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Commentationes Mathematicae Universitatis Carolinae

12,3 (1971)

THE EXISTENCE OF UPPER SEMICOMPLEMENTS IN LATTICES OF
PRIMITIVE CLASSES

Jaroslav JEZEK, Praha

Consider a type 4 of universal algebras, contain-
ing at least one at least binary function symbol. A.D.
Bolbot [1] asks: is the variety of all 4 -algebras
generated by a finite number of its proper subvarieties?
It follows from Theorem 1 below that the answer is posi-
tive.

Results of [1l] are essentially stronger than Theo-
rems 3 and 4 of my paper [3].

§§ 1 and 2 contain some auxiliary definitions and
lemmas. § 3 brings the main result. In § 4 we prove four
rather trivial theorems that give some more information.
Theorem 5 states that the answer to Bolbot’s question
is negative, if minimal subvarieties are considered in-

stead of proper subvarieties.

§ 1. E -proofs, reduced length and (x, 4 ) -
equations

For the terminology and notation see § 1 of [2].

Let a type 4 = (mi )i‘ 1 be fixed thfoughout this

paper.
AMS, Primary 08A15, 08A25 Ref. 2. 2.725.2
Secondary -~
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In auxiliary considerations we shall often make use
of finite sequenves. The sequence formed by t ,..., t,
will be denoted by "t ,...,t,7 . The case m = 0 is
not excluded; the empty sequence is denoted by £ . If
i |

r . r
¢ =t,..,t, and @ = 4,..., 4, 8are two

finite sequences, then "t .., t, ., & ..., 4" is

denoted by 6 © @ . Evidently, 6 ®@ J= Fo 6 = 6.

6—!41’ 6«(21’ 6‘”’,,. in

If & is given, then we define
this way: 6" = ¢; ¢™*" = 60 6"?

If a A -theory E (i.e. a set of 4 -equations,
i.e. E & WA > WA ) ie given, then for every t € W,
we denote by L CE (t) the subset of W, defined in
this way: 4 e L C. (t) if and only if there exists an
endomorphism @ of WA and an equation <a,& > ¢ E
such that @(a)=t and @ (&)=«  Elements of LC_ (t)
are called leap-consequences of t by means of E .

If E 1is given, then we define a subset IC_(t)
of % for every t € W,  in this way: if either t e X
or t = £, for eome {eI, m, = 0, then IC_(t) =
= LCE (t),if t = fi::,,,..,,t“i) where m, = 1 , then
1€, (t) = LC (t) uéL‘Jﬂ {g, (t,..., té-w §rtiuqrernr t,,,‘ Y,
§ e lCE (t;)% . Elements of ICg (t) are called im-
mediate consequences of t by means of E .

By an E -proof we mean a finite, non-empty sequen-
ce "t,, ..., t, 7  of elements of W, such that for e-

very 4 = 4,...,m -1 one of the following three cases

takes place: either t;. = t;'+1 or t;- is an immediate
consequence of t; by means of E or t. is an

3+1 G4 1

- 520 -



immediate conseguence of t’- by means of E . A natu-
ral number 4 (1 £ 4 £ m - 1) is called leap

-~

in an E -proof 't,, ..., t, " if either t; €

eLC. () ort,, €LC,(t )., Ifau and o are

two elements of W, , then E -proofs r"(-,4,,.,, t,

such
that t =« and t, = v are called E -proofs of
from ., It is easy to prove that whenever E is a 4-

theory and u«, v e W, then E  {u«,a ) if and on-

?
ly if there exists an E -proof of v from « .An E -

t -

' is called minimal if every E -proof

proof rt“, ey
of t, from tq has at least m members. If € is a
4 -equation, then {<€f -proofs are called <€ -proofs.
Lemma 1. Let h eI, m 22 ;lett, wel ;
puta=1£, (t, «,t,t,.,t) and & = £, (u,t,t,t,.,6 t).
Then every minimal <a,& > -proof has at most one leap.
Proof. Let '-t“..., t,” be a minimal {a,# ) -proof;
suppose that it has at least two leaps. Evidently, this
proof has two leaps 4,& (1 & 4 % 4o =m-—-1) such
that between them there are no leaps. There exists an en-

domorphism @ of WA such that either

t o= 4,(P (1), @lac)), @(t), e, @CE) Kty =
- £ (@plu),@(t), @(t),.., p(t))
= £, (PCt), g(u), @(L),..., @Ct)) .,

