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ON BINDABILITY OF PRODUCTS AND JOINS OF CATEGORIES

Lud8k KUUERA, Praha

A category is called binding if it is concrete and
every concrete category can be fully embedded into it.

(A full embedding F : X— L is a faithful func-
tor 1) which maps X onto a full subcategory of L .)

The existence of a binding category is proved in [1].

We investigate in this paper products and joins of ca-
tegories from the point of view of the property "to be a
bim!ing category".

The product X x L  of categoriea X, I is defined
as follows:

objects of X x L. are all couplea (X,Y) where
X (Y vrespectively) is an object of X ( L respecti-
vely),

morphisms of X x L from (X ,Y) into (U,Y) are
all couples (£, g ), where f: X — U (gs Y=V
resp.) is a morphism of X ( 1 resp.),
(£,¢)(h,4) = (fh, 7)) -
1) F must not be one-to-one mapping of a class of objects

of X into a class of objects of L .
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The join Kv L of the categories X, L is defined
as follows:

objects of Ky L are all couples (X, <) , where
either X is an object of X and < = 0
or X isanobjectof L and i = 1,
morphisms of K v L from (X,i) into ( Y, 4) are all
couples (f, &) , where either <{ =4 = & = 0 and
€: X—7Y ia a morphism of X
or {mwgjgmwh =1 and f: X — Y is a worphism of L ,
(#, 0)(g,0) = (£g,0), (£f,1)(g,1) = (fg 1)

We shall prove the following theorems:

Theorem 1. Xv I is binding if and only if either
X or L is binding.

Theorem 2. If Kx L is binding then both X end L
have a rigid object (i.e. an object, only endomorphism of
which is the identity).

Theorem 3. If X 1is binding and a concrete category I,
has a rigid object then K x I, is binding.

Theorem 4. If XK x I, is binding and I, is a thin
category (i.e. there is at most one morphism from X into

Y for every two objects X,Y of L ) then K isa
binding category.

The general problem whether the bindability of X x L
implies the bindability of either X or I is, ai far as
we know, unsolved.

This paper is divided into three paragraphs: in § 1 we
shall prove Theorems 1,2,3. The proof of the theorem 4 (§ 3)
is based upon a theorem on EO-embeAdings and maximal cate-
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gories which are defined and investigated in § 2.

§ 1. Firsi we give three obvious lemmas:

Lemma 1. X x L is concrete if and only if both X
and L are concrete.

Lemma 2. X v L is concrete if and only if both K
and L  are concrete.

Lemmg 3. If F: X — L is a full embedding, X is
binding and I, is a concrete category then L is binding.

Proof of Theorem 1. The functors F: X —> Xv I and
G:L — KvL defined by

F(X) = (X,0) , F(f)= (£0),
F(Xy = (X,1) , G(£) = (g,N

are full embeddings. Therefore if either X or I is bin-
ding then Kv I  is binding in view of Lemmas 2,3.

Let X v I Dbe a binding category. Let the category M
be obtained from X v L. by a formal addition of an ini-
tial object 0 . It follaws that M is binding from Lem-
ma 3.

Because X v L is binding, there is a full embedding
F:M— XvL. If F(0) € X" x {0% then it ia evi-
dent that F maps M° into X%x {0} . Therefore G: M—
—~> X defined by

G(X)= Y if and enly if F(X) = (Y, 0) is a full

embedding.
T™his implies that X ia binding by Lemma 3.
Similarly, it F(0) € 1° x {1} then there is a

full embedding from M into L | which implies that L is
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binding.

Proof of Theorem 2. It is evident that a binding cate-
gory has a rigid object. If (X, Y) 1is a rigid object of
KxL then X (Y resp.) is a rigid object of X
(I resp.).

' Proof of Theorem 3. Let Y be a rigid object of L .
Then F3 K — X xIL defined by
PO = (X,Y), F(4) = (4,4dY)

is a full embedding. Therefore X x I, is binding by Lem-
ma 3.

§ 2. In this paragraph we deal with EO-embeddings and
maximal categories:

Definition. A functor F: K — L is called an
EO-embedding {f F is a one-to-one mapping of My € x,Y)
onto M, (F(X), F(Y)) for every two objects X,Y
of X with M, (X,Y) =& o .

Next two lemmas are obvious:

Lemma 4. A composition of EO-embeddings is an EO-em-
bedding. ’

Lemma 5. A full embedding is an EO-embedding.

