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Commentationee Mathematicae Univeraitatia Carolinae 

12,2 (1971) 

ON BINDABILITY OF PROIXJCTS AND JOINS OF CATEGORIES 

Ludlk KUCERA, Praha 

A category is called binding if it is concrete and 

every concrete category can be fully embedded into it. 

(A full embedding F * K —• L is a faithful func­

tor which maps X onto a full subcategory of L •) 

The existence of a binding category is proved in [13. 

We investigate in this paper products and joins of ca­

tegories from the point of view of the property "to be a 

binding category". 

The product X x L of categories K, L is defined 

as follows: 

objects of X x L are all couples ( X, Y ) where 

X ( Y respectively) is an object of X ( L respecti­

vely), 

morphisms of X x L from (X , Y ) into ( U, Y) are 

all couples ( f , 9. ) , where f .* X ~ t M ( ^ » 7 ^ Y 

reap.) is a morphism of X ( L reap.), 

Cf, <t) (<**,, £,) m (4H, $,£) . 

1) F must not be one-to-one mapping of a class of objects 

of X into a class of objects of L • 
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The join K v L of the categoriea X , L is defined 

aa follows: 

objects of K y i are all couples (X91) , where 

either X is an object of X and i * 0 

or X is an object of L and i * i , 

morphiama of X v L from ( X9t ) into ( Y, & ) are all 

couples ( f , to,) , where either i * %> m Jk, «• 0 and 

f t X —* Y la a morphism of X 

or i m £ m Jh m i and f % X — • Y is a morphism of L , 

(f, 0) (a., 0) m Ciq,, 0), Cf, 1) (9,, 4) ** Cfcj,, 4 ) . 

We shall prove the following theorems: 

Theorem 1. X v L ia binding if and only if either 

K or L is binding. 

Theorem 2. If K x L is binding then both X and L 

have a rigid object (i.e. an object, only endomorphism of 

which is the identity). 

Theorem 3. If X is binding and a concrete category L 

haa a rigid object then K x L is binding. 

Theorem 4. If K x L is binding and L is a thin 

category (i.e. there is at most one morphism from X into 

Y for every two objects X, Y of L ) then K is a 

binding category. 

The general problem whether the bindability of K x L 

implies the bindability of either X or L is, as far as 

we know, unsolved. 

This paper ia divided into three paragraphs: in § 1 we 

ahall prove Theorems 1,2,3* The proof of the theorem 4 (§ i) 

is based upon a theorem on BO-embeddinge and maximal cate-
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goriea which are defined and investigated in § 2. 

§ 1. Firat we give three obvious lemmas: 

Lemma 1* K x L ia concrete if and only if both K 

and L are concrete. 

Lemma 2* X v L ia concrete if and only if both K 

and L are concrete* 

Lemma 3* If Ps K - ^ L ia a M l embedding, X ia 

binding and L ia a concrete category then L ia binding* 

Proof of Theorem 1* The functors Fs X —* K v L and 

S i L —> K v L defined by 

FCX) - cx, o) , rc-n - cf, o) , 

SiX) « CX,'!) , 6(4) m Cfr,4) 

are full embeddinga. Therefore if either X or L ia bin­

ding then K v L ia binding in view of Lemmas 2,3* 

Let KvL be a binding category. Let the category M 

be obtained from K v L by a formal addition of an ini­

tial object 0 • It follows that M ia binding from Lem­

ma 3* 

Becauae K v L ia binding, there ia a full embedding 

F:M *-» K v L . If F(0) € X°x <0} than it ia evi­

dent that F aapa M? into X ' x <0} .Therefore (St M-+ 

— > X definad by 

C(X) m Y if and only if F C X ) - (Y, 0) ia a full 

embedding* 

This imnliea that X ia binding by Lemma 3. 

Similarly, if F (0) € L° * < 4 } than there is a 

full embedding from M into L , which implies that L ia 
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binding* 

Proof of Theorem 2. It ia evident that a binding cate­

gory haa a rigid object. If (X , Y ) ia a rigid object of 

K x L then X ( T reap.) ia a rigid object of X 

( L reap.). 

Proof of Theorem 3. Let Y be a rigid object of L • 

Then F t K —• X x L defined by 

?LX) m CX,Y) , F<*> • (4,ldLY) 

ia a full embedding. Therefore X x L ia binding by Lem­

ma 3. 

§ 2. In thia paragraph we deal with EO-embeddings and 

maximal categoriea: 

Definition. A functor F i K —* L ia called an 

BO-embedding If F ia a one-to-one mapping of JL.(X,Y) 

onto M^ C F (X) , T C Y > ) for every two objecta X , Y 

of K with M K (XtY) + <j> . 

Next two lemma a are obvioua: 

Lemma 4. A compoaition of EO-embeddinga ia an E0-em­

bedding. 

LemmjL^. A full embedding ia an EO-embedding. 

Definition. A category X i» called maximal if every 

EO-embedding F s X — • L ia a full embedding. 

