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Commentationes Mathematicae Universitatis Carolinae

12,3 (1971)

UPPER SEMICOMPLEMENTS AND A DEFINABLE ELEMENT IN THE
LATTICE OF GROUPOID VARIETIES

Jaroslav JEZEK, Praha

The variety of semigroups is not generated by any
finite number of its proper subvarieties (see Dean and
Evans [2)). An analogous statement holds for the latti-
ces of varieties of groups, lattices, loops and commuta-
tive semigroups (see Evans [3] for the summary and bibli-
ography). It is proved in [6] that this property is not
shared by the variety of all universal algebras of a gi-
ven type 4 containing at least one at least binary
function symbol: there are found in the lattice .‘CA of
varieties of algebras of type 4 some upper semicom-
plements different from the greatest element Y of z‘, .
In the present paper we shall restrict ourselves to the

case of the lattice & of groupoid varieties and in-

r
vestigate upper semicomplements in £, .

In § 2 the infimum of the set of all upper semicom-
plements in &,  is found: it is just the variety of
commutative semigroups satisfying .x"./’, = X.n . This
variety is thus a definable element in & .

To prove the result, we must find some further upper
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semicomplements in o‘Cr. . These are found in § 1.
For the terminology and notation see [6] and § 1 of
[4].

§ 1. Some upper semicomplements in .fr,

We denote by T the type of groupoids, i.e. the
type ccnsisting of a single binary function symbol. The
terminology given in [4] and [6] can be specialized to
the case 4 = " ; e.g. Wr denotes the free groupoid
freely generated by X , I' -equations are called equa-
tions throughout the paper, etc. If &« and o~ are two
elements of Wr , then the value of the fundamental bi-
nary operation of W,. , applied to 4 and o , is de-
noted by 4.2 or only wv, We write wv. w in-
stead of (w., v ). w, etc.

For every t € Wf, we define two elements € and
T of W, inthisway: if te X , thent = T et
iftmt .t ,then¥ =t and T =t .

For every t ¢ W, we define elements g (¢} ,
(£),6(t),... of Wy in this way: 6 (t)=tt.t ;

A
6y, () = (6, (). 6, (t)). 6, (t) .

+1
Let us fix two different variables (i.e. elements of

X ) and denote them by x, and 4, . Put
e, = <(x, "o" X 8, %oty Y 5 €g = (X0 Xy X,) Xp, %o Xy 2 5
S m (k%o Xy, X, X > 3 €2 = g XXy, Xy X,
Let ¢ be any of the four equations e,, ez, e ana
eﬁ , It will be useful to notice that the following (tri-
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vial) assertion holds: whenever ., sy,

are elements of Wr' such that agay is a leap-con-

and arz

sequence of Ay Ak by means of e , then no one of the

three cases

(i) Moy by = 0y

(ii) My = and either w, € I(‘,e (4)5_) or a; €
[} IC‘(«.z) 5

(iii) s, = o and either w € lCe (nq ) or A
3 ]Ce (u,) can take place.

Let e be an arbitrary T -equation. We call an e -

proof "t ..., t, " regular if either ¢, e LC, (t; )

itq
g E€LC (t))

for all leaps 4 in "t.,.., t,7 . Evidently, if en ¢ -

proof has at most one leap, then it is regular.

H : r, -1
for all leaps 4 in t“ ey ty or t_;

Lemma 1. Let a, & € W, and e +<a, &> . Then
there exists a regular e1 -proof of & from a .,
Proof. Let r-w1,.,,, .u,,,;‘ be an e, -proof of &
from @ with a minimal number of leaps. Suppose that it
is not regular. Evidently, it has two leaps < and 4.
(4 < 4) such that there is no leap greater than <
and smaller than 4 (we say that 4 and £ are two
neighbouring leaps) and such that either
mym (s, a)fbw, =af&ku =yl u?.ﬁs:Cg*r.r)d'
or
b= P&, = (o, L)fd& y =7y r)Seu, - Y -l
for some «, (3,7, e W, . Ifi+4m= 4, then « =

=y and B d, so that Tu ... w,, «

-
4 ’A’_,,oa:,“

m
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is an e, -proof of £# from @ which has a smaller num-
ber of leaps than M ,..., 4«4, ' , & contradiction. Let

