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Commentationes Mathematicae Universitatis Carolinae 

12,3 (1971) 

THE EXISTENCE OF UPPER SEMICOMPLEMENTS IN LATTICES OF 

PRIMITIVE CLASSES 

Jaroslav JE2EK, Praha 

Consider a type A of universal algebras, contain­

ing at least one at least binary function symbol. A.D. 

Bolbot Cll asks: is the variety of all A -algebras 

generated by a finite number of its proper subvarieties? 

It follows from Theorem 1 below that the answer is posi­

tive. 

Results of [11 are essentially stronger than Theo­

rems 3 and 4 of my paper [33. 

§§1 and 2 contain some auxiliary definitions and 

lemmas. § 3 brings the main result. In § 4 we prove four 

rather trivial theorems that give some more information. 

Theorem 5 states that the answer to Bolbot's question 

is negative, if minimal subvarieties are considered in­

stead of proper subvarieties. 

§ 1. E -proofs- reduced length and (x, A ) -

equations 

For the terminology and notation see § 1 of f2J. 

Let a type A -» (m^ \ € l be fixed throughout this 

paper. 

AMB, Primary 08A15, 08A25 Ref. 2. 2.725.2 
Secondary -
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In auxiliary considerations we shall often make use 

of finite sequences. The sequence formed by t̂ ,..., t^ 

will be denoted by rt-, .#.„ t̂ "1 . The case en, m 0 is 

not excluded; the empty sequence is denoted by 0 . If 

9 * r%f~> *«? a*d f - ^••••>'CW1 a r e two 

f in i t e sequences, then rtit...9 t ^ f ^ ,,•*•, /̂mf1 i s 

denoted by 6 Q f . Evidently, ^ m 0 M 0 o e ^ 6 . 

If 6 i s given, then we define Gci* , e r m , eC M , , , . in 

this way: 0C" -* &, €C"+" - * © * " * 3 . 

If a J -theory £ ( i . e . a set of A -equations, 

i . e . E £ V» x VA ) i a given, then for every i e 1^ 

we denote by L C g ( t ) the subset of WA defined in 

this way: AJU e L C- ( t ) i f and only i f there exists an 

endomorphism p of WA and an equation < a , i r > e £ 

such that p Ca,) ** t and y C 4r) m w . Elements of L Cg ( t ) 

are called leap-consequences of t by means of £ . 

If £ i s given, then we define a subset IC£ Ct) 

of W* for every t € W* in this way: i f either t € X 

or t • f * for some i e I , /rt. ** 0 4 then IC- Ct) m 

•r L C e Ct) •, i f t m f, ( t , . , , , . t- ) where m,. 2> 4 , then 

\CeCt)mLCg(t) u $ *hi%**>>t*-i>$>%+<>><>>W> 

| € ICE C t^ ) ? . Elements of fCg ( t ) are called im­

mediate consequences of t by means of £ . 

By an £ -proof we mean a f i n i t e , non-empty sequen­

ce r t< 1 ) . , . , t^"1 of elements of V^ such that for e-

very £ m 4,...9irt~ 4 one of the following three cases 

takes place: either t* * ts.M or t - i s an immediate 

consequence of t« „ by means of £ or t . . „ i s an 
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immediate consequence of t- by means of £ . A natu­

ral number $. t4&'fr&m~4) i s called leap 

in an £ -proof rt^f ...9 t^p i f either ti € 

€ LCg <t. ) or t ^ £ L Ce C t^ ) . If *u and w are 

two elements of WA . then £ -proof s rt**...+ fe."1 such 

that t -» AA> and t - ** tr are called E -proofs of ir 

from >tc , It i s easy to prove that whenever £ i s a A" 

theory and JUL , or % W* , then £ h- < X4, /ir > i f and on­

ly i f there exists an E -proof of v from u .An E -

proof r t , ... , t̂ "1 i s called minimal i f every E -proof 

of tL from t, has at least /n, members. If i i s a 

A -equation, then {«ef -proofs are called «e-proofs. 

