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7,3 (1966)

COORDINATIZATION OF PARALLEL SYSTEMS
Véclav HAVEL, Brno
In the éresen‘h note we shall investigate coordinati-

zing system to certain types of André’s parallel systems.

Definition 1. A parallel systep'l) is a triplet =
=($2,¢C,//) where 1) ¥ 1is a nonvoid set of elements called
points, 2) £ 1is a nonvoid set of some nonvoid subsets in
R called lineg, 3) I is a partition (2) 4¢ £ such that
each oL € | 1is @ partition of £, and 4) there are three
points not on the same line.

P is called gpecial if Z=X x Y for some sets X,Y
and if
(1) E={{(x,y) g eY]IxeXie l, Y={{(x,)IxeX}lye¥sel,

(2)) card (AnB)=1  for AclINY, BeY .
For further application we shall formulate three further
conditions:

(2,) cardl (An B)=1 for AelI\N ¥, Be X,

(3) if A’ B are distinct points then there is exactly
one line containing both A, B,

(4) eard (A nB)=1 for lines A,B belonging to
distinct elements of I .

(1) ce.(1], p.90.

(2) A partition of @ set S+ 1s a decomposition of S
into pairwise disjoint nonvoid subsets in S covering S .
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Definition 2, A terpar is a quintuplet 7= (X, ¥, U,V,T)
where 1) X,Y, U,V  are nonvoid sets with caxd X = 2,
cardd Y29 and2) T 1s amap of X =< ¥Yx U onto V.
set L (u,2)={(x, )1 T, Yy, )P, I={(u,v)IL(w, )+
* 0, Lo {L(w,v) l(w,v)e V3, &, being the set of all
L(w,v» )% with fixed «welU and l={&, luwe Uf-
1" is called Specigl if

_(5) the map (4, )— L («,v) is a bijection of J
onto <,

(6) there exist elements ¢, c0 € U and injections
§»:X~* V,7: Y=V such that T(x,ry,r) =7Y and
T(x,ry,w)srf.x for all xX€X, ye Y,

(1) T(X,%,4)= v  is uniquely solvable in
Y4 €Y forgiven xe X, («,v)e€ J .

Next we formulate some further conditions:

(1,) T (x,y,4)=v is uniquely solvable in x & X

for given y €Y, (w,v)e T,

(8) 1r (x,,%,), (X,,%,) are distinct elements in Xx Y,
then there is exactly one « € U  satisfying T(X,,4,,« )=
- T(Xg, 45 s &),

(9) if (uy,v;), («,,4;) are distincts elements in J,
then the equations T (X,4,4 )=, T(X4,4,) = v; ha-

' ve a unique solution (X,4)e X x VY.

Breposition 1. Let T= (X,Y, U, V, T) be a ternar.
Then | (cf.Definition 2) is a partition of . (of.Defini-
tion 2) iff (5) holds.
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Brogf. If L (a4, , v;) = L (4, ,9;) for some
Wy, (y, 15) € T with At % 4, then (i, )L (4t,0)
is not @ bijection of ¥ onto oL . Conversely, if («¢,v)—>
+Luw,v) is a bijection’of J onto L, then L(i,v;)+
+L( ,v;) tor distinct (uy,v;), (4y,v;06 J.

Eroposition 2. Let T = (X, U, V,T) be a special
ternar. Then P= (Xx %L, II) (cf.Definition 2) is & spe-
cial parallel system, to be termed ssgociated with J.

Proof. By Propostion 1, /| mist be a partition ofl,
and by the definition of &, (cf.Definition 2), each &£, ,
“we U, 1s a partition of X x Y. From (6) lnd(?l) there
follow (1) and (2;). Finally, fromcawd X2 2,card Ya 2,
and by (5),(6),(7), there exist at least four elements of
XY which are not on the same line. Thus /7 is ® spe-
cial parallel system. Note that for J and P, (2,)e> (%),
(3)¢=>(8) and (4)e=> (9) .

Proposition 3. Let there be given a special parallel
systen P = (XxY,L, 1), L={&, 3, .,y + Choose a
set V such that there exist injections s, :5, —> V for
all €U ama V= ) o, %, . Define the msp T:

XxY> U=V by T(x,g,u«d=ve (x,4)= 0 .
Then the gern& T=s (X,Y,U,V,T) 1s special (and will
be called ggpoeiated with P ).

