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Commentationea liathematicae Univereitatia Carolinae 

13,1 (1972) 

MDRSE-SABD THEOREM FOR REAL-ANALYTIC FUNCTIONS 

J. SOUCEK, V. SOUCEK, Praha 

In thia paper we will prove that the set of all criti­

cal values must be countable for every real-analytic func­

tion, which is defined on ]) c E N . 

Definition 1. A real-valued function f(x) defined 

on an open aubaet D c E N ia called real-analytic, if 

each point KT e I haa an. open neighborhood 11 , atr e 

e XL c D such that the function ha a a power aerie a expan­

sion in U . 

Theorem 1. Let / ba a rami-analytic function defined 

on an open aubaet D c E N • Let us denote by Z the 

aat of critical valuea of f , i.e. 

Z - { x e D j 4-— (* ) - ° > * - 4, -*, - f i H j 

then the aet f ( 2 n X ) is finite for every compact 

aubaet K c D and hence f (Z) ia at moat countable. 

Remark. The Morse-Sard theorem for Z°° -functions gi­

ves ua only 

H ^ C£(Z)) - 0 

for all OL, > 0 (where H #, ia the oc -dimensional Raua-

dorff measure). But we can construct an uncountable aubaet 
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U c E,, auch that H ^ CM) m 0 for all ot :> 0 . On 

the other hand, there can be eaeily constructed a real-

analytic function defined on (0, 4) auch that the aet 

i C 2) ia infinite. 

The proof of Theorem 1 ia baaed on eome theorems a-

bout germa of varieties from the theory of aeveral complex 

variablea. We recapitulate for the reader the necessary 

definitiona and theorems from [G-R3 in § 1. 

§ 2 contains then the proof of Theorem 1. 

§ 1. Germa of varieties 

Thia paragraph ia only a recapitulation of the facta 

from [G-R] (in bracketa we ahall refer to the numbera of 

definitiona and theorems in CG-R3 )• 

Definition 2 (II.E.4). Let X , V be aubaete of €U 

(the Carteaian product of N copies of the complex plane). 

The aata X and V are aaid to be equivalent at 0 if 

there ia a neighborhood U of 0 auch that X n XL m 

m Y n U .An equivalence claaa of aata ia called the 

germ of a aet. The equivalence claaa of X ia to be deno­

ted by X * 

If X^ , X a are. germa of a aet, we can define 

X^ v X^ , Xj r\ X ^ by the natural way. 

Definition 3 (II.E.6). A gem X ia the germ of a 

variety if there are a neighborhood U of 0 and functions 

£f > "<$ *t holomorphic in tl , auch that 

4x c U > f4 C.x) * 0 , 4 * i * t I 

ia a repreaentative for X 
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We shall denote the collection of farms of a variety 

at 0 by ft . 

Definition 4 (II.E.12). A germ V € H> ia aaid to 
b® irreducible if Y * Y1 u V2 for ^ , \ e % im-

pliea either V ~ Yn or V » "̂  . 

Theorem 2 (II.E.15). Let V € 3b . We can write 

V » Y. u ... u V ^ where the Y^ are irreducible and 

Y^ <£ V* for i 4* *£ . X , '•• > V*, are uniquely de­

termined by Y . 

An open polydiac in C ia a aubaat ACtir; x.) c C 

of the form 

Aitf, *) m ACvr^,..., <urH ) K,Hi..., *H) « 

- < * c C w , I ̂  - * £ I < ^ , 4 * * * # > • 

Definition 5 (I.B.8, I.B.10). A aubaet M of £ N ia 

a complex aubmanifold of I if to every point v̂ e M 

there correspond a neighborhood U of /ft , a polydiac 

A i 0 , eT ) in C** C Jk> t£• -iV ) and a nonaingular holomorph-

ic mapping F ; A C 0, cT) — • C N much that F (0) m p , 

and 
JI4 A U * F C A CO, or)) , 

Theorem 3. Let Y e 35 be an irreducible germ, fhen 

there eziat a polydiac & CO7 tc) and a aet "̂  c A C 0f/c ) 

auch that: 

(i) V0 ia a. representative of V , 

(ii) for each polydiac A^CQ) c A there exista a 

polydiac A ± ( Q ) c A^CQ) auch that V0 r\ A ± ia a 

connected complex aubmanifold. 
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Thia theorem followa immediately from III.A.10, III.A.9 

and III.A.8; thia is only a reformulation of a part of Theo­

rem III.A.10. 

