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commentationes Mathematicae Universitatis Carolinae

11,4 (1970)

TRANSFORMATIONS DETERMINING UNIQUELY A MONOID

Marie MUNZOVA , Praha

If a transformation f: X— X of a finite set X has a
suitable structure, then there exists a monoid M = (X,-) ha-
ving X for its underlying set and such that £ is its left
translation expressible in the form ~F(;x) = a-X for some a
and all x in X, It may happen that such a monoid M 1is uni-
que. In this case we shall call f a determining transforma-
tion of the monoid M . Our aim is to describe all finite trans-
formations determining, in this sense, some monoid. To this
purpose, we are constantly using the basic results on trans-
lations of semigroups established in [1] and [2].

Let us assume that f: X — X is a left translation of
some monoid M (such transformations are called potential
translations in {1)). If we are in the position that only
is given and the problem is to find a monoid M with f be-
ing its left translation, we can proceed in two steps:

1) first to find the whole system 1, (M) of all left
translations of M ;

2) then to choose a suitable identity element e in X.
These two steps are based on a statement, the proof of which
can be found in (2], characterizing the systems L (M) and
R (M) of all the left and all the right translations of a

monoid M in terms of transformations.
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Statement 1: Let 1, be a system of transformations
of a set X , There exists a monoid M = (X,-) with LL(M)=
= 1, if and only if one of the following conditions holds:’

(A) 1. is a transformation monoid and there exists
an element € in X such that for every x in X there is
one and only one f in L, such that f(e)= x ;

(B) there exists an element ¢ in X such that for e-
very x in X there exist f in L and g in the centra-
lizer €(L)of L (i.e. g commutea with all f from L )
such that f(e) =g (e)=x .

Any point e satisfying (A) or (B), and only such a
point, becomes an identity of a monoid on X vvivth regard
to the multiplication & a = f () where f, is the u-
nique transformation in L  with foe) = x.

If we have a system S of transformations of & set X,
we call any point € in X such that for every X there e-
xists £ in S such that f(e)=x a source of S , The a-
bove statement deep;na the well known fact that L (M) and
R (M) centralize each other and the identity element of

M is a common source of both L (M) ana R (M? .

To describe the structure of a given finite transfor-
mation f:; X —> X we shall use the following notions and
characteristics:

The set D‘(.x) - {f* ) o = 0,1,2,...% is called
the path of the element x, x € X . If for x and g in X
is Dy (x) na(@) # 0, then x and o are E, -equivalent

and we write x E,Pty' . This means explicitly that for some
m, m 20 we have f™(x) = ™(y) . E, -classes form

the decomposition of X into components of £: X — X. E‘e(ad
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denotes the component containing x (then we can write

0y e E‘_,(.x) instead of x ‘E'f'y' ). Transformations with
Jjust one component are connected transformations. A trans-
formation which has more than one component is called dis-

connected transformation.

Let s (x) and 2(x), 4 (x)2 0, n(x) =1 , denote the
least integer for which the identityf*“ *““(x) = #“*(x)
holds.

The element X with 4 (x)= (0 is called cyclic; all cyc-
lic elements in D,(x) form the cycle Z(x) of x , and,

clearly n(x) =1 Z (x)| is the order of the cycle of x .

(We use bars to designate the number of elements of a set.)

An element e is a tbg element of f ifu(e) = w(x)
and n(x) divides x (e) for all x in X .An element &
is a bottom element if « (&)= 0 and.x (&) divides x (x) for
allx in X .(Of course, ¥ may have neither top nor bottom
elements.)

Let £ be a finite disconnected transformation with a top
element €, the component which contains the top element is
called the main component of the transformation ¥ .

By £ %(x), & 20
with £%(t) = x .

, is designated the set of allt inX
Now we can formulate anew the results of [2].
Statement 2: Let f be a finite transformation. Then

1) there exists a monoid M such thatfe LL(M) if and

only if f has a top element;
2) there exists a commutative monoid M such that fe

e L(M) if and only if f has both a top and a bottom ele-

ment.
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Let £: X~ X be a finite transformation with a top element
€ . For every x in E‘: (e) we shall define its difference

d(x) (with regard to the top element)

(2) d(x) = aw(e) + m (x) - w (x)
where m (x) is the integer uniquely determined by the condi-
tions
(3) gu@rmdioy _ p4%yy, 0 m (x)< x(e) -
Let E., (x) be a component of a finite transformation f ;
for a4 in E4(x) we can define the difference 4 with re-
gard to x (designated by d(x,4)) in the same way as above.
Further, we shall need the following lemma:
Lemma 1: Let f : X —> X be a finite transformation with
a top element; let X be an element from Ef (e) and fe be
an arbitrary integer & = (0. Then for N = fh(x) it holds
(4) 'FJ'(") = ,Fd.(«)o-h