4+1< 4 . In the first case

T, u,‘-’,((ﬂhz.x)x)ﬁ,”.,((fﬁ.ac)ac)/s ,

qreees
(. &, %), Wiy a0,
((&;- )tu)p,...,c(t L%, (k.X )u,*)z yoros
((:(-_", .ui)t‘)zi, Mg a,,’
and in the second case
r

-] -
lb1,--:,4(¢‘-" w4+2. »v'rﬁ"“’f -4.0 '“’4-2"""“’”»

is an e, -proof of & from @ and it has a smaller
number of leaps than ';4,1, .
Leuma 2. Let a,,a,, &, &, € WT, . Then

e ~<a,a,,; & > if and only if e, <a,,% ) and one

= a3
<y A, 4 8 contradiction.

of the following three cases takes place:

(1) e —<a, 4 ;

P > .

(ii) e (a,q,ﬁ;b(&;)) for some m 2 1 ;

(iii) eql-<li(',6’“(a,17) for some m = 1 .

Proof follows easily from Lemma 1.

Lemma 3. For every t e W, denote by @, the
endomorphism of Wr' assigning ¢ to every variable. Let
xe€X,aeW, and aw € T (x); let w % X . Then
le,e,3~<a, @ (w)? does not hold.

Proof by the induction on @ . Everything is evident
if & € X . Let a ¢ X and suppose {e,,@iF<a, g, (w)>.
Evidently, there exists a finite sequence w7, , &, such
thet wy = &, wp = x end wj,, = Zr: for every

(2%
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i = 4,..,m -1, We have evidentlyde,,e,} (&, q, (u3)7;
from this {eﬂezl b= (g, %,(wé) > etc; finally,
{e,e, 3 <&, @ (w,)) =<&, a> for some & & 5@,
so that {e,e, i (&, @, (wr))> , a contradiction with
the induction assumption.

Lemma 4. Let a,& ¢ W, and e, (a, &2 . Then the-
re exists an e, -proof of & from @ which has at most
one leap.

Proof. Let "'4.4_4,,,,, ,u,”:' be an e, -proof of 2 from
@ Wwith a minimal number of leaps. Suppose that it has
at least two leaps. Then it has twc neighbouring leaps <
and 4 (4 < 4), Four cases are possible:

(1) There exist «,f3 € Wr' such that
My (coooc)oc by = oo & wy ’(ﬂ'ﬁﬁ)ﬁ&‘“’iﬂ =33 ;
then e, <, 3.83> and e, ~<x,B ), so that
e,—<p,3.8B3> , acontradiction with Lemma 3.

(2) There exist «, 3e W, such that
My = o by, = ()& wg = 3% uéﬂzfp.ﬁﬂ)ﬂ 5
then e, <, x. xet) , a contradiction.

(3) and (4) The remaining two cases give a contradic-

tion similarly as in the proof of Lemma 1.

Lemma 5. Let a,,a,, &, , &, ¢ W, . Then
e,—<a,a,, & &, > if and only if e, <a,, 4 >

and one of the following three cases takes place:

(1) e, <a, b >,
(1) e +~<a,a,> and e-<4,2,.2 >

(iii) e, <4 , &, and e, —~<a, 4.4 & >.
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Prcof follows easily from Lemma 4.

Lemma 6. Let o, 3 e W, . Then neither
fe,,e,}-Cxcax.c,8.88> norie e ir<ax.x,33)
takes place.

Proof. Suppose on the contrary that there exist ele-
- r, -

ments «, B € Wv and an {01,227 proof "a, ..., 4,
such that the following holds: M =K., & either
Uy = 3.33 or &4, = (3/3 ; whenever 7, de W,
end M, ..., 7," is an {e , e} -proof of either
d. & or SIS from 9 y.y , then m &« m , This
yerey u,,: has leaps, for if it had not, then in ca-

~
oy

se u, = (3.83  we would have {e,,e,i - Cacx,3? and
te,e, 1 (<, B, 80 that {e,e, i Cx, xex . xx >
and in case «, = (33 we would have {fe e, § <{xex, 37
and {e,e,} (e, B>, 80 that {e,e jr(x,xx?, a
contradiction with Lemma 3. Let 4 Dbe the first leap in
Takyyonny A

If w = an.x)n & Myyg = KA for some A, 4 €

r - - . _

€W, , then "I, %, ..., % is an fe, e} -proof
of ®xx from xir.n , and £ < m gives a contradic-
tion.