Lemma 1. Let to, e I , m^ 2t 2 ; l e t t, u, € W^ ; 

put a - w ^ C t , , a , , t , t , . , , , t ) and ir » f^ Co,, t , t , t,..., t ) . 

Then every minimal <&,&> -proof has at most one leap. 

Proof. Let r t f , . , # : , t^"1 be a minimal <&,&) -proof; 

suppose that i t has at least two leaps. Evidently, this 

proof has two leaps ^ , ^ C 4 .6 3- **. Jt, ^ / n . ~ 4 ) such 

that between them there are no leaps . There ex is ts an en-

domorphism cp of V, such that either 
•* A 

\ - ^Cy Ct), <?(«,,), qrC*),...,<fCt) U t ^ „ -

« f^C.-.C^tyCt), yCt) , . . . , $>Ct)) 

or 1j • fAC9f«,) ftp«) . 9 C t . » , . . , , y ( t » 4 t i + 1 -

• f^c-jct;, <->(.«.>, <pct> <?ct» . 

There ex is ts an endomorphism f of ^ such that e i ­

ther 
t , , - f ^ C y C t ) , yC^.), r C t ) . . . . , y C t ) ) * ^ -
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" i^CijrCu.), r(t)f ifrCt), ..., y Ci)) 

or on the contrary. If i t •. 3. + 4 , then evidently 

tj * ^ + 4 in a l l cases, so that rt ,..., t^ , 

t j8t+al . . . , t^-1 i s a shorter < a,, Sir > -proof of t^ 

from t f a contradiction. Hence Jk, ><fr+4 .For eve­

ry I (j, * Z * Jk + 4 ) there evidently exist 

In a l l cases 

%,•••» V » £*.C>ur2,f+a.' %**•*' 'M^,4••a'•••',S.-i^^•-,' 

is evidently a shorter <cu, Zr > -proof of t^ from t^ f 

a contradiction. 

Let us assign to each t e WA a natural number 

^Ct) , called the reduced length of t , in this way: 

if either t e. X or t « £• for some <L e 1, /n^ m 0 , 

then Z C t. ) m A . if t « f.. CtA,...f t^ ) where <n. & 4 , 

then £ Ct) - ZCtJ + ... + ICt^,) . 

Let a variable x be given. Denote by T^Cx) the 

set of all t e ^ such that no £[• (where trt^» 0 ) 

and no variable different from x belongs to SCt) . 

( S C t ) is the set of all subwords of t •) 

A -equations < a, Zr > such that both au and Zr 

belong to T\(x) are called ( x 9 A ) -equations. The 

set of all (x, A ) -equations <o,9Jb'? satisfying 

i (a) m ZC&r) is denoted by £ A (x ) . 

Lemma 2. Let x e X and t 6 TA(x).Then 
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£ C <j> C t)) ** ZCt) • Z(<p (*>)) for every endomorphism 

<p of WA . 

Proof is easy (by the induction on t ). 

Lemma 3. Let a variable x , a A -theory £ £ 

£ £ A6x) and two elements ^ / v of WA such that 

E r- <^,/y > be given. Then ZCAA*) = Z(nr) . 

Proof. Applying Lemma 2, it is easy to prove the fol­

lowing assertion by the induction on ou i whenever cu e 

e WA and Zr e 1 Cg Co,) , then I (a,) m Z(Jtr) . 

§ 2. Occurrences of subwords; Ai -numbers 

Let us call a subset A of V. admissible if 

whenever AJU , nr s A and u> 4* v , then -a- is not a 

subword of v . Let an admissible set A be given. Then 
m 

we assign to every t e W* a finite sequence 

OCC^ Ct) of elements of W, in this way: if either 

t e X or t m £. for some i e I, m. * 0 . then 

OCC^Ct) *» r t n in the case t e A and 0CCACt)** 

m 0 in the case t ^ A •, if t » f̂  Ci,.,., t ^ ) whe­

re /?i. S 4 . then 0CC, Ct) » rt"r in the case t e 

e A and 0CCACt) ~ OCtACt^)®...0 OCC^Ct^) 

in the case t ^ A . Evidently, OCC. Ct) is a fi­

nite sequence of elements, each of which belongs to A 

and is a subword of t j an element of A occurs in 

0CCA Ct) if and only if it is a subword of t . 