Proof: If w(x) > 4o, then s ()= s (x)- 4 and m(y) =
=m(x) , therefore
dly)=wle)+my)-uy)=u)+m (x)~ (wlx)-fe)=d(x)+ & .
If u(x) ¢ A, then w(y) = 0 ; it follows that
;d-(y)(e)= fu(e)i—m(y.)-u(y)(e)- ‘Fu(e)i-m(x’-u(.x)fk(e)_ gl o
We get the assertion using the easily verified equivalence
F™Mx) = £F™M(X)md (m =m) or (m 2u(x) and 2(x)m-m ) .
We know now the structure of finite transformations be-
ing members of some system I.(M) of left translations of
a mohbid M . For us it is important to know the form of a
monoid M such that 1.(M) contains ¢ . The answer is gi-
ven by the following construction.
Let £: X —> X be a finite transformation with a top e-

lement € . Denote 5'4 (e) its main component (i.e. the Ef -
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-class containing e ) and Y= X- E_,_ (e) its complement.
(If 4 1is a connected transformation then Y is void.)

Construction 1: Let f: X—»X be a finite transfor-

mation with a top element e . The family of transformations
LM )=4f,xe X1 andaRM,) =49, ,3e X} are sys-
tems of all the left and all the right translations of the
monoid M1|-’ where

(5) L(M,): for xeE,(e) it is(t)=¥t) (dle)=0)
for te E,(e);

(6) for xeE,(e) and teY itis £ ()= 4%t

(7) for x e Y it is f(t)= fp(x) .

(8) R(M@): goe= 4"(;

(9) for te E,f e),ye E,(e) put % (t) - glt® (45
(10) for te Ec(e), ye¥ put g, (t) = f’““’(vy_) 3
(11) for te Y put Gy (B) = n ()

where f1: Y=Y is a transformation such that

(12)  p (X)) = €(p (x)) for every x in Y and
(13) X Nn =1 .

Demonstration: By (5) e is a source of L (M,) , becau-

se q«,y’(e') = 4 for all 4 in X . Hence e is a source of
L. (M,) and R<M4‘-) . Now we must demonstrate that €(L (Mp))=
=RWM,) .

Commutativity of every £, with @, 1is obvious by (8).

1) ForueE’(e), te E'(e), yee, ye Ef(e) and gy €Y :
{x. q@(t) = ﬁ‘ (.pd,(t)(?” = *.4(«),“1(1)(,*)

2

Gy® fx (1) = gg (FLOUt = f400 4t () by leama ] for to e ;
for t = e :
£ 0 q&(e) =f ()= 4’"“"(@) - q,,,(") =Gy f, () .

-

2) For x€ E (e), teY, o 4 € °
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£ G (D)= £ (R (EN=4%0 0 (60 = n#9t)) by (12);
% £, (t)= gf,,_(f'd“"(t ))~4m(4‘d°%~t)),because #d‘-“’(“ <Y .
3) For xe Y, t¢ E,(e), yse:

foay (B) = £, (#(y)) = pu(x) , because +4,, v,

for t=e g, fi(e) =%_ca<)=,p,c.x),

for t % e % '&(t):ng_(ﬂ(o())=»fl(-ft(0()=ﬁ(-\()by (13).
4) For xeVY, te Y, y*e:

£ q/q'(t)zfx(fb&))--fl-(-ﬂ , because () e Y,
. q,,-f,(t)-g,,,_(.fpcx))s,p,(n(x)) = n(x) by (13).

The demonstration is complete.

Now we can formulate a simple consequence of the con-
struction 1.

Corollary: If £f: X — X is a determining transfor-
mation, then: ;

1) £ has one and only one top element;

2) the p: ¥ — Y satisfying (12) and (13) is the i-
dentical transformation;

3) if 4 has at most two components, then M@ is a com-
mutative monoid. l

Proof: 1) and 2) is evident.

3) If ¥ has at most two components, then f has a bot-
tom elemnt; this means that + belongs to L (M) where M
is a commutative monoid; f € L (M, ) therefore M,=M.

Now we shall confine ourselves to connected transforma-
tions.

Theorem 1: A finite connected transformation f: X=X

is a determining transformation if and only if
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(i) there is a unique top element e ,

(ii) for every x in X it is f(x)e D Ce) ,

(i31) 1477 (#2 (x| = 1 for all xe E,(e)\D(e) ,

(iv) if there exist X, x; € E ,(e) N D, (e) such that
for some & in X it is e # 1% (x, )) ana H» 'Pd"")(xi),
then d.Clr)-d(.x,), £(x;) is not in the cycle Z(e) and x(e)
does not divide d(.xé) .

Proof: Designate by T the set T= E,(e) ™D (e) -
First we shall show the necessity of these conditions. Condi-
tions (i) and (ii) are settled by corollary of the construc-
tion 1.

Let us suppose that the conditions (iii) or (iv) are
not fulfilled; then we are able to construct a monoid M which
is different from M,, (as given in the construction 1) and
such that f¢ LL.(M) .

I. There exist elements x; and x; in T orx; = fle)
such that e 41“1(4?“0"')”(.):4 », &= #9493 (x.) and

A % d(x;) , d(g) # d(x;) . We can suppose that
Xy, Ao

Construction 2: Let #: X — X be the transformation
described above. Then there exists a monoid M such that
LMY= (fx, xeXt,RM) =43,,%4€ X} defined as follows:
14) LMy: =4,
15)  Fr=f @) for thk, & (x;) = &

for x == x5
(16) RM): 'i’_- q/’ for Y ks J’- 3
17) g,xé(t)-g%(t)for t s, 50:5 (%)= & ;

where f, and G, are transformations from the construction
I.