If uy=(n.Kndrn & w;,, = 1 , then
(e,,eﬂl-—(xoc,/z../u\c) and {e e+ <x,£> , 80 that
{e,,e,} (e, coc) , a contradiction with Leuma 3.

If wy=nrduy, =Cr.ir)r, then
{e,e,i—<x,xac)> , a contradiction.

_Let us call a leap £ in ':oq,...,u,: a x» -leap

if there exist x,» & W, 8uch that «, =xsr & sy, =
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=(an.2) s . We have proved that 4 is a » ~leap.
Suppose that every leap in '-441,..., w, is a % -
leap. Then {e,,e,}-<f, 6, (xc)> for some m =1;
in case wu, = 3.3 we have further

{9.1,9,23!— {x,33) , so that {31,0.130-(oc,e,;,(ccac).e,;_(oca>>,
a contradiction; in case «, = 33 we have
le,,e,3-Cx, 3> , s0 that {e,e,}F<x,€, (xx)>,

a contradiction again. This proves that '—u,,
two neighbouring leaps 7 and & (j < &) such that k

yrery Ay has

is not a s -leap and Z is a x -leap. There exist a ,

Ve Wn such that ué=-a.£r&.¢1-“-(a.a.a,)b.

Suppose «, = (cc,c)d & u, , = cd  for some ¢,

de Wr‘ . Then
- -
r - b |
gyoony i, 4%.4_2.7’;‘2,...,’&'1. Dy s Apnr s m

is an {eq,ezi -proof, a contradiction with the minimal

~
property of Ay y

-
sy “”l- .

Suppose w, = (c.cc)c&uxﬂ.-.-cc . Then
r e = s

Wfpg ey oy is an f{e ,e,} -proof of c.cc from

aa.a , a contradiction with the minimal property of
r -
ygyroey Moy

The case u, =cc & ,u,*_Hz(c.cc)é remains.
T

- .
q1000y 4g is an {fe e, i -proof of cc  from ccec. e

again a contradiction with the minimal property of

’
-
Mgy ooy Mg '

Lemma 7. Cm (e)) v, Cm (e,) = L, .
Proof. Let us prove the following assertion by in-

duction on a : whenever a, e W,

by & <a, &) and
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e,~Sa, &) , then a = & . This is evident if a e

€ X. Let ama a, .

Evidently, & ¢ X ; put & = lg ‘; . We get a, = .bz- ea-
8ily from the induction assumption, so that it is enough
to prove a, = l.g, .

Let e, ~ (a,1,.tf;, > . By Lemma 5, the following three
cases are the only possible ones:

(1) e, (a,“ ,b;‘) . Then we get e, = ,04' from
the induction assumption.

(2) ¢+<a,a ke, —<l;,a,.a a > . As
{e,,e,}~<a,a .2 a >, we get a contradiction with
Lemma 3.

(3) e <& by Y& e, <a, &, . &; &, > . Again,
le,e, 3 —<4,,4, .4 & >, a contradiction.

Let e, <a,,6,(4)> for some m = 1 ., (1), (2)
and (3) are again the only possible cases. In cases (1)
and (2) we get a contradiction with Lemma 3. In case (3)
we get a contradiction with Lemma 6 and the definition
of €,
By Lemma 5, the case e, <4, 6, (a,q) > re-

mains. This case is similar to e, ~ <a, €, L)) .
Lemma 8. If o e W, , then e'~<a,aa) does
not hold.
Proof by induction on a . It is evident if a e X .

Let a =a,a and suppose e~ {a,aa ) . Evident-

2
ly, ¢'~<a,, @), so that &'~ <a,,a,a,> which con-
tradicts to the induction assumption.

Lemma 9. Let a, & ¢ W, and €'+~ <a, &> . Then
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there exists an e’ -proof of & from a@ which has
at most one leap.

