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Commentationes Mathematicae Univeraitatis Carolinae 

12,3 (1971) 

UPPER SEMICOMPLEMENTS AND A DEFINABLE ELEMENT IN THE 

LATTICE OF GROUPOID VARIETIES 

Jaroslav JE2EK, Praha 

The variety of semigroups is not generated by any 

finite number of its proper subvarieties (see Dean and 

Evans [2]). An analogous statement holds for the latti­

ces of varieties of groups, lattices, loops and commuta­

tive semigroups (see Evans [33 for the summary and bibli­

ography). It is proved in [6J that this property is not 

shared by the variety of all universal algebras of a gi­

ven type A containing at least one at least binary 

function symbol: there are found in the lattice X* of 

varieties of algebras of type A some upper semicom-

plements different from the greatest element u of iC^ -

In the present paper we shall restrict ourselves to the 

case of the lattice &r of groupoid varieties and in­

vestigate upper semicomplements in «£_ . 

In § 2 the infimum of the set of all upper semicom­

plements in it„ is found: it is just the variety of 

commutative semigroups satisfying o< . /̂- m x. /y, . This 

variety is thus a definable element in «£r • 

To prove the result, we must find some further upper 
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semicomplements in &v . These are found in § 1. 

For the terminology and notation see f6] and § 1 of 

[4]. 

§ 1. Some upper semicomplements in £ 

We denote by V the type of groupoids, i.e. the 

type consisting of a single binary function symbol. The 

terminology given in [4] and [6] can be specialized to 

the case A •* T : e-g» Wr denotes the free groupoid 

freely generated by X # P -equations are called equa­

tions throughout the paper, etc. If AA> and or are two 

elements of HL , then the value of the fundamental bi­

nary operation of WL , applied to u> and or f is de­

noted by AA> . nr or only AA*V . We write AA*nr, w in­

stead of Cu>. tr ) . ur f etc. 

For every t s WL we define two elements t and 

If of W- in this way: if t e X , then X m t* * t ; 

if t « ^ • t , then % m ^ and f « t^ . 

For every t c WL we define elements & (t) , 

e^Ci\ 6^(t)r„ of Wr in this way: % (*) m tt . t > 

Let us fix two different variables (i.e. elements of 

X ) and denote them by *0 and afr0 • Put 

e 1-<x 0x 0.x 0,o< ex 0> , e a = <*„• «t,xe , x, *, > . 

Let e be any of the four equations e1 , e* , e and 

e . It will be useful to notice that the following (tri-
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vial) assertion holds: whenever ^ , AA*1 , /\r and nr^ 

are elements of typ such that 1% *% is a leap-con­

sequence of u, AJU by means of e , then no one of the 

three cases 

(i) A4,1AA,1 * 45 *£ % 

( i i ) 4JL m nr and e i t h e r A*, e IC£ (n£ ) or ifa € 

C I C « C 4A,n > ; 

( i i i ) .u„ » n£ and e i t h e r 4 ^ 6 ICfl ( n r ) or v; c 
2 2 *t 6 f t 

6 IC & C-u ) can take place. 

Let e be an arbitrary T -equation. We call an e -

proof rt , ... . t n regular if either 1 e LC a (t. M ) 

for all leaps * in rt ,,. , tm ~* or t . . e LC„ (t, ) 
V 7 *7l» Iff 1 CJ- * 

for all leaps -t> in rt,,.,. , t̂ "1 . Evidently, if an e -

proof has at most one leap, then it is regular. 

Lemma 1. Let a,, Jtr e Wr and e^ H- < a,, Jlr > . Then 

there exists a regular Q, -proof of Jlr from a . 

Proof. Let r^n..0tk AJUJ? be an e- -proof of ^ 

from a, with a minimal number of leaps. Suppose that it 

is not regular. Evidently, it has two leaps •£ and ̂ . 

Ci < ^ ) such that there is no leap greater than i 

and smaller than 3- (we say that £ and <$. are two 

neighbouring leaps) and such that either 
Лť f^m (cC<X,.C*,)/iB<4U^m CC(h&AA,.mrcT& M,.^ m ty f» T > ^ 

or 

for some &, ft, tf, <?' e ^ r * I f <£ 4- 4 «• #- , then <x- 1 

-. y and (b m <T7 so that r ^ , . , . ; ^ , ^ $ , , M , -O^"1 
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is an e. -proof of Jb> from a, which has a smaller num-

ber of leaps than Q ^ ,.•,., u>^ , a contradiction. Let 

.i, + 4 < £ « In the first case 

'V,,-., *-, li1ZUl.cc)ec.)fi,...,«£±. *,)*)£ , 

UZj, . &lHL)*)fif...9 «£+ .%)<x)/3 , 

and in the second case 

is an e. -proof of Jb* from O/ and it has a smaller 

number of leaps than ^ f ,, , f JU,^2 , a contradiction. 