Definjition. A category X is called maximal if every
EO-embedding F: K —> I, ia a full embedding.

The main result of this paper is

Theorem 5. Every concrete category is a full subcate-
gory of a maximal concrete category.

Proof. Denote by Set (0, 1) the following catego-

ry: objects of Sef (0,1) are all seta X auch that
0,ieX ,
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morphisme of Set (0,1) from X into Y are all map-
pings f: X — Y  such that f(0) = 0, £(1) = 1,
the composition of morphisms is the composition of mappings.
Let K be a concrete category. Since Set (0,1) is
isomorphic to the category of all sets and all their map-
pings we can suppose, without loss of generality, that X
is a subcategory of SJet (0,1) .
We shall construct a sequence X,, K;, K, ,... of
subcategories of Set (0, 1)  as follows:
1 X =K,

2) 1f K, , 1is defined then

objects of J(é are all objecta of ](15_1 together with all
seta {(X,Y), X, 0,13}
of K;_,, H

, where X ,Y are abjects

if M, N are objects of K. then
My, (M, N)T————M  (M,N) for M, Ne X
L

\ Kot ve1 7
set of all one-to-one morphisms

£+ M — N of Set(0,1)
for M = N ¢ K ,

=1
set of all morphisms ¢: M— N
of Set (0,4) such that £ (M)c
c {0,13 and +((X,Y) 4 £(X)
for M= ((X,Y), X,0,1%, where
X,Y,Ne K‘}_,, and
My (X,N)=¢,

deq
-set of all morphisms f: M — N for
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M= {(X,Y), X,0,4% , where
X,Y, NeX’%_, and
MK%..‘ (X, N)=» &,
p in the other cases.

The composition of morphisms is the composition of

mappings.
It is evident that all X; are subcategories of

Set (0, 1) and X; , is a full subcategory of X
for every natural 4 .

Denote the union of the categories X, , X , ... by
L . L 1is a subcategory of Set (0, 1) and X is a
full subcategory of L .

We shall prove that I, is a maximal category:
Let F:L — M be an EO-embedding. Let X ,Y be ob-
jeets of L such that ML(.X,Y)z g My (F(X), P(Y)) .

There is a natural m such that X, Y e X3 .

Let f be a morphism of M from F(X) into F(Y).
A mapping ¢ s {(X,Y), X,0,1} > X defined by
UX, YN = g(X)=g(0)=0, g({) =4 is a morphism of
K,M,,‘ + Since there is a morphism of X,,, from
{CX,Y),X,0,4% into Y there is a morphiam
:{(X,Y),X,0,13Y of X,,, such that Flh)= fF(g).

Let m,m be morphisms of X, ,, from {(X,Y),
X, 0,41 into iteelf defined by

m (X, Y = m(X)=(X,Y), m(X)=mn((X,))= X,

Then it is ¢m = gm , and hm 4 hm and the following
ineguality holds:
Flhm) s F(hm) = FCR)F(m) = fF(g)F(n) =
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= fF(gn) = fF(gm) = £F (g) F(m)= F(h)F(m)= F(hm).
This is a contradiction. Therefore F is a full embedding.
Thus we have proved that I, is a maximal category.
As a corollary to the theorem 5, to Lemma 3 and to the
existence of binding category we have

Theorem 6. There is a maximal binding category.

§ 3. The proof of Theorem 4 is based upon the next
lemma:

Lemma 6. Let X be a category and I be a thin cate-
gory. Then there is an EO-embedding from X x I into X .
Proof. A functor F: K x 1L — X defined by
F(CX,Y)) =X,F(($,¢ N = ¢ is an EO-embedding, be-
cause if (X, Y),(U,V) are objects of K x L  then eit-

her M (¥, V)= £ ana M, _, ((X,Y), (U, V) =f

or ‘ML, Y, V) is a one-point set and F is a one-to-one
Kl UX,Y), (U, V) =

= Mg (X,U) x M, (Y, V) and M (X, U) .

correspondence between M

Proof_of Theorem 4. Let M be a maximal binding cate-
gory. Since X x I, is a binding category, there is a
full embedding F: M —> X xL . If G:XKxL —>X is
an EO-embedding then GF: M —> K is an EO-embedding.
Since M is maximal, GF is a full embedding. Therefore

X isa binding category.
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