Let two natural numbers mf mu be given, 
*,4 , »<»,% 

ЃПЬ 
m, .> 2 . Let H m I, m,. £ 2 . Then A%rT C Jh* 

respectively) denotes the set of all t m ij^Coc^,,„., <x^ ) * ^ 
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such that ICcc^)* &Coc%)& ...» XCtc^k iCcc^m m^.tCccJ 

( lCocz)m lCec^m...m ZCot^)*ICocJ m m.LCocJ , resp.) 

and ZCt)mnti . Evidently, the sets Jh,^ and Jh^f 

are disjoint; put Jh%^ m Jh%? u A ^ * . Let us 

ca l l two elements of Jh*' similar i f either they 

both belong to h%? or they both belong to Jh%Z . 

If f mrt^$...f t£ and p m rUfl 9:>9<u£ are two f i ­

nite sequences of elements of JhJ^ . then we write 
Oft* ' 

& ** $ if and only if Jt- m Z and t • and AJU•• are 

similar for every 3. - 49.**9Jk . Evidently* JKjJĴ  is 

an admissible set. 

Let an element H m I such that <?w 25 2 be 

given; let t e W. . By an JH. -number of t we mean any 

natural number m, & 2 such that no element of .J*,"* u 
u ^\ u ^3 u '' • *8 a subword of t . Evidently, the 

set of all natural numbers that are not JK -numbers of 

a given element t e W\ is finite. By an M. -number 

of a A -theory E we mean any natural number fix, *£ 

25 2 such that, for every < a , i r ) e E , /TL is an 

M, -number of both cc and Jbr . 

Lemma 4. Let H e I , m* £ 2 . Let E be a fi­

nite A -theory. The set of all natural numbers that 

are not Jh, -numbers of E is finite. 

Proof is evident. 

If a variable x and an element H e I such that 

m- & 2 is given, then we define elements * ' 9 xa* , 

^K
f ... of W^ in this way: x'1'*' * * > x^**'*' « 

* **,c *'*'*'»—» ***'*> • 
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Lemma 5. Let to e I , rn^ -5 2 . Let m. 2 2 be 

a natural number, x 6 .X and AA, , /ir « W. ; l e t 

<**,<*, a-**'1", x , , , , , A ) , -C^<**'*,*,*,- , x ; > H - <4A,*r>, 

Put m*» K ^ ^ . T h e n 

(I) for every natural number m, the sequences 

O C C ^ * (w) and O C C ^ * . ( v ) have an equal 

number of members; 

(ii) if M, + <ir t then there exists a natural num­

ber to such that OCC ^(AA,) ** ^^C^ (nr) does 

not hold. 

Proof. We shall write OCC^ instead of 

QCC*~+ as to and /»* are fixed here. Put « » 

= ^C*,**'^*,'"* *>, -^ <***** *,*,..,,*)> . We shall 

prove by the induction on AAJ that whenever tr is an 

element of W+ such that -e H <*a*.,/v> , then (i) and 

(ii) take place. If either AA, e X or ̂  -» £^ for so­

me £ e I , / n „ - - * 0 , then AT m AJL, and everything is 

evident. Let xt » £, Co^,,,,. ̂ ^ ) .where /»i. .& 4 , 

By Lemma 1, it is sufficient to consider the following 

two cases: 

Case 1: Some -e-proof of *r from AA, contains no 

leap. Then there evidently exist i£?,,,, tfa # such 

that v * i^Cit,,...,^) a^d -eh- < ^ , ^ >, ... , 

i h < AA,^ f t^, > . By Lemma 3 we have Z (AA,) -» 