Lemma 2. Let O^ , o^, J$J, ̂  e Wj, . Then 

e^ H- <oSf a 2 , .-^ ̂  > if and only if e„. H <o2,i^ > and one 

of the following three cases takes place: 

(i) e1 H < a < f , ^ > ̂  

(ii) e, f— <0/,,6L fi^)> for some rtt/ -£ 4 ; 
7 *f ' m? n 

(iii) e, r— <£K f 01 Ca>, > > for some m, 2s 4 * 
<f 1 9 try 1 

Proof follows easi ly from Lemma 1. 

Lemma 3 . For every t €. Wp denote by g? the 

endomorphism of Wp assigning t to every var iab le . Let 

* € X , a> e Wr and w e Tp ( x) j l e t vr 4, x . Then 

•Ceiteft ! H- <a,, g ^ C w ) > does not hold. 

Proof by the induction on a . Everything i s evident 

i f 0/ € X . Let O/ $ X and suppose <e#f,e2? H <0/? <J^Ci^) > * 

Evidently, there ex i s t s a f i n i t e sequence ^ , - , » 7 ^ ^ such 

that <ur xz /uA*. »ttfL » x and air*. , e «r, for every 
*f f ffU • * • ' T *V 
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I - 4,...,m, - 4 , We have evidently ̂ e^e^j H <3?, <?̂  £<-«£>> $ 

from this fe^e^* r- <a, <fc 6u£ ) > * etc; finally, 

*ef>e2} *- <**> <?a,C'Ky'),> ** <&> a > for 80me ^ e SCct) , 

so that {e^e^Jr- <*&*, 9^ C*^;> , a contradiction with 

the induction assumption. 

Lemma 4. Let 4>9Jtr e Wp and e a I- <a,-^ > - Then the­

re exists an e a -proof of Jir from a, which has at most 

one leap. 

Proof. Let rM,_m,,,9 AJL^ be an e* -proof of Jlr from 

a with a minimal number of leaps. Suppose that it has 

at least two leaps. Then it has two neighbouring leaps -t> 

and -̂ C £ < #-) # Four cases are possible: 

(1) There exist at f ft e W-, such that 

4 i ^ « CoC0CoC)0C Si ^ + < f * flCflCA^- * (ft ' fl ft ) ft & ^£4.4 m ft ft ', 

then e^H <oc, /3./3/3 > and e a f~ <oc? /3 > , so t h a t 

e~h-<ft9ft*ftft> f a contradict ion with Lemma 3. 

(2) There exis t oc 9 ft e W such that 

u^ *- otoc St. A * , ^ * (oc.ccac)acSc ^ « / 3 / 3 A w^^&L ft, ft ft) ft * 

then e« H <oC, oc. ococ> , a contradict ion. 

(3) and (4) The remaining two cases give a contradic­

t ion s imilar ly as in the proof of Lemma 1. 

Lemma 5* Let a^ , Q,% , Jlr^ , ^ € Wp . Then 

e a h~ <a^ a a , -£5 \ > if and only i f e^f- <a^, ^ > 

and one of the following three cases takes place: 

( i ) e 1 l - < a „ ^ > ? 

( i i ) e 4 l - < ^ , a 2 > ana e 2 t - < ^ , a i , . a > a,, > , 

( i i i ) e a H < ^ , ^ 2 > a n d e . h C a , , / ; , ^ ^ ) . 
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Proof fo l lows e a s i l y from Lemma 4 . 

Lemma 6 . Let oc , ft e Wr . Then n e i t h e r 

f e ^ e ^ J i - <ococ. oc , /3 . /3/3 > nor -Ce^e^f H- <CCOC. OC, /3/1 > 

takes p l a c e . 

Proof. Suppose on the contrary that there e x i s t e l e ­

ments oc, /3 e Wp and an i e\ f e% i -proof rwA,,,, 7 AJU^ 

such that the fo l lowing holds : M,^ m ococ. oc : e i t h e r 

**>«,"(*-(*{* o r ^ ~ r 3 / 3 J whenever 7-/ <?* Wr 

and ri)5J, . . , , vj? i s an C e 1 , e l ? -proof of e i t h e r 

cf. of^T or cf<f from Wf. V 9 then m, ^ <ra , This 

***** »••'» '*W* ^as ^ e a P s > -^or i-f i t had not , then in ca­

se ^ • • / 3 . / 3 / 3 we would have ie^,ea1 h- < ococ, /3 > and 

"Ce.^JH <oc, /3/3 > , so that <%,ez1 r- <oc, ccoc . oc oc > > 

and in case JUL^ = /3/3 we would have "fe^e^ J H <ococ, /3 > 

and f e ^ e ^ l I- <oc, fl > , so that <e^,e2f I- <cc, ococ> , a 

contrad ic t ion with Lemma 3 . Let 4, be the f i r s t l eap in 

I f AA^B (/c/t./c)4> oV u,^^^ m H,/o for some *,, A> e 

e W r , then r # . , % _ , , , , , , V i s an f ^ , ^ l -proof 

of ococ from n,K.n, , and ̂  <. tn, g i v e s a contrad i c ­

t i o n . 