Demonstration: By (14) and (16), e is the source of
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both L,(M) and R (M) . We must show that transformations
g,% commute with £  for x e X and % € X . Because

ﬁ; and ﬁ,, ,for x % X, y ] x; are the transformations

from the construction 1, we know that %, 9" = 9.’_ ° 7)‘

for x % X;, Y4 % X

1) ?,4 commutes with 6_,‘_} s
a) For t = e :

R MO E CEREYS O (AOE Gy () = A
b) For t = x; :

v-12°39)
let x, # X, q., (x )=9. (£#% x N=F

) 2d(x.)+LCx )
2al(x. ( %)
-4

.x?.)-_'f * '(e),

gao (x;) e D, (e) because d (x;) = 1 (4 has only one

top element), Let X = X thengx 1’ (%, )-t} (&) =

dcd—)( gzd(-v )( j.) fsat(x,)( )

Z;; 8o, (%)= £, 00 = §HO ) A gy

¢) For t= x5 and

~ . . ')
for ;= ¥ it 1%y 0§, ()=, 0= £ )= 475 e)= £, );
for x, %-" it is ’+* a%r(x )'fg(f‘“')(ya\)- £ )*d%)&x ) by lem-
ma 1, o o = qxa(lr) FABx ) o §AOPCIX (xy)

a)ForNx t;e.x t#+x,  t#e:

3’ +
g (t) < 1’ ACHCDES! iy, (o (80) = Qo (£ (4N =Gy 0 .t
because 9’.’3(1)4-. X, ,%;,¢ and £, (¢) # x;, x;,€ .

2) a‘.\v. commutes with 3‘; , ¥ € X . This has been proved
for x Z % ; by (14) E‘ = £ for X s X, .
a) For P v e
?;'_,7 -\(e)"g, (x)= M(x) oq,,‘ (e)=1£,(x;)= Fd(‘"’(.x ).
p) For £ x; :
%a £ (%&)\6 G‘tw(x )),q (x):f‘ z)(.x ) *F kdtx, % )n £ dél)o-dbt )od(a&q

5
£ ) \ T3 (bh#‘““’(ﬂr) et (681 = LA+ A0G Yy 3 NI 3’e),
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because we can suppose that x = e .
c)For te X, t+e, t #ux; :
?ix’.o fx(t)zﬁrx}(ﬁ(t ))-Q%C‘Fxft))sf.(qxj(f))zﬁ,ogw’_ (t) , because
£+ x; e .

3) 5.1 ,n € X commute with ?’;i . This has been proved
for gy = %5 By (16)5,,- Py for o4 X5 .
a) For t=e : .

@y o L. @)= gy (102 4%y, § o guernF = ¢ g
b) For t = x; 2
Gy &, 0= 94 W)= 4% )a #7997y ) by Lenma 1,
gi‘ %Cx’-)s E“(‘Fm,(y,))-fﬂ“"’(«fm)(y))afa‘»dog,(y),because we
can suppose that 4. % e ( g, ie an identity).
¢c) For t 6 X, tsx;, t¥e:

Gy T ()= @y (£, (4D)=4, (g ()= %, 9 (), because
Gt * X, e .

Thus the construction 2 has been confirmed.

1. 1f e #%0% % Yn)), 0 $49%0x,) _ and d (o) -
= d(x;), then £(£) must be in the cycle Z(a),because
(18) £00) = £ A0 ) 2 g“P*0x. ), hence

Condition (19) means that «x (e) divides d(x,) (d(x;)4%0) .

£94%e) = 49097 (e) m £0xy) , nence x, € #1449 Yce)) |

We can see that #7(¢*“3 " 1, Nu fay 6 Xld(g)mdlxuls W3} .
Ve can suppose thatl{y e de(y)sd(a,)}u““"”(x,-)}l =2,
because 4 s x; and d(q) -d(x’-) have no influence on the
number of monoids which contain f as a left translation.:
A) Let us suppose that X, & #'1({"‘_“"“(«‘)) and £(x, )
is in the cycle Z (e) .
Construction 3: Let £: X — X be a finite connected
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transformation with a top element € described above. Then
LM)={f  xe X} is the system of &ll the left trans-

lations of a commutative monoid M ’ defined as follows:

(20) L M): E’fu for x # x; , X% X; 3
(21) «F,‘,(.xé)z,x?.;f,’,(xi).—. X“.‘ Cf)-‘F (‘b) t*.x .x?
(22) ﬁ’,m&)-xé; Ew= x’_(t) £ 5

where f,‘ , xe X are transformations from the construction
1.

Demonstration: We must show that R(M)=1.(M).By (20)
the source of L (M) is the element e .