Proof. Let '14,4,,.,, A, '  be an e! -proof of &
from a with a minimal number of leaps. Suppose that it
has at least two leaps, so that it has two neighbouring
leaps ©+ and 4 (< < 4) . There are four cases:

1) uy=zxxbw, = oo, ok & uy = BR&us = f3./3
for some «,B € W, . Then d—<aax,> and
e—<x,A>, so that &'+ {x,x x> , a contradiction
with Lemma 8.

(2) ay=odox. e &, = ocac&u.’-_ =0383.8% ipy =343.
We can get a contradiction similarly as in the preceding

case.

3 uy=xx & wy mxx n& g, =3.B&u;,, =/0373.

Then

- - - — -
Wy orny 4455 ,2,“2. Cyury g o, P 20 A 20 SN
is an &' -proof of & from a which hes a smaller num-

ber of leaps than "Awq, viey 4, ' , @& contradiction.

(4) ;= cx b, maxbuy=BlRus, =B

Then
— ~

Tl yoony Mgy Ay o &y ey Moo Oy Moy o Ay o yonny Mg o By gy g oonp Ay
is an e" -proof of & from @ which has a smaller num-
ber of leaps, a contradiction again.

Lemma 10. Let a,,@,, %, &, € W, . Then
1 . . 1
e+~ <aa,, & > if and only if &€+ a,,&, > and one
of the following three cases takes place:

: 1
(i) e+ <a,, &,
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(1) &'—<&;, 4> and &+ <a,, b2, );
220 1 1
(iii) e'~<a,a,? and e +~<&,a . a 7.

Proof follows easily from Lemma 9.

Lemma 11. Let a,, @, , &, &, ¢ W, . Then
2 : s
e +<aa,,l L) if and only if ezl—<a—4,£;>

and one of the following three cases takes place:
(i) ezb—<a,£,abi> 3
s 2 2
(ii)  e*+ <&, L) and e'+<a,, 4, b, ;
2 2
(iii) e+ <a,,a,? and e'~<4,a,a,> .
Proof is similar to that of Lemma 10.
Lemma 12. Let a, & ¢ W, . If -(e",e’!l—(@a,bb),
then {e'e?ir<a, &), too.

Proof. Suppose that it is not true. There exists an

‘feq, e?? -proof '—u‘,,..,, .«m—' such that the following

holds: there exist «, 3 € W,, satisfying “y = o
and w«, = (33 and not satisfying {e", i<, B);
whenever "a ..., v, " is an {e’, e*# -proof with a si-
milar property, then m £ m . Choose such a minimal
Tyyeiy a4, and put 4 maa and w, = &4, Sup-
pose u, = cc for some 4 such that 2 44 £ m -1 .,
As "w,..., 4w is an {e!, e*f-proof of cc  from aa
and i < m , we have {¢’,e?}<a,cd ; as '_u‘.‘,,,., sy
is an {e', €¥? -proof of &4~ from cc and m-i + 1<
< m , we have {¢' e?} (&, c ) . Consequently,

-(e“, e%t~<a, &), a contradiction. From this we infer that

no numbers other than 4 and m -1 can be leaps in

r = r -
Ayyioey Moy o If iy ooy by had at most one
- 574 -
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. - - - o i |
leap, then either 2,,...,!2” or "&,..., @, would

be an fe’,ezf -proof of & from a ; hence, the num-
bers 1 and m - 1 are leaps. We have either “u, =
=ea.a oOoru=a.2a., It is sufficient to consider

the case «, =aa.a . If it were &, = &4, & , then

2
FE:,..., 2”‘-' would be an {e’, e2? -proof of £ from
a . We get w, , = & L& , Evidently,
& <, 7 is an {e’ e?f -proof of L4 from

Mogysoey Mo,
@ and rt;,..., %7 isan {e, e’ -proof of &
from aa . As {64,e2? —{&l,a,ad, we get
{e,e?t~<a, &), a contradiction.

Lemma 13. If a € W, , then {&/,e*iF <a,aa>
does not hold.

Proof by induction on a , It is evident if a € X .