I f u^m (H,.H,K)H, & ^ H -» >fc^ » then 

f e ^ e ^ f J - < * o c , * , . * * > and f e ^ e ^ l - < * , * > , so that 

<e^.,eaJ t—<oc, ococ> , a contradic t ion with Lemma 3 . 

I f AM^m H,H,& AJU^^** (*>.H,H,)>t , t h e n 

U ^ t ^ ! H <oc,ococ> , a contradiction. 

Let us call a leap I in r^9...9M,^ a # -leap 

if there exist K, , ̂  * ̂ r such that 4Cg -* H,A> &. M>Ui ** 
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» (Ktt. ft) /t> , We have proved that i i s a * - l e a p . 

Suppose that every l eap in r ^ } . . . , -u^J1 i s a # -

l e a p . Then ^e^^eAV- < ft, %n,(occc)> for some m, fc 4 ; 

in case >u^ = ft. ft ft we have further 

< e 1 , e 2 ! l - < o c , / 3 t 3 > , so that f e ^ J h - C o c , %»(«<*).%„<«*)>, 

a contradic t ion; in case AJL m ft ft we have 

a contradict ion again. Th is proves that rjuLt1,.,., u^ has 

two neighbouring l e a p s $> and Jit (£ < M>) such that «te 

i s not a # - l e a p and £. i s a # - l e a p . There e x i s t a , 

Xr e FKr such that >o> » a ^ A ^ ^ ^ » C a a . a ) ^ r , 

Suppose ^ s r (cc,c)d & ^ + 4 * Cfl~- f o r s o m e e > 

ci € W . Then 
—>• — • 

is an {e.,eA -proof, a contradiction with the minimal 

property of ^u^,..., ̂  * 

Suppose jui^m (c.cc)cb AA^ & CC . Then 

r^k-M>'"' ^t"1 is an fc^ ,€^f-proof of c. cc from 

a a. a , a contradiction with the minimal property of 

The case u,^ s cc A ^ ^ =• Cc. cc )c remains, 

-û ,.,.., ̂ j^ 1 is an fe^e^? -proof of cc from ococ . oc 

again a contradiction with the minimal property of 

*u. it •••> **-/n. 

Lemma 7. Cm, Ce.) v„ C*t Ce« ) » t„ . 

*—*-•* i r 2 p 

Proof. Let us prove the following assertion by in­

duction on a : whenever a, Jtr e 1/L , e^ H <a, Jb- > and 
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e^h- < CL9 £r / , then CL « Af . This i s evident i f CL % 

€ X . L e t CL m CL^ CL% . 

Evidently, it $ X ; put tr w Jb> $r% .We get a^m &r ea­

s i l y from the induction assumption, so that i t i s enough 

to prove a,, m Jb^ . 

Let e, I— <Ov,£r_, > * B y Lemma 5, the following three 

cases are the only possible ones: 

(1) eft H <o.4 i c > . Then we get a a ir from 

the induction assumption. 

(2) ^( -<a r f ,a i >A e 2 H < 4 j , < V a, a, > . As 

^•^1 etff I— <a-1f â  • Oy â  > , we get a contradiction with 

Lemma 3* 

(3) ear~ <i5,i^>A e^H <o!t,^ . i$ ̂  > . Again, 

<e1,ea! (— Ki^, ir , ir ̂  > , a contradiction. 

Let ê  i— <<ty, ^ f i r ,) > for some m. £ 1 . (1), (2) 

and (3) are again the only possible cases. In cases (1) 

and (2) we get a contradiction with Lemma 3. In case (3) 

we get a contradiction with Lemma 6 and the definition 

°* -k • 
By Lemma 5, the case c H- <irj, €^ (CL^ ) > re­

mains. This case i s similar to e„ I— <o-,, 61 (to? ) > » 
1 *f > /ri. *f 

Lemma 8. If a, m Wr , then e* h- < CL, CL CL > does 

not hold. 

Proof by induction on a, . It i s evident i f CL e X . 

Let CL m GL^ CL* and suppose e1 h- <a9 CLCL} . Evident­

ly! e1 r- <0£, CL) , so that #1 *- <aa , a^a^,) which con­

tradicts to the induction assumption. 

Lemma 9. Let a , Sir € Wr and e* r- < a , 4- > . Then 
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there exists an e* -proof of Jtr from a which has 

at most one leap. 

Proof. Let n̂ .,,.,, M.^1 be an ef -proof of £r 

from a with a minimal number of leaps. Suppose that it 

has at least two leaps, so that it has two neighbouring 

leaps ̂  and <%. (i <• $> ) . There are four cases: 

(1) U^s OCccScU^^m CCOC.oC&U,'S* ftftttU-j+4 m fifi.fi 

for some oc, /3 6 Wf , Then e1 h- <oc-x,/3> and 

e r~ <ot, /3 > - so tha t e? r- <oc,occc> , a contradiction 

with Lemma 8. 