1) fx commutes withﬁ,x,ry‘ex,xﬁ.xi,xé,n/'qb-x,-,-x,' .
a) For t=e :

~ o~ ~ ) d(u)-bd[y) ). olcx déx),
FoE@=F a4 M1 F¥ G =T o5

(e)):f’ o-F ) .

b) For ts# e : :
EE )= E (0 W)= )= " g e By D=, ) .

¥ 2) For ? and 4? £, commutes w1th 2’

1

a) For t = H

%’i. #,’.(e)= 4,(1.'(0(’-) =X, f‘,a,o -in(e) = 4'“’ (,xi) = ‘x’,‘ .

b) For t = x; :
£ ?’(x)=f,“,(x’-)=x’- .-4 (x,)=%, NERE LA

¢) For t=x?-:

~ o~ . VedC:) N
'f;,"%(x’-):%:’,(#d“',(x’- Na AN a'(.x,‘)sfa")(x,-) ,because we know
that x(e) divides d(x;) and f““;"(x’.) e Z@) .
olcxg)
LR e SEMCAE L ad “AN

d) For teX, t+e, t#x ,t+x; :

{__.2‘ =%, =1, (f‘xi(t))a{—',‘é({-',‘_:(t))=§é(t D= F e L),
because £, (t)qk X5, fx‘, )+ x;,x; .
x € X , commute with %

3) f‘ . - We already know that
)

’
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now 'F‘ , X FE X,

+ )

it is true for x = X, 3

X #oXg by (20)

-2; = f, (we can suppose that x# e ) .
a) For t = e : )

£0F (e) = (x) = #9000 ) o U004
: ) +dllx)

o~ alx;) (X3
Befuler= Ty ) = #7900 = £77 e)
b) For t = ;X‘-' 2
e dlx) adGxy-1, dix)+d(xz)
~Fx-ﬁé(x‘.)= f(x;)= ¢ (.xé)-:;) (#)(.xi))af *Ux;)
Bohl) = B, (#9900 = #5% %A%,
c) For teX,t#+x,tke:
fo 8 )= N OIS ) 4N U N E o4 t) .
H ?

4) %

-
. ~
for x = .xa- and evident for X = X, . Thus 'Fx I -Fx for x # 'xa' ,

commutes with Zx for x € X . This is known

X # x; (we can suppose X % e ) .

a) For t = ¢ :

?;'. ﬂ (e)= {.(.x) - ‘Fd(aq)(‘x) - ‘Fd.(w;)o»d(a)(e) ,
£oF (&)= 14, (x;)= £ ) = 9+ |
b) For t = X s
g 4 dix) alx;)+dlx) alx)
f“i. -fx(x’-)z-' ﬁ‘&(f (J(é))’ £ (xJ.')= £ (“5' ), because

f”"(x,-)eZ(e) and x(e) divides d("‘i) .

~ dix)
fx' ﬁt;cxj)'f“(xi)-f u(d(") .
c) For t= X, :

~

fvt-"fx(“‘—;)’ ?‘;‘_(4‘“"')(““ ), we know that f(x;)e Z (),
h;nce f‘“"’(x‘.)é Z(e) (d(x) 2 1) and x(e) dividesd(x,)
and therefore {,{ (4 x;) = f“")(.x‘.) .

foo B )= £ (x)= F9 %)

d) For te X, t# €, t¥ux, tahx:
fof )= £ (#3000 )< 4T L) A ) B 0 £, (1)

. The construction 3 has been confirmed.
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B) Let us suppose that x; ef"(fd"")”(.x; )) endr(e)
divides d (.x,-) .

Construction 4: Let f: X— X be a finite connected
transformation with a top element e described above. Then
the system L(M):{:’;,x € X% such that
(23) E- 1y for X # X, X ;

(24) fx‘(at'-)- X’., f'«i(‘x‘.’)-‘xj’ ;
(25) z;’.(x?.)sat,.’fx’(«i)- x’.,{’,ct)s fi, () for tohug,

L4
Ect)mg () fortsx, , x ;

b

where ﬁ,, x € X are transformations from the construction
1, is the system of all translations of a commutative monoid
M.

Demonstration: By (23) we see that e is a source of
L(M) . we must show that L (M) = R(M)

1) ‘f; commutes with Z‘* forx, g e X, X,y % X;,X; -
This has been shown when confirming the construction 3.

2) ?_;1.’ commutes with ?;é .

g(: ﬁ'(e)-ﬂ‘(x’)- X, foo B (@)= F (X)) = x; .

b) For t = X; :
LRENEREL HERLES £-%
c) Fo: t=x;: _
£ '{,‘é(x’.)- £ () =x;, ?;"{‘(.xihﬂ’,(x,.)- x; -
d) For te X, ts#e, toux,, tox; :

e gém. {_;(f,’,(tnaf,_;cf,,’,ct»-ﬁ,i(gict»- (RENOR

3 ?-;& commutes with f, xe X, x#x, 6 X% Xx; . We can
suppose that X % ¢ .
a) For t = e ¢

T, o 4 (@)= & ()m #9502 #7400
hd -

?
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oot (@)= f, () = F W) ATy
b) For t = x; :
Bo f0) m & (09U ) 2 ARy