There exists an endomorphism % of W, euch that ei-
ther
ty=£, (v (t), y(w), y(t),.., y(t) &t, =
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= £ (wlw), y(t), wit), .., g (L)
or on the contrary. If & = 5 + 4 , then evidently

t’- =ty in all cases, so that "t,,..., ty

tarar s o is a shorter <(a,& ) -proof of t
from t4 , 8 contradiction. Hence 4 > 4 +1 ,FoTr eve-
ry L (3 %2 & k +1) there evidently exist
'“‘r’,‘ gy res g w"‘h- 2 such that teﬂ f‘b (u"e’n:, ‘urm'b,z),

In all cases

-
taeees t’-_, f'ﬂ\-(""z,iwz’ Y’ ’w;,',,g:"-,w%.ﬂn)’

"
o B U s Yaer W e Vg i) s Bear s T

is evidently a shorter (a, £ ) -proof of t, from t ,

a contradiction.

Let us asaign to each ¢t € WA a natural number

£ (t) ,called the reduced length of t , in this way:

if either t € X or t = £, forsome i €1, m =10,
then £(t;) = 4 ; if ¢ -14(1:4,...,@,%) where m, = 1,
then L(t) = £(t )+ ... + £(t, ) .

Let a variable x be given. Denote by T, (x) the
set of all t & W, such that no £; (where m; =0 )
and no variable different from x belongs to S(t) .

( SCt) is the set of all subwords of ¢ .)

4 -equations (a,f> such that both & and &
belong to TA(x) are called (x,d) -equations. The
set of all (x,d) -equations <(a , &> satisfying

£(a) = £(&) is denoted by Ep(x) .
Lemma 2. Let x € X and ¢t & T, (x).Then
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2(@(t) = £(t)-L(p(x)) for every endomorphism
@ of W, .
Proof is easy (by the induction on t ).
Lemma 3. Let a variable X ,a 4 -theory E <
& E,(x) and two elements «,n of W, such that
Er<u,n ) begiven. Then L(w) = £(~) .
Proof. Applying Lemma 2, it is easy to prove the fol-

lowing assertion by the induction on a : whenever a €

eW, and £relC (a) , then L(a) = £2C&) .

§ 2. QOccurrences of subwords; .h -numbers
Let us call a subset A of WA admissible if
whenever wu,n~ € A &and u s 2, then 4 1is not a

subword of 2o , Let an admissible set A be given. Then
-

we assign to every ¢ e WA a finite sequence

OCCA (t) of elements of WA in this way: if either
teX ort=£ foreome i eI, m;=0, then
occ ) =7 in the case t € A and 0CC,(t) =
=0 inthecase t ¢ A ; if t "f,",ctq'“"tm&) whe-
re m; 41, then 0CC, (t) = "7 in the case t e
€A and 0CC, (t) = 0CC, (t)@...0 0CC, (¢, )
in the case t ¢ A , Evidently, O0C CA (t) is a fi-
nite sequence of elements, each of which belongs to A
and is a subword of t ; an element of A occurs in
occ, ¢t if and only if it is a subword of ¢t ,
Let two natural numbers m, m be given,
m22,Llet hel, my = 2. Then P O S L

respectively) denotes the set of all t = £, («,.., cb,,"zt%
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such thet £ (a,) = Llay)=...= Ifecm,l?hl(acl)nmolfag,)

(L) m (o Yoo m (e, )& llx) = m.L(«,) , resp.)

and L£(t)= m . Evidently, the sets h;” and h,':’,;"
are disjoint; put Ay = ,h.:;" v h":"f . Let us
call two elements of };:: similar if either they
mA m,2
both belong to ' or they both belong to %’ .
It 6€="t,..,t eand @ = "u,.,u,’ are two fi-
nite sequences of elements of h;’,“’_ , then we write
6 ﬁsa if and only if fe = £ and tz’— and & . are

F 4
similar for every 4 = 4,..., & ., Evidently, h’,’,:,, is
an admissible set.