(2) ^ - r OCOC.OC &AJUl4.A*= CCOC&U^ m fifi.fi&U^i * fifl • 

We can get a contradiction similarly as in the preceding 

case. 

( 3 ) jUL^m CCocSc U.^ s OCOC.0C& U-^m fifi.fiSiU^ ss fifi , 

Then 

is an e -proof of Jb0 from a, which has a smaller num­

ber of leaps than ru>„....m AJL-S* • a contradiction. 

( 4 ) ML^ m OC OC . OC & U*. m OC OC& U*i m fi fi A ^1+4 m ft fi » fi • 

Then 
i— > —> - j 

i s an Q} -proof of ^ from Q, which has a smaller num­

ber of leaps, a contradiction again. 

Lemma 10. Let cxA 9 a,2, fy f 8r2 € Wr . Then 

e4r- <a1 e2 , i ; Jlr2 > i f and only i f e*»~ <<*2,>^ ^ a n d o n e 

of the following three cases takes place: 

(i) e V <*,,*, > , 
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( i i ) e V < i j ; f ^ > and e V <ct«,4f *k > 5 

( i i i ) e11~ < a 1 f a^ > and e^H < i^ , a^ a^ > . 

Proof follows easily from Lemma 9-

Lemma 11. Let a*., a, 9 Jfy t Jlr e Wp . Then 

e 2 H <a^ a £ , fy Ar% > i f and only i f e2H <o,, fy > 

and one of the following three cases takes place: 

( i ) e 2 H <CL19\> , 

( i i ) e 2 J ~ < i ^ , i r > a n d e2 H- < a^ , i^ ir£ > j 

( i i i ) e2 I- < a^ , a £ > and e 2 H < ^ , a . j 2 o i > , 

Proof is similar to that of Lemma 10. 

Lemma 12. Let a , Jlr 6 Wp . If «C e1,e2j I- < a a , 4 ^ >, 

then f e ' f e
2 J l - <a,4-> , too. 

Proof. Suppose that i t i s not true. There exists an 

f e , e ? -proof ri<Vf,.,,., .-u^ such that the following 

holds: there exist oc , (I € Wp satisfying AA^ oc ac 

and AA,^ sftft and not satisfying { Q?9 e
2? t- <cc, (I > ; 

whenever r t C , # . . , tj^f1 i s an ie?9 e 2 i -proof with a s i ­

milar property, then m, & /m . Choose such a minimal 

^ . M , , Mfo1 and put JULA « a a and ^ s ir^r , Sup­

pose 4î  » CC for some £ such that 1 & <l £ /u - 4 . 

As rAA, 9..,f AJLP i s an fe*, e2 l -proof of ec from a a 

and 4, < m 9 we have <e', e2J H <a, e > ; as ru^f.,,f AA,^ 

i s an {&*f e2? -proof of JlrJr from c c and m, - I + 4 < 

< m, , we have { e1, ea11— < lr, c > , Consequently, 

«(e',.>e2!r-<e,^'> , a contradiction. From th i s we infer that 

no numbers other than 4 and /w- - 4 can be leaps in 
r!u, . , , , .-u^1 . If r44*i9 ...9 AJL^ had at most one 
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leap, then either ^,--,t^ft"
T or rjl£,„,, 4%rv~

1 would 

be an fe , e2f -proof of ..£r from GL } hence, the num­

bers 4 and m, - 4 are leaps. We have either AJL -= 

ssCLCL. CL or ,o^-sra*aa , It is sufficient to consider 
2 

the case JUL„ « a a. a . If it were it, „ «- ir„£r. Xr . then 
2 #L~4 9 

*%tf»f ^rJ* w o u l < 3 b e a n f« - ea? -proof of ir from 

a , We get 44^m4l ** £r0 ArXr , Evidently, 
r ^ , . , , , ^a ,̂..̂ "1 i s an {e1

te
2i -proof of JlrJlr from 

CL and 2C, . . . , ^a^-1 i s an f e , eaf -proof of Jlr 

from a a , As ( e ^ e M h < XrJlr, CL,CL> , we get 

f e , e J I— <a, Jlr } , a contradiction. 

Lemma 13. If a e Wp , then f e', e2 ? t— <CL,CLCL> 

does not hold. 