• l(<v), Z(AJL^) m Z(nr, >,,„, Z ( ^ ) m Knr^) . Let us 

prove (i). If m, > JL(AA,) , then O C C ^ (AA>) and 

QCC^ (v) are both empty; it *n, *< Z (u.) f then the 

assertion follows from the induction hypothesis; it re-
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mains to consider the case m% =- Z(AA.) . It m,^ m 4 9 

then O C C ^ Co-) » OCC^ Cu-f ) and OCC^ (v) m 
m Q^^m. ^n ' 9 ao tnat tne assertion follows from the 

induction hypothesis. If m,^ 2fc 1 f then O C C ^ (AA,) 

is either empty or equal to rAAp and similarly for 

O C C ^ (nr ) % if one of the elements AA, and <v be-
/WV " 

longs to A?£ , then from IC*^) m Z (1% ) f . . . , X(AiWtft) ** 

m t(nJLt) it follows that the other belongs to M!\ 

too. (i) is thus proved. Let us prove (ii). If AA, -+» *rf 

then AA,. * nr> for some i (4 «6 4 s£ /&. ) ; by the 

induction hypothesis there exists a number Jt such that 

OCC^Cu-^) ^ 0 C C % C<i£ ) does not hold. We have 

>U/ 4 /fe£ , because otherwise m^ m m^ & 2 and 

simultaneously t (AA,) •» Jc/ -£ Z(AJLJ) would take pla-

ce. Similarly tr # ii/J. . From this and from the fact 

that by the induction hypothesis (i) holds for AA,^f ... 

>»,<Ufr , we get that OCC^(AJU) & OCC.(nr) does 

not hold. 

Case 2: Some -e -proof of v from AA* contains ex­

actly one leap. Then evidently i> a Jh. and there exist 

^ > ' " > ̂  8UCh that ̂  -̂ '̂'''''Ŝ  and 

Let us prove ( i ) . I f m, > Z (AA*) , then OCC^ (AA,) 

and 0CCmvC/ir) are both emptyj i f m% m Z(AA,) , then 

0CCm(AA,) m rAA? and OCC^ (nr) » rV"1 ; i f m, <. 

< XC44) , then the assertion follows from the induction 

hypothesis. For the proof of (ii) it is sufficient to put 

M, m Z (AA.) ; we have evidently OCC^ (AA,) m rAA? and 
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OCC^CAT) m V * 5 r4jT & r<vr does not hold. 

Lemma 6. Let Jh, e I , /n. «-S £ . Let a variable 

x ? an element t € T, C x ) , an Jfo. -number /n of t 

and an endomorphism cp of WA be given. If some 

<w <s --fe^c/ &£ ^ &>? <-> •• > i s a subword of <p Ct) , then 

i t i s a subword of <p C «x ) . 

Proof (by induction on t ) . The case t m x i s 

evident. Let t « f. ( t , „ . . t^ ) where /n. «s 4 . Let 

/tt̂ * *» fjj.Co^,.,., <x̂  ) € i v ^ be a subword of 9 Ct) . 

We have <ur 4. qpCt) , as *r«<apCt)m f̂  Cg>C^J,.,.,yC^.» 

would imply <i m M, and cĉ  » gKt^),. . . , «^ «r tpCt^ ) , 

so that by Lemma 2 easily t £ ^tc^ > a c o n , t r a dic t ion . 

Consequently, 14/ i s a subword of yCfc« ) for some . ^ 

C4 *> £ & m.^) j by the induction hypothesis (we may 

apply i t , because <t% i s an ^-number of t j , as wel l ) , 

<ur i s a subword of <pCx) . 