Let an element h e 1 such that m, = 2 be
given; let t e WA . By an b -number of t we mean any
natural number m 2 2 such that no element of 4:.”: v

L J »n
v »ﬁ«‘_ v h’ V... is a subword of t , Evidently, the
set of all natural numbers that are not M -numbers of
a given element t e WA is finite. By an M -number
of a A -theory E we mean any natural number m =
Z 2 such that, for every < a,&>€ E, m isan

S -number of both @ and &

Lemma 4. Let h el, m, 2 2 , Let E Dbea fi-
nite A -theory. The set of all natural numbers that
are not H -numbers of E is finite.

Proof is evident.

If a variable x and an element /» € I such that

L = 2 is given, then we define elements .x""' .x""

? ?
- s 1m,h
x""‘, voo of W, in this way: x" x; x™ 7 2

= fh(x“'“,..., x™h ),
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Lenma 5. Let h el ,m, = 2 .Let mZ 2 be
a natural number, x € X and «,a € W, ; let

kX, ), £h(ag""“,x,x,..., )Y~ w2,

<£ (x, x™
Put m*= 2(x**) . Then
(i) for every natural number m  the sequences
OCCM‘,.. (w) and OCCA,' () have an equal
v L d
number of members;

(ii) if & # 4 , then there exists a natural num-

ber J4¢ such that Ocei,. (w) » OC(':'.M (2r)  does
"~

not hold.
Proof. We shall write (0CC_ instead of
0CCom* as /# and m* are fixed here. Put ¢ =

= <£h(ﬁ.:,.x“":x,,.,, x), £h(.x"’"", X,%,,.,,x)> . We shall
prove by the induction on 4« thet whenever 2 is an
element of W, such that € - <« ,n-?> , then (i) and
(ii) take place. If either « € X or « = £; for so-
me i eI, m =0, then 4= & and everything is
evident. Let w = £, («, ,..., p,) ,where m, =1,
By Lemma 1, it is sufficient to consider the following
two cases:

Case 1: Some € -proof of 2 from .« contains no.
leap. Then there evidently exist AN %1:
thet o = £, (v, v, ) and ek < ,v; ),... ,

119 "my

ek~ < « 2,, > . By Lemma 3 we have £ (&) =
my ) 'ﬂ-‘,

such

= £ (ar), /C(M.").- .2(0;),...,»6(““‘) - i(%‘) . Let us
prove (i). If m > £(«) , then OCCm(.u,) and

0CC,, (v) are both empty; if m < £ («) , then the

assertion follows from the induction hypothesis; it re-
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mains to consider the case m = £(w). If m;, = 1,

then 0CC,, (&) = 0CC,, (u, ) and 0CC,, (v) =

= 0CcC,, (v, ) , so that the assertion follows from the

induction hypothesis. If m, = 2 ,then 0CC_ («)

is either empty or equal to r'u,ﬂ and similarly for
0¢cC,, () ; if one of the elements « and 2~ be-

longs to Jp;* then from £(Ca,) = £(1),..., £ (4w, )=

’
= l(%‘) it follows that the other belongs to h:": ,
too. (i) is thus proved. Let us prove (ii). If w = »~,
then . = ar for some 3 (1 & 3 £ m.) ; by the
induction hypothesis there exists a number J such that
occ, (44.1-) & 0¢cC, (1};) does not hold. We have
& & ALY | because otherwise m; = my = 2 and
simultaneously L (w) = fh £ ,e(u,,') would take pla-
ce. Similarly « ¢ h”;: . From this and from the fact
that by the induction hypothesis (i) holds for «, ...
roy dhy, 5 WE BeT that 0CC, (w) &~ 0CC, (ar) does
not hold. ’

Case 2: Some ¢ -proof of 2+ from « contains ex-
actly one leap. Then evidently i = # and there exist
Yy eory U, such that v = £, (v,..., %) and
e Cu,, v, 2, e = Ku,, v, eF-<ua,1;,5>,,,,,el—<a%,%>,
Let us prove (i). If m > £ («) , then 0CC, («)
and 0CC_ (2r) are both empty; if m = £(«) ,then
0cC,, (w) = Fu' eand 0CC,, Cr) = 7, if m <
< £ (u), then the assertion follows from the induction
hypothesis. For the proof of (ii) it is sufficient to put

A = L(u); we have evidently 0CC, (w)= "u” and
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0CC, (1) = o™ "W & 7 does not hold.