Proof by induction on a , I t i s evident i f a e X , 
Let a -» a, a„ and suppose -i e , e ? I— < a , a a > . Let 

7 Z ' ' 
^,.,.,-a n be an arbitrary f e , e2? -proof of a from 

a a 

Suppose that ^ , . . , , /Oĵ 1 has a leap . .Denote by Jk 

i t s last leap . If i t were AJLJ. « CC for some c c 

6 Wp f then we would get -fe^e2! H <a>1, c > j as 

-f e^e2* l— < a a , c c > , Lemma 12 gives fe* e2f j— < a , c > $ 

hence, £e*, e2} H <a(f, a > , so that <e\ ez?h- <oft, CL a, > , 

a contradiction with the induction hypothesis. This pro­

ves AJUJ, m cc for some c and either ^^ =- cc . c 

or ^ f c + s c c c . Again, from 4 e* e* 1 v— <aa,cc > follows 

by Lemma 12 i e1, e2 ? I— < a , c > , In case ^ ^ » cc. c we 

have f e \ e 2?K <c, aA> , so that f e1, e2f r- <a,a iL> and 

consequently £ e4, e 2 i I— < a £ , a £ a , > , a contradiction 
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with the induction hypothesis; in case >*^^ » c.cc simi­

larly <e* e 2! f- < a,, a, a. > , a contradiction again. 
' 7 7 7 7 ' 

We have proved that r4u^9...9 AJU^ has no leaps. 
r 2 T J , . . . f*H^ i s an le\ ext -proof of a^ from a ,so 

that C e1, e a ! f—<a..aa#> , a contradiction with the indue-
7 " 1 7 " 

tion hypothesis. 
Lemma 14. C/rt Ce4) vr 0>a (e1) « t r * 

Proof. We shall prove by induction on a the follow­

ing: whenever e4 J-<a, 4r> and e2l— <a,^> , then a, ** 8r . 

This i s evident i f a e X . Let a » a^ a £ , e'I— < a , Jlr > 9 

e1 h-<afJtr> and a * > . Evidently, ir * X > put>«* ^ ^ . 

We have e H <^fll, >^ > and e* f— <a1 , fy > j i t i s sufficient 

to prove e!h- <a 7 , Jb^ > and e 1 ! - < a ± , Jtr%> . Suppose on the 

contrary e.g. that e* J— <a7,4^ > does not hold. We have 

either e'fr- <*fc,/fe > & e*f- < a , , ir i r > or e'h- <a„,a„ > A 

&< e11- Ci^a^a-, > by Lemma 10. Evidently, {•*,•*?*-<<^,a^> 

in both cases, a contradiction with Lemma 13* 

Lemma 15.Let x and <y- be two different variables. 

Then every minimal <,* *./y, , J<. y.*> -proof i s regular. 

Proof. Put e m <xx.n^, x./y.»x> . We shall prove by in­

duction on /rv that every minimal e -proof rAx^9..,, u£ i s 

regular. This i s evident i f /n, « 4 • Let /n. > 4 • Suppose 

that rAL^i...f M*^2 *a not regular, so that i t has two neigh­

bouring leaps -u and £ (*> < £ ) such that one of the 

following two cases takes place: 

(1) iju^m a,, fro, St AA^* a a . i r A 4 i £ « cc.ditu,^ » c.flLc 

for some a,Xr,c,c£ e Wp . We have e f~ < a a , cc > , ao that 

Jtiaa.)m tCcc) and thus 1(a)* 1(c). The e -proof 
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r^4+-i - •• •»^iT of cc from ao. is minimal if we lea­

ve out its members tZ^ such that AJL^ m u^^^ $ by the 

induction assumption it follows easily from ZCCL) » ZCc) 

that rSZ j.,,,^'"1 has no leaps. Consequently, 

is an e -proof of AM. from .a. , a contradiction with the 
* / T V <? J» 

minimality of rx*,,f,... , xt-̂ "1 . 

( 2 ) AJL.m CLGL.Zr A ^ , « CL.ZrCL&CtL>m C.CLc&4jL-Am CC . CL 
-V "V4"f ^ ^**4 

for some a<,,-2r, c,<i c WJ, . We have ei— < a , c > and 

ei— <Zra9cLc> , so that H o O - v l l c ? and ZCZTCL) m ZCcLc) >, 

we in fer ZCZr) m ZCcL) . S imi lar ly as in the previous 

c a s e , r"Zt. , . * . , ttj"1 has no l eaps and 
.ts. « ,-«f7 ' y> 

is a shorter proof of x*^ from xt̂  , a contradiction. 

Lemma 16. Let x and /t.̂  be two different variables. 

Then 

Cm,C<xx.ty,x.<y,x» vv Cm.«x.(xx.x), (xx.x>.x»m Lp . 

Proof. Put e « <xx. a^, x. n^x > and Em <x. (xx.x ) , 

(xx.x).x> . Let CL9ZT e Wp , e l - < a , 4V> and e f—<a,,#-> , . 

Suppose that a minimal e -proof of Zr from cu has l e a p s . 

Using Lemma 15 , there e x i s t s a natural number m> & 4 such 

that e i t h e r Z(%)m 2*. ZC% ) or Z (% ) = 1*. I C% ) . 