, )
fo B ) = £, o m £ ) 49 ) 5 9 #10,

(€))
because #* (x;)e Z(e)(d(x)=1)and x(e) divides dlx;)
and d,(.x?-) .
¢) For t = X; :

dix),

(X’- Na fdag‘)#d(a)

‘EJ £ (*,-) - ;’Tx‘(‘ (.x;. )= fdw(.x’- ) , because

#%x;) e Z () for d(x) =1 and x(e) divides d(x;) -

(4
ddx)
fx‘{‘i(u’-)=ﬁ(xé)-+' (.xa-') .

d) For te X, t+e,tax;, t +x;
Lo fut)= & ¢ %t D e Oty ¢ = g E, (B) .
1 ' 3

4) 2_;’. commutes withf, xa X, , x = X; . This fact
is evident for x = e .

a) For t = ¢ :

~

$ . ﬁ(e)- z )4+

Ce) ,

1 £ (x)= £7%90) = £
d(x)+d-(~,’)ce) .

? olCx)
fo B ()= £ (x)= £ = f

b) For t = x; N ,
~ ~ = 4-cllx) Yed(x)+ . dde+dix

T AR A O R i SR EE s
. )

- gl (x;), because 1’-#“)(0(3-) € Z(e) and x(e)ld(x;) .

*Fxo f:i(xi )= f* (X’-_) = *F““""(x,- ).

¢) For t-“i:

D+ ) L)
d(x)(x‘ W e it g )=f ‘(\x,-),becauee r(e) ai-

ﬁ,’; ()= £, F

vides d(x;) .
~

"x"’x‘(",‘)'fa (x;)=f

d) For te X, t4e, tx,6 tsx; :

I Y I s e I L T

ad(x)
(x,- ).

T .
%

-~

*x; £, ()= 2_,"’_ ¢
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It has been proved that L(M) = R(M) .

We have completely proved the necessity of conditions
(i) - (iv). The sufficiency of these conditions is easily
proved as follows. From (i) it follows that either«(e)= 4
and hence X = I) (e) or wu(e)> 41 and then (ii) - (iv) mean

that in € (#) there exist only a few elements with
l{g € €(f)lgle)=t3l>1.

In €(f) there must exist a transformation g, such
that g, (e)=t for all t in X. @, commutes with f , hen-

ce for 4 e D, (e)
9, () = g, (FPe)) = #%P g, () = #¥(t)

The transformation g, is determined on .q,(e) .

LG+

. A
Lettex, x. geT (for x;, x, appliesx ef (f ™ x,))

<33
f(x;) & Z (e) and n(e) does not divide d(x;). Then

4
£ gy = gy (£ ()= g F* ¥ ) = £V g, @) = #5¥ et .

Thus 9$(9)¢$-1(¢dw)+4(* )) . Conditions (ii) - (iv) mean

that 1£7(#9®+ ¢ )) = 14 ; it is evident that 9% ¢) €

1, diy)+1 ¢

et (¢ t)), hence g, (y) = FEP ey It follows that

for t o x;, x; it is gy (g) = £ W) = £
in X .

Transformations P, 0 95": are determined foraq e ]%(e) and

(y) for ally

Yy e T, 4+ X, , %; . The proof is the same as forg, t X:,% .

TN TP g VI ot NS I s AN I

hence g, (x;)e f"(fd("i"'"(.xi » .
N +
Thus there exist two transformations from €C(#) such that

where g, (‘Xé )= fd(“"’(x‘-) and

@x‘_(e)-xi and gy (e) = x; e

b4
(26) G, (o) = X5 .

b
Transformation @y, is determined at X; (gg (x)=f )(.:g‘-)).
“
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The transformation g, ¢
5 dlxp)ed, A+ L)+
#qu (. V=g, Fx = g (F o= £ G J@N=f T (xp),
hence there exist two transformatlonsq:xa, 9{,, from €(f) such
that
X)) - .
(27) g;ijxé)-f (x;) and Gy (x;) = %5 -

If we choose a system ig, ,t e X § we get R(Mﬂ) from
the construction 1. Suppose we are able to choose an another
systemxs{g.;, te X3 from €C(f) such thatR+ R(M,).
We know that g, = ¥ and so the transformations f,‘,, from

1, (where L. contains f ) are determined for g +# X; X_..

, 4
The transformations 5& and a do not commute:
93, 959("" g;,,(.x )= X; , where x ¢ (e) ; oo
.). 3
Gy Ty (%3 = B ()= G 6" ».4‘““' e,

where f‘“":"‘“‘""(x ) e D (e).

Also 9, does not commute with s,
% 09&(3)_9,“ (x;)=X X5, Xz ¢ D, (e) and

e Ty (@17 8, )= F90), # %y e 1y o)

Thus every other system {9%’ t e X§ different from
R(Mﬁ) cannot be a system of all the right translations of a
monoid M’ , So there exists only one monoid M,,, (where n
is an identical transformetion) such thatl, (M,) contains f.

The theorem 1 has been proved.

Now we shall draw our attention to the disconnected trans-
formations.