Lemma 6. Let h eI, m, = 2 . Let a variable
X , an element t € T, (x), an % -number m of ¢
and an endomorphism ¢ of WA be given. If some

we hyuhkyu Mu.. . is a subword of @(t) , then
it is a subword of @ (x) .

Proof (by induction on t ). The case t = x is
evident. Let t = (¢t ,...,t, ) where m; =1.Let
o (&) 0rn, G ) € A, be a subword of @ (t) .

We have w & @ (t), a8 w=@(t)=4%; (q’(g),.,.,p(q,“,))
would imply 4 = b and « = g:»(t;,),.,,, x”‘»‘ qa(t,,,h) ’
so that by Lemma 2 easily t e }»:’”, , & contradiction.
Consequently, «r is a subword of S’Ct,'.) for some #
(1 £ 4 & rn,‘-’) ; by the induction hypothesis (we may
apply it, because m is an & -number of t; ,as well),
w is a subword of @ (x) .

Lemma 7. Let eI, m, 2 2 . Let a variable X,
an element t € T, (x), a natural number m £ £(@P(x))
and an endomorphism @ of W‘A be given. Then

£2¢t)]
0CC,m (@ C£)) = (0CC, n (@xM°

e d

for every m = 2.

Proof (by induction on t+ ). The case t = x is evi-
dent. Let t = £, (t .., t"‘;’ where m, = 4 , Write
0CC instead of 0CCym . If m; = 2, then we get
L d
@(t) ¢ h, from m & L£(p(x)) ; hence,

0CC @(t) = DCCq(-(:i)o... o occC ¢C't,,4) =

cectn, ) cece)

= 0cC gx N Mo... 0 (0CC pCx) = (0CC pan ¥

If m; =1, then 0CC @(t) = 0CL P (L) =
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Lece)]

"1 _ (oce ¢ ) .

e

Lemma 8. Let hel,m 2 2. Let xe€ X, we
€V, eand <a,t)> eE,(x) ; let m be an A -num-
ber of both @ and {4 . Then the following holds: when-
ever some ¢~ is an immediate consequence of « by
means of < a, £ ) , then OCC“:; (w) & occhz (v)
for every m .

Proof (by induction on 4 ). Write 0CC in-
stead of occb: . If either w6 X or u = £,
for some 4 & I, m; = 0 , then either o = .« or the-
re exists a finite sequence 4 ,..., <5 of elements
of 1 such that My, = =y - 4 and » =
= £¢1 “"'1 (oo f"b (w?...)) ; evidently, in all cases the
sequences 0CC () and 0CC () are both empty.
Let u = 4, (“1',,., .u,“") where m, Z 1 .

Let firstly there exista 4 (1 & j £ m,) and
a v eW, such that v = £, (a4, .0r) il U, 4bs 1, u%)
where q.; is an immediate consequence of dy by means
of Ca,4& )., By Lemma 3 we have £(u;) = £(w;).1f
m > £(w), then 0CC(«w) and (0CC (1) are both em-
pty. If m « 4 («) , then the assertion follows from
the induction hypothesis. Let m = L(«). If m; =1, then
0CC (w) = 0CC(w ) and 0CC(v) = 0CC (v ),
so that the a\ssertion follows from the induction hypo-
thesis. If m, 22 , then 0CC (&) is either empty or
equal to 'w”’ , and similarly for 0CC(+) , so that
from t(u.;-)sl(q;) we get easily QCC(w) a 0CC(v).

Let secondly there exist an endomorphism g of

- 528 -



W, such that « = @(a) and o = @ (&). In this
case we prove 0CC (w) = 0CC (a~) . Suppose on the con-
trary that this does not hold. Evidently, some element
of % is a subword of either « or 2 . By Lemma 6

we have m = L(@(x)) and by Lemma 7 we get

0CC (p(a)) = 0CC(pC8)) .

§ 3. The existence of upper semicomplements

Let us denote by La the greatest and by Y, the
smallest element of &£, . If @ and & are two ele-

ments of &A then their supremum in .‘ﬂA is denoted

s
by a Va A and their infimum by @ Ap A& . An element
a of :&A is called upper semicomplement in X, if
there exists a & e &, such that & 4 (, and
@ v =1, .
To each A-theory E there corresponds an ele-
ment in &, ; this element was denoted by Cn (E) in
[21.

