nonsingular holomorph-
ic mapping F: A(0,d") — " euch that F(0) = 4 ,

and
MAlU =F(ACO, o)) .

Theorem 3. Let V € ®  be an irreducible germ. Then
there exist a polydisc 4 (0,~) and asetV, c A4(0,xr)
such that:

1) Y,

s is a repreasentative of V ,

(ii) for each polydiac A,' (0Ye A there exists a
polydise A, (0) c A, (0) such that V, A 4, is a

connected complex submanifold.
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This theorem follows immediately from IXI.A.10, III.A.9

and III.A.8; this is only a reformulation of a part of Theo-
rem III.A.1O.

§ 2. The proof of Theorem 1

Let X, & D be fixed. Suppose that there exist
pointa x, € D such that

1) x, —> X, ,

(2) qrad fFlx,) = 0, m=41,2,..

(3) ifm . m then f(x,) £ fix,) .

’

We want to show that such sequence cannot exist.
Suppose that x, = 0 (for easy notation). In a small
neighborhood of the point 0 we can write
cc,, “—2 <N
f(x) =¢1,..§«:“20 Qg pyscy X+ Ky voe Xy
We can consider EN c CN and extend the function f on
a small polydisc A = A(0,x) c ct .

.

. %q *g <N
flz) = Zi_ ag 2, . %, ... 2y 3 % €DA0, 1),
9010y % ZO 110 XN 2 N
gvrs

From (2) we have (if x, e A (0, x))
of .
3. (xp,) =0, 41=4,..,N .

v

let Ve B be the germ of a variety determined by the
set \

5
) VeizeAW,n); o (x)=0,.., 25 ay= 03 .
oz, Sz,

There is a decomposition VY into its irreducible bran-
ches (see Theorem 2)
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V=Y,

it V., Ve are representativea ot V,,..., V,
then there exists a polydisc A, (0) such that

quu,..th .

(5) Van A,' = (V;n A,,)u...u (Ve n 4)

By (1) we have (for all m sufficiently large)
X, € VAl
and hence infinite number of x, wmust lie in some V; A

o) A1 ., So we can suppose that there exists a subsequence

such that

©
{ &,n; 3"_=4

(6) Xm, € V, n 4,

for all j ., Because the gemn W4 ia irreducible, it fol-
lows from Theorem 3 that there exist a polydisc 4, (0)
and a set Va c Aa. such that

(1) V: is a representative of V, ,

(i1) for every polydisec A, (0) c A, there exists
a polydisc A,(0)c A, such that V, A 4, is a con-
nected complex submanifold.

Because the seta 1{, and 7\’; are both representati-
ves of the same germ V/, , there exists a polydisc As €0
such that

Vin b, = Y, n 4,
There exists (by (ii)) a polydisc A“_(O) c i, n 4,
such that

(7) Y,AA"-VOAA,‘,
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and V;

We shall prove that £ must be constant on V; la)
A A" .Let x, € V, A 4, be fixed, let us denote
M=dze VA A,y £lz)=1f(z)3

n A, ia a connected complex submanifold.

Suppose 2 € M , By Definition 5 there exist a neighbor-
hood UL of x , a polydisc A, c C"’, (4e € N.) and
a nonsingular holomorphic mapping F
N

F:4, —C

such that
F(A )= UANY, 3 FO)=2 .

Hence for arbitrary w e U A V, there exists n €

& A" such that
Fip) = w .

Let uas denote
Then F(y(t)), 0&t £ 1 is a smooth curve, lying
in U AY, and by (7) and (5) we have
F(yp(tN eV, 0&t &4,
and hence (by (4)) |
2 LE(P(r(4)1=0, 0£€t 44 .

From this it follows immediately that f (w) = f (2) ,
hence

U n V‘a cM
Because the set M is open and closed in V, A 4, , we

have

v;f\A‘*.M -
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The function f is a conetant functionon V, n 4, ,
und hence also on -\7; A A" .,  But from (1),(6),(7) we
have (for 3 = 4, )

Yy € VA4, ,
hence £(xné) - f(,x”‘) s L, 2 3'.0 ,which is a con-
tradiction with (3).

Now the proof of Theorem 1 can be easily finished.
Suppose that X ¢ D is a compact @et and that the set
£(2Z A K) is intinite. We can find a sequence {x,3}% c
€2 AK such that £(x,) # £(x,,) (form + m ).

Then there exists a subsequence { ‘X"‘u” X = %o € X .

Because (1),(2),(3) is true for {x““i , we have a contra-

diction.
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