The main reault of thia paper ia 

Theorem 5. .Every concrete category is a full aubcate-

gory of a maximal concrete category. 

Proof. Denote by Sat (0,4) the following catego­

ry: objecta of Set CO, A) are all aeta X auch that 

Of 4 c X , 
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morphisms of SkJt C 0, 1) from X into Y are all map­

pings i t X — • y such that f (0) - 0, 44 4) « 4 , 

the composition of morphisms is the composition of mappings. 

Let K be a concrete category. Since 5ei (0,4) is 

isomorphic to the category of all sets and all their map­

pings we can suppose, without loss of generality, that K 

is a subcategory of Set (0} D . 

We shall construct a sequence K o t K^, K- , .#. 

subcategories of S%X C0} 4) as follows: 

1> X « K A . 

of 

2) If K 
4~<ř 

is defined then 

objects of X^ are all objects of K^.i together with all 

sets - f C X , Y ) , X ; 0 , 4f 3 where X, Y are objects 

« * * ; . < 

i f M ., ft are objects of K, 

MKt CM, N ) 

then 

ІL OŁ,ìt) for M, N e Kľ Ą 

set of a l l one-to-one morphisms 

f i H —• .Af of Sei C 0, j) 

for J| , N M t . • 

set of all morphisms f ; Jd —•»• if 

of Set (0, 4 ) such that f £M)c 

c <0, 4 J and -PCCX, Y » + -PCX) 

for J4 - <CX,r) f X,0, 4 ? , where 

X, r, JT e K ^ and 

M„ 
4-, 

c x, ю * ø , 
set of all morphisms 4 % Ji —* Jf for 
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M « <CX,y), X, 0, 4 J ., where 

X, Y, He X 0 ^ and 

)L. CX, Jf) * 0 , 

A in the other cases* 

The composition of morphiame is the composition of 

mappings. 

It ia evident that all X^ are subcategories of 

5e^ C 0, 4 ) and K^m^ ia a full subcategory of X^ 

for every natural -£ . 

Denote the union of the categories Kp , X^ , ... by 

I* • L, ia a aubcategory of -Set (0,4) and X ia a 

full aubcategory of I, . 

We shall prove that L ia a maximal category: 

Lat F t L —* M be an BO-amb«dding. Let X ? Y be ob-

jacte of L auch that J^CXjY)-* 0 4- MM (FCX), FCY)) . 

There ia a natural av auch that X, y € X* 

Let f be a morphiam of M from F C X ) into FCY) . 

A mapping % t < C X, Y) , X, 0, 4} -+ X defined by 

ô CCX., Y)) m ty (X)** q. (0)-» 0, Q-C4) -» 4 ia a morphiam of 

X^ 4 < 1 # Since there ia a morphiam of K ^ ^ from 

< ( X, y ) , X , 0, 4 i into Y there ia a morphiam 

*w: (CX,y),XA'IJ-»y of *«.+* flacn that J1**-)*+F<»>. 

Let mi-.,/rv be morphiaaa of X^,^ from { C X , y ) , 

X, 0, 4 J into itaalf defined by 

m, (cx,y»-r /acx) - CX,Y>, /m.cx)-/a((x,y;;^ x. 

Then i t ia (ftm * r^/n- , and 4v/n* «f ^/^ and the following 

inequality holda: 

TChm) + T(Jh,m,) - FCJi,) TC/a) - fFC^J FC*i,) -
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* iF(qn,)*iFCfy<m,)m 4T ($,) FGm.)- F(H)F(<m)~ F(tim). 

This is a contradiction. Therefore F is a full embedding. 

Thus we have proved that L is a maximal category. 

As a corollary to the theorem 5, to Lemma 3 and to the 

existence of binding category we have 

Theorem 6. There is a maximal binding category. 

§ 3. The proof of Theorem 4 is based upon the next 

lemma: 

Lemma 6. Let K be a category and L be a thin cate­

gory. Then there is an E0-embedding from X x L into X • 

Proof. A functor F; X x -L —* X defined by 

F((J,Y)) a X,F((4, q,)) * 4 is an BO-embedding, be­

cause if C X, Y), (U, Y) are objects of K x L then eit­

her ML CY, V )m 0 and J1 K K^ l( X, Y), (U, V» » P 

or .M, (Y. V") is a one-point set and F is a one-to-one 
it 7 

correspondence between MK , CCX, Y ) , (U,Y)) ** 

- M K C X , U ) x l d ^ C Y , T ) and J*K C X, U ) . 

Proof of Theorem 4* Let M be a maximal binding cate­

gory. Since X x h is a binding category, there is a 

full embedding F « M — * X X 1* . If < a « K x l - 4 K is 

an EO-embedding then €F 1 ii —* K is an EO-embedding. 

Since M. is maximal, <SF is a full embedding. Therefore 

X is a binding category. 

R e f e r e n c e s 

tlj V. TRNKOVX: Universal categories, Comment .Math .Univ. 

Carolinae 7(1966),143-206. 
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