Theorem 2: A finite disconnected transformationf: X —> X
is a determining transformetion if and only if

I. £ satisfies conditions (i) - (iv);

II. (Yl =4 or £ is a disoonnected permutation on Y ;
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III. for all x,4. € Y such that x ¢ Z (y) x(x) does
not divide x(q);

IV. if ¢ # 1 is a common divisor of all x(x), (x (x)=
=1Z(x)!), x €Y ,then there exists x, € Y such that

x(x,) -~ .
——5_-—3‘- is not an integer.

)
Proof: At first we must prove the necessity of these

conditions. Conditions (i) - (iv) have been confirmed in the
part dealing with connected fransformationa.

From the corollary of the construction 1 we know that
if £ is the determining transformation then f¢ from con-
struction 1 is an identity. Hence 1" for t€Y are con-
stants thus for 1Y | % 1 M, cannot be a commutative mo-
noid. So if the restriction #|Y is not disconnected, then

f is determining only for Y|l =41 .

Let ¥1Y be not a permutation. This means that there
exists @ point x in Y which is not cyclic. Let then 4 de-
note the least common multiple of all ordersx(y),a e Y and
define f:Y—>Y by
(28) ‘nly)=f
Clearly p satisfies conditions (12) and (13).

k. (e)

y), ye Y .

Hence from construction 1 there exists an another mo-
noid M, such that L(M,”) contains f .

Let £1Y be a disconnected permutation and let exist
4.4, €Y such that 4, & Z (y,) and x(y,) divides AORE
Then we can define
(29) ply) = #%Gy)  for 4 =%y ,

(30) ply)= g otherwise.
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We must show that o from (29) end (30) satisfies con-
ditions (12) and (13).

p-n(ﬂf)rp““ffyf‘)k#“(q;’)-ﬁ(q,) for /y.='F"'(ty/,_) , because
4"(4;;1) ¢ Z(y,), penl(y)=pnly) otherwise.
pofly)m n (™ g, 0 = £y )= #F )= £+ p ) for mp=FTay),
pofly)= #(y) = fe fn(y) otherwise.

Thus there exists another monoid M,,, such that fe
e LL(M,) .

Let g # 41 be a common divisor for all x(x), x € Y and
let for all x € Y be —ML%-—%— an integer. Then we can

construct a monoia M  such that L(M) contains ¥ anda M
is different from M, .

Let us form a set '{“'4 34=1,...,m 3  such that @, &
eY foralli and Z(a;)n Z (a,?-)= 0 (we know that
E¢ (a;) E, (q,’.) = 0, Dbecause E‘. (q;) = Z(a)) for
i{% j end for all x € ¥ there exists an index 4 such that
xeE (@)= Z(,) .

Construction 5: Let #: X —> X be a finite disconnec-
ted transformation with a top element e as described above.
Then a family of transformations {f, ; x € X ? such that
(1) )= ¢¥ %0ty for x e E Ce), te X ;

(32) f,c0)= ¢4 for xe Y, te E, (e) ;

|, XG0
(33) 4,(4) = £4H%) "2 ) for xeY, teY ;

;
where t e Z(a.‘._) and d(t,a;) 1is a Qifference of t with
regard to a, , is a system of all left translations of a mo-
noid M . The system of all right translations of M is de-
fined as follows:

(34) R(M): =1 >
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(35 g,(#1=1"y) for te E (o), g€ X ;

dey) %8
(36)  gt)=f7 ¥(t) for teY, g e E.le);

<
.Fd(o',,a‘) 5{”&

(37) Py ()= t) for teY, e Y .

Demonstration: From (31) and (34) we can see that e
is a source of L,(M) and R (M) . Now we must show that
R (M) is a system of all right translations.

1) f

,  commutes with g, forteE (e), xe E, (e),

y e EF (e), because £,

and % for te E, (e) are the same
as in the construction 1.

2) For x€ ¥, g e E,(e) we have
a) for te E;(e) $

)
¢) +cCy)
dct) CdCt)+ 91"“55'(“)

fio gy () = £, (¢ (g =4

. X¢
atte) 52 here z=f"" *(x) ,
e £ (8) = g (x)=gy (%), where

zxeY so 9,’.(:)34-4‘7"@(2) , butn(z)-"(“)(zéz‘(’xn’

hence ) £x) dced "%“_)
a0 . ) Q) L)+ .
gy (2)=#4¥ T F ()= P TP T W (x)
b) for te Y:
dz,q,;) X
, ‘g(vq,(t)=fx(+‘d‘w2£l(f))=fx(z)-f ks YN where
Ct)

2= AP )., t,zeD,(a;) = Z (a;) and thus

n(z) = x(t), hence
gdtma) "El(x) - _Pl'd(i,a_;)-o-d(y.)‘éﬂ:l & 2P

: ) -
We know that AL i,

qu
ce chf) = heq+1.