By Lemma 1 of C62 , a minimal 3f -proof of >Cr from a. has 

at most one l e a p . I f i t has a l e a p , we have e i t h e r ZC%) m 

m 3 , XC%) or ZCXr)m $, ZC%) . i f i t has n o t , we have 

X(%) m XC Zr) . This g i v e s a contradic t ion in each 

case , as n e i t h e r 2^m 3 nor 2"*** -r nor 2"t m 4 . 
o 
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We have proved that a minimal e -proof of tr from 

a has no leaps. This implies t(%) m tC%) and a mi­

nimal g*-proof of tr from a has no leaps, too. If we 

had proved the equality by induction on a, we should get 

% m xr and 1& « tr , so that a, m tr . 

Lemma 17. Let x and <y~ be two different variables; 

put e m Kx.yx, xty.x) . Then every minimal e -proof 

ha8 at most one leap* 

Proof* We shall prove by induction on m, that every 

minimal e -proof '"x̂ ,.,., M*^ has at most one leap. 

This is evident if m, m 4 . Let m, > 4 and suppose that 

a minimal e -proof rw^%..., AJU^ has at least two leaps. 

It has two neighbouring leaps -£ and £. (4, *> <&) ; one 

of the following four cases takes place: 

&J 44̂  • CL.Jlra*mAA^^»Cutr. Ct,ilU>'m c.dc t*^^ m cd.c 

fer seme.. cu%trfc9d m Vr . We have e.\-<a,Jr,c> end 

eh- <a,9dc > f so that t(ctr) m 1(c) and tCcu) m t(dc) 

and consequently t(atr) < Ka) , which i s impossible. 

(2) AA,4fma,£r.a,ScAtz^t1m a,.lra,Uu,±m.cd.c8<iL^ m c.dc $ 

a contradiction can be derived similarly. 

(3) M,}* cb./ra/&d44+4m&ir.a,Au£mcd*c&A6j+4m c.d,e . 

We have tCcJr) m t(cd) an<* £>(*>> m t>(c) end conse­

quently tCtr) m ICdM, too. By the induction hypothesis, 

th i s implies thftt. Tt j^- . - f %£* n a s n o **aPa> so that 

S . " ^ . ^ ^ ' ^ ' " ' ' %' &+-fy>»***»-> «•*? 
i s a 8hort*r e *ip«>of °* ****, f r o m u4 > a contradiction. 

(4>.4i£« a j V . a * * ^ * <*'tra>kju,itmC.dctcAi.^j1m cd.c. • 

we can get a contradiction similarly. 
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Lemma 18. Let x and <y* be two different variables. 

Then 
CtvC<x ./u,*, x,^.. x » vj, Cn, C<iX- Cxx, xx) , Cxx-x*).x»-<^. 

Proof. Put e » Cx./^-Xj, x/ĵ -*x > and g" » <*, Cx»x --x*x), 

f x x . x:jO. .x > . We prove the following by induction on 

a . whenever e h ( a / , #- > and e J— <a>, ir> , then a, -» 

=r iJr, This i s evident i f at, e X . Let a, -=• a^ «â  , 

6 r- Co,, # > and g* | - < a,, fr > . Evidently, ir £ X ; put 

if » ir iri . Let r4/,.,,,M -a/"1 be a minimal g -proof of 

ir* from a . By Lemma 1 of £6J i t has at most one leap. 

Suppose that rM<19...7 M*^ has exactly one leap 4, . 

It i s sufficient to consider only the case 

M,. ss as,. Cococ. ccoc.) h JUL. ss (acoc . ococ). oc f or some oc e 

e Wr . As iCoc,oc)-* iCotcc),the g -proof r%^ ,-*-, t^n 

has no leaps. Hence, £(£r.)= -f.XCa^.), ijj £ X and 

i C ^ ) = 2.1(0,^)= 1(1%) . Let ^ , ~ - , - % - 7 be a mini­

mal e -proof of Jlr from o, . As iCa-,) < iCi^ ) , 
r%%""> /*/W~1 n a a l e a P s » by Laffi-aa 17, i t has exactly 

one leap ^ $ evidently, there exist fh, f e M̂  such 

that -^-/3 .r /&lL4g^ ~ / S r - / 3 • As r l £ M , - , - , ^ ~ l 

i s (after leaving i t s members ?£ such that Irl -=. ?E ) 
-5 *w ML—4 

a minimal e -proof, i t has at moat one leap; aa iC/3) =-

= i lo -J and i ( SrJzz 1. Z(<vM) , i t has exactly one leap Jt-
7 7 7 ' 

and there exist e and of such that t ^ ss <f, &cTB< 4 j^« 

=*(?&.<? .We get l(~$Jm Z(<T)~l((h) -=» KaJ , a contra­

d i c t i o n with l( .4r.)-a» 2*i -Ca^) -
7 7 

We have proved that ra. .,. y ̂ J1 has no leaps 

and consequently g* (- (a,, i£ > and e h ( d , , * ) . As 
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£(0,^) ss jt(Jtrf)f a minimal e -proof of £r from a, has 

no leaps, too, so that e h KCL^ , £r > and el- ^ ^ - - ^ ^ -

The induction assumption gives a,^ » ir and o^ - .i£ , so 

that a a* ̂  „ 

Lemma 19* Let j<? ̂  and a*, be three different vari-

ablesfc put e = < CCx- xy*)x,)z>, x C.x C^^:# ..«))>. Then every 

minimal e -proof has at most one leap. 