Let @ = @ a, and suppose {e",ez? ~<a,aa) . Let

12
"4, y000, 44,1 be an arbitrary {e' &'t -proof of @ from
aa .
Suppose that '_44.1 g eees u,,:' has a leap. Denote by fe
its last leap. If it were Wp,q= CC for some ¢ €

€ W, , then we would get {e}e?i~<(a,,c) ; as

iel,e?i~<aa,cc), Lemma 12 givésie’ e} (a,e),
1.2 1 2

hence, {e’, e’} - <a,,a > , 80 that 4e,e*1+<a,, 2 a, >,

a contradiction with the induction hypothesis. This pro-

ves a, =cc for some ¢ and either Mgesqg = CCL C

or u,, ,=c.cc . Again, from &e", ezh—mw,cc} follows

by Lemma 12 {e’, e??+~ <a,c) . In case Mhy,mCC.C we

have {e’,e?irCc,a,> , so that {e’,e’t-(a,a,> and

consequently {e’,e?} <a,,a,a,> , a contradiction
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with the induction hypothesis; in case u,,, = ¢-¢c  simi-
larly {af, e?1 < a,,a a, >, a contradiction again,

We have proved that ", ,..., «, " has no leaps.
%Z,..,%,  isan {é', e*f -proof of o, from a ,so
that 4 04, el (a,”a,‘ ?,),a contradiction with the induc-
tion hypothesis.

Lemma 14. Cm (') v, Cn (e?) = L -

Proof. We shall prove by induction on a the follow-
ing:whenever &'~ (a, 4> and e’k <a,#&) , then a = £ .
This is evident if o € X . Let a = o, q,, e-<a, b,
e'<a, ) anda f, Evidently, & é X ; put L= £ & .
We have &' - {a,, 4> and &~ {a,, 4, > ; it is sufficient
to prove & <a,, &, ) and etk <a,, &; > . Suppose on the
contrary e.g. that e'|— <a,,%, > does not hold. We have
either e’#(@,%)&e’l—— <a,, &; &> or e’r—<¢1,az>&
& e (%,a,a,> by Lemma 10. Evidently, {e’,e’?l-(a,,,a,,a,,7
in both cases, a contradiction with Lemma 13,

Lemma 15.Let X and 4 be two different variables.
Then every minimal (XX.4 ,X. x> -proof is regular.

Proof. Put e = (xX.4, X.4 x) . We shall prove by in-
duction on m that every minimal e -proof ‘74.‘,,..., ' is
regular. This is evident if m = 1. Let m > 41 . Suppose
that ':4.4,..., f-l;,? is not regular, so that it has two neigh-
bouring leaps < and 4 (2 < Z) such that one of the
following two cases takes place:

(1) uyma.rasu, =aa.brkuy,=cc.dbu, =c.de
for some a,f,c,d € W, . We have e (aa,cc) , so that

LCaa)= L(cc) and thus L(a)w= L(c), The e -proof
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r411+4,...,w5' of cc from aa is minimal if we lea-

ve out its members %, such that &, = %, _, ; by the

induction assumption it follows easily from £ (o) = £(c)

that "ﬁ,:“ yeres u, has no leaps. Consequently,
2 2 -
1,.“,“ E. 'H'?. g&*z),.,., “r?-’: (227..“" ’, ““"2"“’ ALy,

is an e -proof of «,  from “ ,a contradiction with the

minimality of ",

(2) w=aa.bbu =a. b‘a.&u--c dc&a.'M-cc.d.

for some a,&;c¢,d e W, . We have e~ <a,c > and

e~<Cla,dec) , 80 that £(a)= £(c) and L(La)= L(de);

yere s Ay !

we infer £(4&) = £(d). Similarly as in the previous

case, iz, 2. has no leaps and

X4q?°00 1
(ﬁ' i ). ‘T‘L_’ VAl pgreees Al |

is a shorter proof of «, from «, , a contradiction.

Lemma 16. Let x and o be two different variables.

-
r =
Ay goney Ay (142*2. 4.9‘“).““1,...,

Then
Cm (K xX .o, %o g X D) vy Lo (Ko (XX o), (XX %0.x2) = Ly,

Proof. Put e= (xX.4, X. 4 x> and €= <(x.(xx.x),

(xx.,x).x>, Let a,breW,, e <a,&> and € -Ca,&).
Suppose that a minimal e -proof of & from o has leaps.
Using Lemma 15, there exists a natural number m =24 such
that either £(5)=2", £(%) or £(F)= 2™ £(%).
By Lemma 1 of [6], a minimal € -proof of & from a has
at most one leap. If it has a leap, we have either £L(¥)=
= 3.0(%) or ()= 3. 2(T) ; if it has not, we have
L(E) = £(%) . This gives a contradiction in each

case, as neither 2"=3 nor 2™ = % nor 2" = 1 .
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We have proved that a minimal e -proof of & from
a has no leaps. This impliea AL(&) = L(%) and a mi-
nimal & -proof of & from o has no leaps, too. If we
had proved the equality by induction on @ , we should get
% =% ad @ = F ,e0that a = & .