) ¢
'Fu" qfq(-é) - ¢d(¢,e¢)%¢¢6’)%}(kg+4)(“ )=
- fd.ﬁ,e«;)5@-94(1)1‘#4-5463);@)(“)gfd(‘,c-i)ﬁg-)ﬁdc‘wigz(x) ’

= 4 ,where f is an integer: Hen~
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Aerdy) r ()

because d(ry)-k is an integer and (x) = X .

) x d ,Iz
Gy £ (8= g (452 —‘?C.x)b%(z):f ¥z and

r(x)=n(x), hence g,,ag‘(f)afd"’ﬁg,(-lﬁda’a" 2 (x)) =
- P aactanzgd

3) For x € Ef(e) » 4€Y we have
a) for t € E,(e) -

[-1¢2) aix)+alt)

fo gy ()= £, Fiyn = ¢ )
Gyt B (P = gy SN 2 g o)1= £ 4%l )= 1

b) for teY :
rce)
fxc%(t)aﬁ(fd{”'““’%&))-ﬁ(z)-f

xCE)
d.(.x)fd(y,a;)—,_—('t) ,

_)m(z) ddy, ‘,,'ztﬂ
L= gy () 7V E () P H ()

A ) £
Qe fu(BI= Gy (F
._.fdfv"‘-'"‘gl*“"‘“’(é) , Dbecause x(t) = nlx) .

4) For x € ¥, € Y we have
a) for te E, (e) :

)
. et
e gy l1= 4,0 e £, (22 f‘C"“*"ﬁ?,): FAvaract 1&“‘(“ )s

act) % dey,a) %% ey, a0 229
¥ f‘(f)-;gay(f C.x))-%(z)-i' (x)=f () =

()
_fdo,,a.,-)ﬁg‘haﬂ lﬁ!}x)ﬂ R -'Eg_i‘-(x)

rn(x) = £(x) .

’ because

b) for te Y :
dct,a;)
Q% (t1=g

- d(y,a,)ké_‘2+dc4,q¢)ﬂﬁll(x) ‘
. 2RGSO Gucy a.y Eed a1 G0
£ q;(t):ﬁ,(#‘m"“’)ﬁeéé))zf,(z)-#‘a'q‘) Kaf DT G-

)
N e AT
= £L¥%5) A0, et a ) XPD + Mooy, @Oy fd‘""”%z s ""”%)f"‘ ),

> Jay) )
x )>=9@(z).¢“”""’ D o FrYE,
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because &R - (gy,a;) is en integer and FRAB AN YV x

The construction 5 has been confirmed.

Thus we have completely proved the necessity of the con-
ditions given in the theorem 2. Now we shall prove the suffi-
ciency of these conditions.

1) Let £: X => X Dbe a finite disconnected transforma-
tion such that IY!l=41 and f satisfies the conditions (i)
- (iv). Therefore all @,, t # 4 ({y =Y ), are determined
on E* (e) . It is impossible that g, () € E,(e) , becau-
se f(g, (y))=g, (Fy) =g, () and if g, (y)=x e E, (e),
then f(x) = x . It means that E4 (e) has a cycle Z (e) such
that | Z (e)l=1 and x € Z (e). But +',y_ such that ﬁy_(e) =
is a constant; thus -F,y_ must commute with g, -

%.fé(e)zg&(‘y)=x,{;"v%(ehf*(ﬁ)s ny and a4 # X .
So for all t in £<F (e) it is g,(y) =4 . And these g,
with g/,y_(x)= 4y for all x in X is the system R (M) from
construction 1. So only M,ﬂ is a monoid the L, (M) of which
contains f .

2) Let f be a finite disconnected transformation with
a top element € and let 1Y be a disconnected permuta-
tion such that for allx,y € Y, x ¢ Z(y) r(x) does not
divide x(qy) . We shall show that if g # 1 is a common divi-

sor for all £ (x), x € Y, then there exists x, such that

r(x,)-q, .
—?—_ is not an integer.

Let g, be a transformation from €(f) such that %(e)a
= t. Since fIE, (e) is the determining transformation,

% (y) is determined for 4 e E_r_(e) and t e 'E:f (e) .
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oy

Thus g, (y) =¥ ¥(t) for te E(e), e E& (e) . From the
proof of sufficiency of conditions (i) - (iv) it follows
that only q, (%)= $£4% ) for yeE (), teY can
possibly be in R (M) where R(M) is a system of all right
translations of a monoid M  such that L (M) contains f.

We know that )Y is a disconnected permutation. For
Yy e Y it must be
(38) flg(yN =g, (£(gy)) for all t € X .
We shall demonstrate that @, | Z (x), X & Y, is a permu-
tation. Let g, | Z(x) not be a permutation. Hence there e-

xist a4, a4, € Z (x) such that gy =+ a4, andg; (4;)=g, (4,)-
@y, =

Let oy = #"“"""’(@ ), then g (g )=g,

4“117‘,1(9‘ ( )) = 4 ‘“17"'2)(9/

; (4,)) by (38). Therefore

Ay, y,)=A-x(y,) and thus %4, = 1
Let us suppose that there exist X,, 4, € Y such that

g%(‘x,) =4, where X, ¢ D (43«) All g, must commute with f
and thus for X € D, (x,)
(39) g, () = g (F L%, = £999% g, (o, W= 194"y

g, must fulfil a condition (38) for all x D, (x,), also
for x such that d(x,x,) = x(X)-1-

fogy (x)= e y N=14" ('y«. GeofX)=q,(X)=y .
The condition (38) is fulfilled only for x£(x,) = R-£(y,) .
Thus @, (Z(x)) ¢ Z(x). And because g, must commute with
f , is g lZ () =+*1 Z(x) , where & is an integer.