Lemma 7. Let JH e I , ^ , £ 2 . Let a variable X , 

an element t e T^ Cx) 9 a natural number <m> & Jt (<pCx )) 

and an endomorphism cp of WA be given. Ifoen 

0CC.„C<pCt)) m COCC.*, C<pCx)))CAet}3 for every m. * 2 . 
HM%> * > W V 

Proof (by induction on t ) . The case t m x i s evi­

dent. Let t m ft a t ) where /n-* 3. 4 . Write 

0CC instead of OCC.m, . If <n> & 2 , then we get 

<pCt)$ Jhfo from /m. m £C<pC*)) , hence, 

OCC <p(t)m 0CC<pCt)e... © OCC<pCt„4) m 

-* lOCC?C*)f "****... o COCC <pCx))C£C***>Jm C0CC<pCx))1 

If /»4 * 1 , then OCC <pCt) - OCC <pCt^) m 
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tu%n , %%c£ct)3 
mCOCCvjCM)) m(OCC<p(*)) 

Lemma 8. Let M, e 1 , /n^ -̂  2 . Let x e X, AJL> € 

6 WA and <&fir> e EA(x) ) let /n, be an it-num­

ber of both cu and ir . Then the following holds: when­

ever some v is an immediate consequence of AJU by 

means of <a,fjtr> , then OCC^m, (44,) & ^CC^m, (v) 

for every /m- . 

Proof (by induction on AA, ). Write OCC in­

stead of OCC. m, • If either JU, s X or AA* * £^ 

for some i e 1 f /t%± ** 0 , then either nr m AJL> or the­

re exists a finite sequence -£,,,., 4,^ of elements 

of 1 such that /n,j -».,, & m,* ** 1 and <tr ** 
+1 +*> 

» £• (£J (**•£> (A*)...)) ; evidently, in all cases the 

sequences OCC (a,) and OCC (v) are both empty. 

Let - i W . ( V , , -c^> where m.+ * 1 . 

Let firstly there exist a £ C1 £ £. £ m.^) and 

a ^ 6 H^ such that ir. ̂ 6 % . ' ' * ^ ^ , ^ , - v ^ J 

where a£ is an immediate consequence of u• by means 

of < a,, ̂ > . By Lemma 3 we have 1(AA,J) ** £(«%) . If 

/w* > Z(AA,) , then OCC (AA*) and OCC Cir) are both em­

pty. If m, < £ (44,) , then the assertion follows from 

the induction hypothesis. Let m, » IC4JU). If m^ * 4 , then 

OCC (44,) & 0CC(4A*i) and OCC (v) ** OCCCv^), 

so that the assertion follows from the induction hypo­

thesis. If m?. ** 2 9 then OCC (AA,) is either empty or 

equal to ^o/1 , and similarly for OCC (<v ) ; so that 

from IC4A,' )**A(v.) we get easily QCC(AA*) & OCC (v) . 

Let secondly there exist an endomorphism cp of 
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WA such that JUL .= qCa) and nr m qp(Ar) . In this 

case we prove OCC (AJL) * OCC (nr) , Suppose on the con­

trary that this does not hold. Evidently, some element 

of Jh^ is a subword of either AJL or nr . By Lemma 6 

we have <m*£ JiCcpCu)) and by Lemma 7 we get 

OCC Cq(c)) = OCCCqCtr)) . 

§ 3. The existence of upper semicomplements 

Let us denote by t* the greatest and by V* the 

smallest element of £A . It o, and Hr are two ele-

ments of &+ , then their supremum in •£* is denoted 

by a/ >A Jtr and their infimum by CL A. Jtr . An element 

0/ of &* is called upper semicomplement in «^ if 

there exists a Jtr e it^ such that Jlr + u and 

To each A -theory E there corresponds an ele­

ment in mC> '9 this element was denoted by Cnv(Z) in 

[23. 

Theorem 1. Let A be a type auch that nv* & 2 

for some Jh, £ I . Let x be a variable and £ a finite 

set of (*Xj /I) -equations such that whenever <.a,9Jtr>e 

e Z , then -£(a>) m l(Jlr) . Then C ^ C £ ) is an up­

per semicomplement in £** . 