Lemma 17. Let x and 4 be two different variables;
put e = <x.gx, xg4.x>. Then every minimal e -proof
has at moest one leap.

Proof. We shall prove by induction on m that every
minimal e -proof "u‘,,..., 44«,,;' has at most one leap.
This is evident if m = 1. Let m >4 and suppose that
e minimal e -proof "u,,..., 4, has at least two leaps.
It has two neighbouring leaps < and 4 (4 < 4) ; one
of the following four cases takes place:

Q) uy = a.,Jlm,&u,;“-a,b'.a‘&w,-_- e.de 45‘.«.«.'.4‘1 =cd.c
for some a,f,c,d 6 Wo . We have el <a £r,c> and

e <a,de>, 80 that £(at) = L(c) and £(a) = £(dc)
and consequently £(a#) < £(a) , which is impossible.

(2) w;sdlo'.w&%*1- alaku,=cd.chku;,, =c.de;

a contradiction can be derived similarly.

(3) “y= a,.ma‘w,‘“-a.lr.a«&u’--cd.aa Mhfy = C.de .
We have L(adr) = £Ccd) and L(a) = L(c) and conde-
quently £L(4) = £(d#, too. By the induction hypothesis,
this implies that ft;¢4w'w 257 has no leaps, so that
qu:n"“;.’;;;‘(izzn'zqﬁzh‘"’ §ii.(§§;. D), gy g ey A
is a shorter ¢ =preof of «, from «, , a contradiction.

(4) “w= alb.aku, = &-.&a&w;- a.dcku‘“'-' cd.c

we can get a contradiction similarly.
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Lemma 18. Let x and 4 be two different variables.

Then
Cn ({x ., tagp.x2) v, Cn (Ko (xx0 xx), (XX XX xd)=t, .
Proof. Put e = {x. g%, xg.x > and & = (x.(xx.xx),
(XX.xx). x> . We prove the following by induction on
a : whenever e~<Sa, &) &and € <a,&’, then a =
= A& . This is evident if o e X . Let o =a 4, ,
er<a,&) and & (a, &) . Evidently, & & X ; put
'_ r, =1 P -
=& &y . Let "w,..., «,' be aminimal & -proof of
Vg from @ , By Lemma 1 of [6] it has at most one leap.
Suppose that . ,..., 4, has exactly one leap 4 .
It is sufficient to consider only the case
sy = . (ococ.ccow) & 4, = (. o). oo for some x e
€ W, . As f(xa)= L(xcx), the & -proof "k .., %7
has no leaps. Hence, - 3(&1)= 4.2(@1), 4 ¢ X and
- — - - S
L) = 2.4(a,) = 208). Let "w,..., vy, be a mini-
mal e -proof of & from o .As £(a,) < £(4),
T,..., %, has leaps; by Lemma 17, it has exactly
one leap j ; evidently, there exist f3, 7€ Wr such

that = B.yPkay,, =pBy.A. A " F "
is (after leaving its members "1);' such that ¥ = %, )
a minimal e -proof, it has at most one leap; aa £(3) =
= £(a,) and 1(2)= 2. £(a,), it has exactly one leap &
and there exist € and J° such that ""i, =0.ed" & fu‘—‘”z
= de.d . VWe get L(F )= L()=L(B) = L(a)), a contra-
diction with £(%) = 2. 4(a,) .

We have proved that ru1,,., , 4,  has no leaps
and consequently ¢& | (a,1,,¢§ > and € <a‘zr ,&2' >. As
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Ala,) = l(lq), a minimal e -proof of £ from 4 has
no leaps, too, so that e!—(a.q,lq) and e + <a.2,1r5_> -
The induction assumption gives a, = & and w,_:!fz , 80
that a = & .

