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ONE THEOREM ON ROTIUNDITY AND SMOOTHNESS OF SEPARABLE
BANACH SPACES
Véclav ZIZLER, Prsha

In this paper X denotes a real Banach space, X*
the dusl space of X . We denote strong (weak) convergen-
cein X Wy Xx,— x (X, 2%, x ) , the pointwise
convergence in X* by £, wh oo, S, ={xeX;Ixl=
=13, SFf={fex*; I41 =17 .

Definition 1 (V.L. 3muljan [5,61, D. Cudia [3,4]).
Banach space X 1is cslled (WUR)-space if the following im-
plicetion is valid:

(x,._,afn681,l!-x—”211’!-ﬂ—-’4)=bxﬂ-'y'@—m—f+ 0.

Definition 2 (V.L. S5muljen [5,61 , D.Cudia [3,4] ),
Banach space X* is said to be (WXUR)-space if the fol-
lowing condition is satisfied:

('snvqfné 51*7”“&&‘;;’2&"—?4)# 'F”—g,n-u—,: 0.

Definition 3 (V.L. 3muljan [5,6] ). Banach space X
is said to be (UG)-space if the norm of X is uniformly
Gateaux differentiable on S, .

Theorem ) (V.L. 3muljen [5,6] ). Banach space X is
(UG) 1ff X* is (WFUR) ,'X* 1s (UG) iff X is (WUR).

Suppese now | x|, and | x "1 are two equiva-

lent norms in a Banach space X . Dencte
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2
£ (X)= % I x lL, y G (X)= — Il ﬂ ., Using the results
of A, Bréndsted (121), E, Asplund ([1]) has constructed

the sequences of the functions:
1 .
Fpea (X) = 5 (£, (X)) + G4 (X))
for m2 0

% cmvﬁ $1 (8, (xsn)e g, (x-y 0}

These sequences converge to a common finite-~valued con-
vex homogeneous of second order function h .

Further we dencte ¥ , g* , AZ* the dqual func-
tions of £, , q,, K respectively, for example:
£ (x) =ybﬁ(‘> ({x,y>=f, (1)) where (X, 62 > de-
notes the duality of X, X* ,
Then 4*(.x)=-n.xu2 , q*(.x)-ilxt.lz: ,
nrexy = 1 ixi, " where Uclyg , Ixly ; Dy are
the dual norms of - X ll = (24, (x ))3 I I =(29;L(.x>)‘
hxlly, = (2 A (x DK . ’I‘heae norms are equivalent on X*

and X respectively. Further we have:

nia

g* (.><)=;;n)«(ﬂ {%(f:(aw-@)*-g,:(.»@)):’ ’
gr,, (x)= 5 (£X(x)+ gt (x))

fe every m 2= 0 .
These facts follow from the results of A, Bréndsted ([2])
end E., Asplund ([1]).

Definition 4. Let | x| be some norm of a Banach
space X , N1 be a nom of X*. Dencte F(x) =
=4 I x I?, Then ¥ 1s ssid to be (WUR)-function if
the following relation is true: For every ¢ > (0 end
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each g- € 51*

”inf'{z(bﬂ— 2?(‘5—?)4- Faprp >0 .
X=1
Iglx-y)l3e

~

Denote @Cx)= -%ll-&'llz . g is said to be
(WUR)-function if the following condition is satisfied:
For every € > (0 @eond each x € 5,,

mf (g (¢)- 2§ (LrF) L g (@17 >0 .

H&H=1
I(4-g)(x)I 2 €

Proposition 1. It Fe(x) = Ix1® them ¥ 1s
(wur) 1ef | x | 1s (WUR). Similarly for the case of
(WHUR).

Proof. It is a slight modification of that of E.
Asplund for the case of local uniform rotundity.

Proposition 2. If f, (or g; ) is (WUR), then h
is (WUR). Analogically for the case of (WUR).

Proof. It is analogous to that of E, Asplund for the
case of local uniform rotundity.

Theorem 2. Suppose X* is separable Banach space.
Then there exists an equivalent norm of X which is (UG)
and (WUR) Jjointly.

Proof. In the peper [7] we have proved that there
exists in this case an equivalent norm x|, o X
which is (WUR) and an equivalent norm Il X llz of X which

1s (UG). Denote f,(x) =4 Ixi’, g x)=F 1x1] .

Then h constructed as above is (WUR) (Proposition 2).
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9,"‘ (-{'):% I -PI!: , where [ {1, is the dusl norm of
I x "2. . IH-'!I2 is (W¥UR) (Theorem 1). Then 9_:' is (WFUR)
(Proposition 1)« h* ig then (WUR) (Proposition 2). De~

fine M (Xx) =-% Jxllf, ,h*(.x)=% J£ L' where

JflL is the dusl normof J X b , Then Jx | is

an equivalent norm of X which is (WUR) (Proposition 1)

and its duel norm ¥ f I is (WUR). Thus Jl x b 1is

(WOR) and (UG) jeointly (Theorem 1),
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