The family of transformations {%, t e X§ must cre-
ate a system of all right translations of some monoid M .
This means that we must be able to construct a system L =

={f,,x € X § such that fe L. and that for all xe X ,
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teX, f, and g, commute. For every % ,teY it is
%(E,(e))cD‘(t) = Z(t) and @, (Z (x))=Z(x) . There-
fore £, (Z(¢)) c Z(x) for allte Y, t ¢ Z(x).
Let us suppose that g, 1Z(x) = ¢4 | Z(x) and%lZ(t)=
-t% Z (t)., To solve our problem we shall use the follow-
ing property of commutative transformations which has been
proved in (21,

Let /v be a disconnected permutation with two compo-
nents }f' and Y,

2
a transformation g ; 9'('9‘4“'"!’2 for some 4, € Y and Yy €

ll{, | = %, IY, | = £, . Then there exists

’

€ Y ; such that hog = g+ 4 if and only if x, divideswx, .

2
In our case this means that £ and & cannot be such
x (x) r(t) .
that —3 and —g— are not integers (n(x) does not
. ”(X) r(E) .
divide £ (t) ). Therefore 7 and —J~ must be in-
x(x) . r(t) .
tegers and y) must divide * - The same applies
. x(t) .
also f:x(-‘x){i_ and g, and that is why also ™y must di-
vide y Hence
n(t) x(X)
(40) = =~z -

This means that there exists a common divisor of all x(x) ,

X € Y, which is equal to
(41) 2 (X))

=7 -

If ¢: X — X is such that the only common divisor is Q =
=1,then g, |Z(x) = #**°|Z (x) end thusg(x)= x
for allx in Y, Hence it is evident that the system { g, ;
te X? is the system R CM.”) as defined in the const-
ruction 1 with fo = 4y .

Let £: X~ X be such that a common divisor ¢ of
all n(x), xe€ Y , is different of 4 . We shall define
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%IZ(.x) = f&g’l Z (x) . Thus we get another system of
transformations R =4g, ;te X 7.In order that R is a sys-
tem of all right translations of some monoid M , there
must exist a system L = {f, ;xe X} such thatfeL and
(42) flegu=g,ef, for all xeX and te X .

From the condition (42) it follows that

(43) £ (t)= -}'d’“"g)(x) , where xe€ Y and te Ef (e)

We shall use the condition (42)

(44) f,‘%(")'ﬁ(ﬂi gsoﬁ((e)rqé(x)-f‘%)(x) , thus

£t = £ 0 .

Let 44 be an element in D* (t) , then there exists an element
x in E.; (e) such that % (z)-y-#‘““’(f) , therefored(z)=
-_-d(ry.,t). The condition (42) must be fulfilled also for such

&0

(x); hence

that x in Egz(e) .
e 9 (=)= B ) 9y £ (20m G F7 X oo £9
(45) £ (y)= 4-4‘1*"%&0:) for 4 € D, (t) .

The condition (42) must be fulfilled for 4 e D, (%), too.
go £, =gy (P i Vg, aimt Elare $ B €Ly -
o gyt A ) s
09 ()=t (f‘%»y»-f,(a)-f‘“"”%x) s *’(.x) -
PP 2 S M

Hence al(y,t) S0+ "‘Q‘" "2"" (2 s acy, 8%2)e e ki)

where ¢ 1is an integer.
£(E) (X)) _ r(X)

2 "¢ 2 = ¢-%2(x) , hence
(46) !'-("t%-—g" = C .

The assertion (46) must be fulfilled for every ¢+ in Y,
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. A r0X,)~Q
But we know that in Y there exists X, such that ——723————

is not an integer. Hence there does not exis: ary monoid M
such that R is a system of all right translations of M .
Thus only ﬁﬂﬁ (q is an identity) is a monoid such that
L (M, ) contains £ .
The sufficiency of the conditions given in Theorem 2
has been proved. Thus the proof of Theorem 2 is complete.
I want to thank to Pavel Goral&f{k for his kind help and
valuable suggestions to me with this paper.
References
[1] B.M. BAJN: O sdvigach v gruppach i pologruppach, VolZ-
skij mat.sbornik 2(1964),163-169.
2] 2. HEDRLIN, P. GORALEfK: O sdvigach polugrupp I, Perio-
dideskije i kvaziperiodideskije preobrazovani-

ja, Matem.asopis 3(1968),161-176.

Matematické-fyzikélni fakulta
Karlova universita
Sokolovseké 83, Praha 8

Ceskoslovensko

(Oblatum 28.4.1970)

- 618 -



		webmaster@dml.cz
	2012-04-27T19:32:49+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