Lemma 19. Let x, 4 and z be three different vari-
ables; put e = ¢ ((x.xg)z)z, X (x(yz.2))) .Then every
minimal e -proof has at most one leap.

Proof+ We prove by induction on m for every mini-
mal ¢ -proof '_u.,, ,...,44.”:' that it has at most one leap.
The case m = 4/ is evident; let m > 41 and suppose
that '—,u,4,.,,, «4,' has at least two leaps. It has two
neighbouring leaps < and # (£ < 4); one of the follo-
wing four cases takes place:

(1) M, = (a.alb)c)e &4.:24_4: a(a(bec.c)) & “y =

= ((@.@Q)Ib)m&w’.ﬂ =p(n(Qn.n)) for some a,tb,c, 2,9,
n €W, . We have
Lia)=LUp.glr) >Lr)= L(a (fec.c)) > £(a) ,
a contradiction.

(2) u;,sa,(a.(frc.c))&uw= ((w.ab')c)c&%=ﬂ(ﬂ(g;,,,f,)) &

&ua;ﬂ=((nr41,g)m)zc ; we get a contradiction similarly.

(3) sy = (a.allelc&ku, =albc.cl&u; =

=npin@r.n) &uy = (. £72¢2)x . We have £L(a) =
= L(p) and Lla(fe.c)) =L(p(qr.x)), so that L(Le.c)=
= 27

=£(Q»./&). As the e -proof '«

g1t s Ay is (after

leaving out some members) minimal, it has no leaps by the
induction assumption. Hence, '-Z:;M, s i%%" is an e -
proof and it is minimal if we leave out some members; as

LWe) > L(c) and L(qr) > £(x) , it has no leaps.
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We get L(tc)=L(gnr) and L(c) = £L(x) , 8o that
L(Lr) = £(g) , too. Again, the e -proof

3 = 4 i
A ?} has no leaps. Evidently,
=4
r -5 =t =
Mfyorey iy, ((E&+2‘(“4+z' 1’4-2»'“&..2)' @ preen

=2
= 5 7
T CELBEN TR gy ity

is a shorter e -proof of «, from 4« , a contradiction.
(4) The last case is similar to the previous one.
Lemma 20. Letx,qy and z be three different variab-
les. Then
Cn (KU x.xgy)z)z, x (X (gz.2)))) v, Cn(Cx.xx, XX, D)= L, .
Proof. Put e =<((x.xg)zx)z, x(x(yz.2)))>
and T = (X.XX,XxX.x > .We prove by induction on a : when-
ever e—-Sa, &) and € - <a,4 >, then a = & , Thie is
evident if a € X . Llet a =, q,, e (a2, &> and
€+ <a, r) . Evidently, & ¢ X ; put & = lq,?rz . Let
r-u;‘,.,., w”:’ be a minimal € -proof of & from q .By
Lemma 1 of [6], it has at most one leap. Suppose that it
has exactly one leap 4 . It ia sufficient to derive a con-
tradiction in the case 4, =x.xx &k u, = cox.x
for some oc € W, . We have £(& )= 2.1(%) ., Hence, using
Lemma 19, & minimal e -proof of & from @ has exactly
one leap, too, and for some (3, 7, e W,
28)=RUB.By)S) >2.8(3)=2.£(a,) , a contradiction.
We have proved that ruq,,.., 4, has no leaps. We
get € <a,, 4> and T+<a,, ¥, ), a0 that L(a) =
= 2(4&) and a minimal e -preof of £ from @ has

no leaps, too. This implies e — (a,,!r;' > and
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ek<a,, ,) ; by the induction assumption a, =

2>

=&, enda =214,

.Lemma 21. Let X, and 2 be three different va-

g0 that a = & .

riables; let e be any of the following eight equations:
CCx XXy, XD s Cyplx.xx),gxd; XX x,xx) ;
XXX, XX Dy CXXoqf, Xotp XD ; Cape XX, XYo XD 5 {Xop X, Xpo XD 5
Cx.xyg)z)z, x(x(yz.2))) .
Then Cm (e) is an upper semicomplement in £, -

Proof follows from Lemmas 7, 14, 16, 18 and 20 and

their duals.