Proof-» We prove by induction on m, for every mini­

mal e -proof r^^--*-,-^1' that it has at most one leap. 

The case /rt -=- 1 is evident; let /n. -> 4 and suppose 

that rM,Jtn...% UJLP has at least two leaps. It has two 

neighbouring leaps -l and $, (i, <r £) *9 one of the follo­

wing four cases takes place: 

(1) AJU. m ((a,.o,£r)c)c &CJU,.A=: cv(a,(£rc.c)) Be u- « 
"V "*"f"'f &• 

=- ((^.^OJH,)H,8CU^^ ssJfh(fh(qtH,.H,)) for some a,,£r7 c,{i,%, 

fv & Wp .We have 

£(a,) a ^CC^,^,^)^) ^>^C^).= Jt(o> (jtrc.c)) J> Ka,) , 

a contradiction. 

(2) u^O'CaGerc.cMx^^ & 

ScAC*^((jfi.fi^)/c)K ; we get a contradiction similarly. 

(3) u,- ((a,.a,2r)c)cScu. ^^ a(o,(£f-c . c)) Sc UJ = 
-t, 1f¥A v 

-s ̂vC/ftĈ ./t)) &USJ.+4 * CC^. </&£,>-*->/c . We have Ĉ<2,) = 

=.-ZC^) and l(a,(£rc.c)) ^£(^(q/c .H)) , so that £(£rc.c) = 

•x KQK.H,). AS the e -proof r^ + f,*<'/ ^ ^ *s (after 

leaving out some members) minimal, it has no leaps by the 

induction assumption. Hence, r AL^ , .„, S, ~* is an e-

proof and it is minimal if we leave out some members; as 

JtUrc) -> Z(c) and /C^/t) :> -6C/t) / it has no leaps. 
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We get lUrc)* JL(q,n,) and t(c) « ..£6*,) , so that 

JL(tr) ~ K%) , too. Again, the e -proof 

AAJ. ,..., 5f. ""* ha8 no leaps. Evidently* 

.5.--r .tf-jjr —'HK 

£5. H 1=1 ^ 

ia a shorter e -proof of AA,^ from .u^ , a contradiction. 

(4) The las t case i s similar to the previous one. 

Lemma 20. Let*,.^ and s*> be three different variab­

l e s . Then 

On, «((x.x<ty)z.)z, x(x (<y,z.x))>)vT%Civ«X.XX,xx.x»3*i«J%. 

Proof. Put e » <((x.x<y.)x,)z , x (x (<y>z. z)) > 

and g: a <x.xx,xx .x > . We prove by induction on a : when­

ever e J— < a , JLr> and g" h- < a , JCT >, then a « ir . This i s 

evident i f a e X . Let o,'* a, cuf en - < a , # " > and 

e*H- < a , ir> # Evidently, > £ X ; put ir *- irj i r # Let 
r^f»"*.» -a^7 De a minimal e -proof of Jlr from a .By 

Lemma 1 of £6J, i t has at most one leap. Suppose that i t 

has exactly one leap 4 • It ia sufficient to derive a con­

tradiction in the caee AA,. - cc.ccac ft juu. ^ m oc oc . ox, 

for some oc e Wv . W e have JMJlr )& 2. JL(a> ) . Hence, using 

Lemma 19, a minimal e -proof of Jlr from a, has exactly 

one leap, too, and for some ft, f9 cTe Yr 

l(%)szap>.fty)<r)>2.l(p)*!l.l(Q,i) , a contradiction. 

We have proved that r , o - , , . , ( t AA, •~1 has no leaps. We 

get e r - < a ( f , ^ j > and g r~ < a £ , i £ > , ao thart. l(a^)m 

» JL( Jtr ) and a minimal e -proof of Zr from a- has t 
no leapa, too. Thia implies ef—<a4tfJt^> and 
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6 r - C a 2 , iV > 5 by the induction assumption a =. 

m ir and a. » jfe , so that a, m tr . 

. Lemma 21. Let x, ft̂  and z, be three different va­

riables; let e be any of the following eight equations: 

<(xx. x)<ty>t x<it>> -, <ty(x.xx),<y.x>; <xx.x,xx> , 

<x.xx, xx> | <xx.<%-9x.<y,x) >, <<ty*.xx9x<y~.x>; <x.<u.x,x<jr>x> ; 

<((x.x<u-)z>)z, x (x(<y*z. z)) > . 