§ 2. The prflof flf T ^ r t l 1 

k®t .x e. D be fixed. Suppose that there exist 

points x^ € D each that 

(1) *^ — > x0 , 

(2) cyuuL f C ^ ) - 0 , /n. ** 4, 2.,... , 

(3) if n, + mv than f Ca^) 4* f C x ^ ) -

We want to show that such sequence cannot exist. 

Suppose that x0 » 0 (for eaay notation). In a email 

neighborhood of the point 0 we can write 

We can consider E.. c C H and extend the function f on 

a small polydisc A - A ( 0, H,) c CH > 

Hz)ss« *£uJ^«*£-*?"- *« %***«>,*). 

From (2) we have (if oe^ e A ( 0 , / t ) ) 

df 
ÔZi 

Í O = 0, i - *...-,Л 

Let Y € 3 be the germ of a variety determined by the 

set 

(4) V - ix 6 ACO,^) > -r—Cx)_*0,..., ~ C * ) - 0} . 

There is a decomposition Y into its irreducible bran­

ches (see Theorem 2) 
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If Kf» •• • > Xi* **• repreaoatativaa of V^ , .,,, 1^ 

then there exiata a polydiac A^CO) much that 

(»» V A A, - cy; n A^)U ... o cvH A zy -

By (1) we have (for all m, aufficiently large) 

and hence infinite number of •x^ muat lie in eome y. n 

n A . So we can auppoae that there exiata a eubeequence 

* au . *£„ i-i-eh that 

ш ^
 в V1 n àл 

for all ̂  . Becauae the germ *\̂  ia irreducible, it fol-

lowa from Theorem 3 that there exiat a polydiac A^CO) 

and a aet "V̂  c A* auca that 

(i) Vp ia a repreaentative of V^ , 

(ii) for every polydiac A- CO) c A
2
 there exiata 

a polydiac A^CO) c A, auch that Y0 A A^. ia a con­

nected complex eubmanifold* 

Becauae the eeta Xj *Bd ^ •*• ^ ^
 r

*P
r
«

fl
e

nt
*ti-

•ea of the eame germ Y[^ , there exiats a polydiac A
3
 C 0) 

auch that 

% « A
4
 - % n A

3
 . 

There exiata (by (ii)) a polydiac A^(O) c A
3
 A A^ 

auch that 

t?> Y1 A A^ - Y0 * A^ 
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and VQ r\ A^ lit connected complex •ubmanifold. 

Wo •hall prove that f must be constant on- V0 r\ 

r\ A # Let %,0 e V0 s\ A ^ he fixed, let us denote 

JA - U e V0 ry A^ % £(*) - f(*0)i . 

Suppose % € M . By Definition 5 there exist a neighbor­

hood U of * , a polydiec A ^ c C* , Ck, * H) and 

a nonaingular holomorphic mapping F : 

F : A^-+ <C" 

•uch that 

FCA^) - U n V0 % FCO) « » . 

Hence for arbitrary wr €. % r\ V0 there exists 41 e 

e A, such that 
F C #>) m *ur . 

Let us denote 

T C t ) - tJfi s 0 * t * i . 

Then P ( y ( t > ) , Q 6 t & 4 i s m smooth curve, lying 

in U n Y0 end by (7) end (5) «e have 

F C y < t ) ) € Y , 0 *t 6 4 , 

and hence (by (4)) 

~4rli CFCyCt))J - 0 , 0-*t-*>/ . 

Prom this i t follows immediately that f (<ur) ** £ Cx) , 

hence 

U n V„ c M . 

Because the set .M i s open and closed in V 0 A / J + , me 

have 
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Tho function f io 0 conotont function on V0 r\ A^ , 

and henco oloo on VQ A A^ . But froa ( l ) , ( 6 ) f ( 7 ) wo 

hove (for j . 2. &0 ) 

**+ c % A A+ > 
honco £ Cx ) m f C ^ ) j £ , £ ^ 3-0 ,which ia 0 con­

tradiction with (3) . 

Now tho proof of Thooroat 1 con bo oaoily finiohod. 

Suppooo thai X c D ia a compact aot and that tho sot 

f ( 2 n K ) i s ia t in i ta . fa can find a aaaiioiica <^}°° c 

c Z n K ouch that f (^) + f (x^,) (tar m. * <m, ) . 

Than thoro exist0 0 subsequence tx^ t9 x , ^ — • X0 or X . 

Bocouoo ( l ) f ( 2 ) f ( 3 ) io true for * C * ^ * , *• *•*• 0 contra­

diction. 
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