§ 2. The infimum of the set of all upper semicomple-

ments in £,
Lemma 22. Let x € X, w € W, and w 4+ X . Then
Cm ({x,wr)>) is not an upper semicomplement in £, .

Proof. Suppose on the contrary that there exists a

non-trivial equation <a, &) such that Cn (K x, %) v,
A na, &) = tn - By Theorem 2 of [6], x is the
only variable that is-a subword of w-; i.e. w € T (x). As
w # X, there exist w,n e T, (x) such that w=wuv.
For every two elements «,» of W, define x[ 4] by
n[»1=@(r) where @ is the endomorphism of Wr' , as-
signing A to each variable. The equation
e=Sulwlall.viwltll,wluwlal. »[L]]1)> is evid-
ently non-trivial and we have both (x,w > }— e and
{a,&)e , a contradiction.

Lemma 23. Let x,4 and Z be three different variab-
les. If a, & € W, , then
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Ca, ) eln (i<xx.q,xyd{xy,yx>, (x4g.2,x.q4.2>%)
if and only if X n S(@a?=XnS(g&) and either a = & or
a¢e¢X& &e¢eX.

Proof is easy.

Theorem. The infimum in :ﬂr of all upper semicom-
plements in éCT, is just C(m (£<{xX.q,xy2>,
<xy,yx>, <x¢.z, x.q422}%) (where x, % and =
are three different variables).

Proof. Denote the infimum by E . ( E is a fully in-
variant congruence relation of WT, .) By Lemma 21 we ha-
ve (n(i{x%.q,xy’, (xy,yx?,{xy.2,x.42>3) < E .
The converse inclusion follows easily (some care is ne-
cessary) from Theorem 2 of [6]1 and Lemmas 22 and 23.

Denote by ‘g, the variety of all groupoids. We re-
formulate the theorem two times:

Corollary 1. For every groupoid A , the following two
conditions are equivalent:

(i) AeNn b for every two proper subvarie-
ties ¥, of § such that § is the only variety
containing both ¢ and & ;

(ii) A is a commutative semigroup satisfying
XX,y = xny .

Corollary 2. Denote by E  the set of all T -equa-
tions e such that Cm (e) is an upper semicomplement in
a‘fr, . Then

Cn (E) = Cn ({&x.ng, xag. Y, <xng, g X 2, X Y. 2, Xy xD3) .

Let I. be an arbitrary lattice. An element a € L
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is called definable in L if there exists a formula @
of the first-order predicate calculus such that

(i) ¢ contains only logical symbols, variables and
the two function symbols A and v ;

(ii) @ has exactly one free variable;

(iii) o satisfies ¢ in L and no other element
of I satisfies ¢ .

Any lattice I, has at most countably many definable
elements. The set of all definable elements of I, is a
sublattice of L . Every definable element is a fix-point
of any automorpt;ism of L .

If 1. has the greatest and the smallest element,
then they are evidently both definable in L .A less tri-
vial example is the supremum of all atoms in a complete
atomic lattice I , Hence, the variety of all semigroups
satisfying x4y zw = xx yw  (see [3]) is a definable
element in the lattice of all semigroup varieties. Unfor-
tunately, the supremum of the set of all atoms in x,. is
just the greatest element of 8,., (see [1] or [5]). How-
ever, the theorem giv?s us

Corollary 3. x!‘ has definable elements diffe-
rent from the greatest and the smallest elements.

Cn Uxx.y, x>, <xap, x>, Sxy. 2, x.p2>3) is a de-
finable element.

The infim;zm of the set of all upper semicomplements
is a definable element. It follows from Theorems 1 and 2
of [6] that if 4 is an arbitrary type containing at
least one at least binary function symbol, then the infi-
mum is a definable element in :CA , Qifferent from the
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extreme elements. It could be interesting to find this
variety.

Problem. Find and describe other varieties of grou-
poids that are definable elements of &, . Are the im-
portant varieties (the variety of semigroups, commutati-
ve groupoids, commutative semigroups, idempotent grou-
poids, semilattices,...) definable in &£, ? Denote
by 4 the type consisting of one binary, one unary and
one nullary function symbol. Is the variety of groups de-
finable in &£, ?

The problem stated in [6] remains open.
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