Then Ctn.Ce) i s an upper semicomplement in Xr * 

Proof follows from Lemmas 7, 14, 16, 18 and 20 and 

their duals. 

§ 2. The infimum of the set of a l l upper semicomple-

ments in J6n 

Lemma 22. Let x e X , <ur € Wp and /ur -f? x . Then 

Cm/C < * , i<r > ) i s not an upper semicomplement in & . 

Proof. Suppose on the contrary that there exists a 

non-trivial equation <a,} 8r> such that On (< .x, <ur> v_ 

v.1 Cn,C<a, .£r>.) = cp # By Theorem 2 of .C6J, x i s the 

only variable that i s a subword of ntr; i . e . W e. Tp(x). As 

<ur 4- .x , there exist >û , /tr* e T^ (x ) such that /ur-r AJLV . 

For every two elements /c , /£> of Wl define x, L/*>! by 

^r^>J-=f>C^) where £? i s the endomorphiam of ¥ , as­

signing A> to each variable* The equation 

e s~ <A4,£<ur£a,]l.'\rC'urZtr]J9<ur ZAJULO,] . nrZirll > i s evid­

ently non-trivial and we have both <x,<ur> h~ e and 

<cu,^r*>r—e , a contradiction. 

Lemma 23. Let x, <tf and z> be three different variab­

l e s . If a , i r e Wp , then 
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<Os, <£r> € Cm (i<xx.<y,,xy,>,<x<y,,<y.x>, <x<ty..Z,x.Af*z>}) 

i f and only i f X n S(Q,)SXnS(jtr) and e i t h e r a, m Jtr or 

a, £ X & $r $ X . 

Proof i s easy . 

Theorem. The infimum in & of all upper semicom­

plements in £ is just Cm, ("C < xx . n^,, x<y~ > , 

<x<y,,<y*x>, <*<$,. z., x. n^z >} ) (where x,<y, and x, 

are three different variables). 

Proof. Denote the infimum by E . ( E is a fully in­

variant congruence relation of W_ .) By Lemma 21 we ha­

ve C<n(i<xx.a^,xn^>, <xn^f <y.x >, <x/y,,z, x. aj-x >} ) & E . 

The converse inclusion follows easily (some care is ne­

cessary) from Theorem 2 of C6J and Lemmas 22 and 23. 

Denote by <(y the variety of all groupoids. We re­

formulate the theorem two times: 

Corollary 1. For every groupoid A , the following two 

conditions are equivalent: 

(i) A € ^OL n & for every two proper subvarie-

ties *t% 7 & of tj- 8 U C n tnQ* ^ *s t n e only variety 

containing both W, and $r ; 

(ii) A is a commutative semigroup satisfying 

xx. of sm xnf . 

Corollary 2. Denote by E the set of all V -equa­

tions e such that Ctrt(e) is an upper semicomplement in 

£ . Then 

C<n,(E) -* Cm({&x.nj>, #>«£,>9<xn4*,<ifrX.>,<xty.z/x.<ty?c>}) • 

Let L be an arbitrary lattice. An element a c L 
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is called definable in L if there exists a formula <p 

of the first-order predicate calculus such that 

(i) g> contains only logical symbols, variables and 

the two function symbols A and v $ 

(ii) <p has exactly one free variable; 

(iii) a satisfies <p in L and no other element 

of L satisfies p -

Any lattice L has at most countably many definable 

elements* The set of all definable elements of L is a 

sublattice of L . Every definable element is a fix-point 

of any automorphism of L . 

If L has the greatest and the smallest element, 

then they are evidently both definable in L . A less tri­

vial example is the supremum of all atoms in a complete 

atomic lattice L . Hence, the variety of all semigroups 

satisfying xtyzwr *s xsc tyitr (see f3J) is a definable 

element in the lattice of all semigroup varieties. Unfor­

tunately, the supremum of the set of all atoms in Xp is 

just the greatest element of £v (see Cl] or f5-J). How­

ever, the theorem gives us 

Corollary 3« Xv has definable elements diffe­

rent from the greatest and the smallest elements. 

CmC«xx.(^rxsy,>f Cx^iy-*), <*x/̂ ..fc, *x.ry,x> I ) is a de­

finable element. 

The infimum of the set of all upper semicomplements 

is a definable element. It follows from Theorems 1 and 2 

of C6J that if A is an arbitrary type containing at 

least one at least binary function symbol, then the infi-

mum is a definable element in &A , different from the 
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extreme elements. It could be interesting to find this 

variety. 

Problem. Find and describe other varieties of grou-

poids that are definable elements of Xr . Are the im­

portant varieties (the variety of semigroups, commutati­

ve groupoids, commutative semigroups, idempotent grou-

poids, semilattices,...) definable in &v ? Denote 

by A the type consisting of one binary, one unary and 

one miliary function symbol. Is the variety of groups de­

finable in <£„ ? 
A 

The problem stated in 161 remains open. 
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