Theorem 1. Let A be a type such that m, = 2

for some A & I, Let x be a variable and E a finite
set of (X, ) -equations such that whenever <a,{&>e
e E, then L(a)= £(4). Then (A (E) is an up-
per semicomplement in "A .

Proof. By Lemma 4 there exists a natural number
m 2 2 such that the number m* = £(x™®) is an

A -number of E , Put € = (£ (x, x”‘""x,x,..., x) ,

H4

%(u“'hx X, X X)), It i i
g Xy Xy Xy uan, . It ia sufficient to prove
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Cm (E) vy, Cn(e) = L, . Suppose on the contrary that

r-

there exists a /4 -equation <«,2r) such that

w4k, E-<u,»> and € <{w«,n ) .By Lemma 5

there exists a natural number # such that

OCC”,# (w) s OCC"“* (2r) does not hold. Lemma 8
¢ ) (Y

implies OCC.‘:’- (w) & 0CC,‘:4- () , a contra-

diction.

Remark. Let again 4  be such that m, = 2 for

some h el ; let x € X . By Theorem 1, Cn(E) ie an
upper semicomplement in “‘A for every finite subset

E of E,(x). ( E (x) is the set of all (x,4)-
equations <a, 4 ) such that L(a) = L&) .) Howe-
ver, if m;, 2 1 for all i el , then Cn (E, (x))

is not an upper semicomplement. This follows easily from

Lemma 7 of [3].

§ 4. Some supplements
For every t 6 W,  1let Vax (t) be the set of

all variables that are subwords of + . Let us denote by
SL, the set of all A -equations <a, &) satis-
fying %vYar (a) = Var (&), It is easy to prove that
SLA is a fully invariant congruence relation of
W, , so that SL, & &£, . Evidently, SL, # 3, -
Theorem 2. For every type A , whenever E is an
upper semicomplement in xA , then SI.«A éAE , i.e.
E 51, .
Proof. Suppose on the contrary that there exists
an equation {a ,£-> € E such that Yax(a) + Yar (L);

let e.g. Yar (o) § Yax (8); choose a variable
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zx € Var (@) \ Var (&), As E is an upper semicom-
plement, there exists an equation < c,el> such that
c#+d and Cni<a,&?) v, (n(lc,dd) = u, . There
exists a unique endomorphism @ of WA such that
@(x) =¢c for all x € X ; there exists a unique endo-
morphism 3 of W, such that @(x)=d and @ (xX)=
=¢ for all x € X N{z} . We have evidently

<a, )+ <@lal),y(a)), <c,d>r<pla),y¥(a)) and
@(a) = y(a), a contradiction.

Theorem 3. Let 4 be arbitrary. If a and &
are two elements of éfA such that a v, & = N and
@ A, A& = », , then one of them is equal to (, and
the other is equal to », .

Proof follows from Theorem 2.

Theorem 4. Let 4 be arbitrary. If @, ..., @,
(m 2 1) are elements of &, such that a v,...v, a

1A A “m
is an upper semicomplement in .‘CA , then at least one

of them is an upper semicomplement in £4 .

Proof is trivial; the corresponding assertion holds
in all lattices.

Theorem 5. Let 4 be such that m, = 4 for some
iel. Let a,,...,a, (m =41) be atoms in &, . Then
QyV, e Yy
.‘tA . Consequently, la is not the supremum of a fi-

Q,

n is not an upper asemicomplement in

nite rumber of atoms i1 &, .
Proof. By Theorem 4 it is enough to prove that no
atom is an upper semicomplement. This follows from Theo-

rem 3.
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Remark. Bolbot [1] proved (for types A4 as in Theo-
rem 1) that there exists a set A of atoms in .‘CA such

that (, is the supremum of A and Card A & &, +

+WIJ

Problem. Consider , for example, only the most impor-

tant case: ] contains a single element 4 and m; = 2.
(Algebras of type J are just groupoids.) Find all
J -equations € such that Cm (e) is an upper se-

micomplement in .‘CA .
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