Proof. By Lemma 4 there exists a natural number 

m, £ 2 such that the number m,* m ZC*m't*%) is an 

Jh, -number of £ . Put « * < ^ C J C , x^*,*,..., «x .) , 

f^Coc^ ; xfx9x% ..., *)>. It ia sufficient to prove 
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Ctbd*) v^ OnC-e) m u . Suppose on the contrary that 

there exiata a A -equation <u*7ir> auch that 

w + V> £ I- <*c,ir> and -e I— <>a,, /ir*> . By Lemma 5 

there exists a natural number M, auch that 

QCC^m,* (AA) & OCC^* (<tr) doea not hold. Lemma 8 

impliea OCC^* (AJL) (& QCC^m.* Ctr) , a contra-

diction. 

Remark. Let again Ĵ be such that m^ -£ 2 for 

some fo e I > let x 6 X * By Theorem 1, Ox (£ ) is an 

upper aemicomplement in St. for eveTy finite aub8et 

£ of £ A C x > . ( E A ( A ) ia the aet of all (x,A)~ 

equations <0/?i^> auch that JL(a) s* Z(Ar) .) Howe­

ver, if /n. «fc \ for all I e 1 , then On, (Z^ (*)) 

ia not an upper aemicomplement» Thia followa ea8ily from 

Lemma 7 of [3J. 

§ 4. Some supplements 

For every tfi If. let Van, (i ) be the aet of 

all variable8 that are 8ubworda of i . Let U8 denote by 

S L ^ the 8et of all A -equationa <a94r> satis­

fying Van, (a) m tfcJu (£r) , It i8 ea8y to prove that 

S L A i8 a fully invariant congruence relation of 

W^ , 80 that 5 L A m it^ . Evidently, £1,A + i>A * 

Theorem 2. For every type A , whenever £ ia an 

upper aemicomplement in •£, ; then SLw ^ A -̂  * ^•e# 

£ fi SL A . 

Proof. Suppose on the contrary that there exists 

an equation < a,, 4r> £ £ such that t&/t (a) 4* IXXJVCM; 

let e.g. 1/a^Ca,) -$ 1^6 C£K) ', choose a variable 
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* € Van, (*,) N VoK,(tr) . As % i s an upper semicom-

plement, there exists an equation < c , cL > such that 

C * cL and On,(<a9it>) vA C<n,(<c,oL >) *» i^ , There 

exis ts a unique endomorphism <p of WA such that 

q?(x) ss c for a l l x c X $ there exis ts a unique endo­

morphism y of ^ such that <p(&) a- d and p(x)m 

as c for a l l xeX^tzi.Ve have evidently 

<a, , ir> H < 9 < a 0 , y 6 z ) > , <c,<£> H- <g>6-v), r te>> «*** 

9(0*) % f(cu) , a contradiction. 

Theorem 3 . Let A be arbitrary. If <x and .^ 

are two elements of £A such that a vA At m LA and 

a> A^ ir- m &A ? then one of them i s equal to LA and 

the other i s equal to $A . 

Proof follows from Theorem 2. 

Theorem 4. Let A be arbitrary. If o^, #.,, o ^ 

C m -* 4) are elements of it* such that a> y_ ,,, vA a .̂ 

i s an upper semicomplement in &A , then at least one 

of them i s an upper semicomplement in £A • 

Proof i s t r iv ia l ; the corresponding assertion holds 

in a l l l a t t i c e s . 

Theorem 5. Let A be such that m.. & A for some 

i e I . Let a^,. . , . o ^ (m, 2 <\ ) be atoms in *£>A . Then 

a% V* •## V* a*- i s not an upper semicomplement in 

it . Consequently> u. i s not the supremum of a f i ­

nite number of atoms i i it* . 
A 

Proof. By Theorem 4 it is enough to prove that no 

atom is an upper semicomplement. This follows from Theo­

rem 3* 
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Remark. Bolbot tl] proved (for types A as in Theo­

rem 1) that there exists a set A of atoms in «£̂  such 

that t. is the supremum of A and CatvcL A -& &0 + 

+ COKCL 1 . 

Problem. Consider , for example, only the most impor­

tant case: I contains a single element 1 and m.± m 2 * 

(Algebras of type A are just groupoids.) Find all 

J -equations -e such that Cfi (&) is an upper se­

mi complement in •£. 
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