Proof, As /| s a partition of o, (5) holds by
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Proposition l. Furthermore, (1) =$ (6) and (2 ) —) (% ).
From the fact that there are at least three points which
are not on the same line, it follows that carad X 2 2,
caxd Y=2 ., Thus J is a special ternar. Note that, for
P amd T, (2))= (%), (3)>(8) am (4)e= 9).

Propogition 4. Let P=(XxY,eL, 1), 'C’{‘zu}ucu be
a special parallel system. Then an associated special ter-
nar J= (X,Y,U,Y,T) can be chosen such that (using
the notation of Definition 2)

(10) ceXs Y= V2UN {0},

(11) T(X,%,0)=%, T(Xy,00)=x for allxeX,yeY,

(12) T(o;v, )= v forall e lU, ve V,

(13) there is an element € e¢ X\{o'} satisfying
T(x,x,8)=0; T(e, i, u)=0" for all x€ X, s € UN{co} .

Brogf.s) Choose a point 0=(0;,0;) and & line{(x,%)!
IXee} with € 40/, Let @ be the injection of UN{o0§
into Y defined as follows: For each « € UN{e0} | let
(e,pu)e L , where 0 € L €5 . Thus we can identify
each 4 € UN{oo} with pit, and obtain UN{w}s ¥.

b) Choose a lime E with 0‘6 E e.?;" for some ¢, €
¢ UN{o;e0}, and define an injection 6: XY by (x,
O6x)e E for each X € X. Then we can idemtify each X €
€X with 6X , and obtain X & ¥ . After this identifica-
tion, we have O =0} = 05, €= &, -

o) It 1o possiblc to take £, 7 as identity maps.



Then (11) is satisfied.

d) Let each line Le & , «€ UN{ 7, be unique-
ly determined by the "intercept" (3) (o0,»)e L 8o that
L={(x, %) T(x,%,4)=a¢, L } . We have the bijection A,,:
V->V¥ where A, (3¢, L )= for.each L& .After
identifying each 9¢, L with A (eg, L ), we obtain
V=Y. Thus (10) is proved.

e) (0, ) é {(X, ) | T(X,y,u)=2§=>(12),

E={(x,y) T(x,4,e)=0}% = (13,) and

(e,y)e {(x,4) | T(x,y,e)=03 =>(13,).

Broposition 5. Let P=(XxY, L, 1) be a spe-
cial parallel system, and let J'=(X,Y, U,Y,T) be the
associated special ternar constructed in Propgsition 4.
Define two derived maps X x ¥ —» Y (dencted as addi-
tion) and X x U—> Y (denoted as miltiplication) by

(14) T(x, Xx+y,e)=2 for xe X, ye VY,

(15) T(x, X-%) = o for xe X, yelU.4
Then

(1) X +0=X%" for xe€ X,

(16)) 0+ 4=y for € Y,

(171) X +4 =2 is uniquely solvable in X& X por
given 4 € Y, xe Y,

3) Compare with [2], p.5 or [4], p.503, respectively,

4) Compare with [4], p.505. D
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(17,) X +f2 =2 is uniquely solvable in 4 ¢ ¥
for given X€ X, Xx€ Y,

(18;)) ¥ +o=X for x€ X,

(18,) ¢ -y=my for yeY,

(19,) X-€=X for all xe X,

(19,) e -4 =u for all u € U\ {e0} ,

(20,) X %Y=z 1s uniquely solvable in X € X \{o-7
) for given x € X\{o§, ze ¥\ (o} .
The condition

(20,) X.4 =2z is uniquely solvable in X € X\{o-§
for given ¢ € UN{o,00%,x€Y

holds iff (22) is satisfied.

Prof. X+ 0 = X <= T(X,%X,€) = 0 (valid by (13,)),
o+ay =Ysd> T(O;X,€)=e (valid by (12)), X +Y = X =
> T(x,%,e) = (here,for given 4,z a unique solu-
tion Z exista by (21); secondly, for given X, X, the
corresponding 4 is uniquely determined because T is well=-
defined), X ¢ =0 &> T (Xx,0;0°) =0 (valid by
(13,)), oy = y &=> T (0, 0,4) = 0- (valid by (12)),
X.e = Xe=> T(X,X,e)=0 (valid by (13,)), e - Yy =y
&= T(e,y,y)=0 (valid by (13,)),X - Y=2e= T(X, 2, Y0’
(here, for given X,Z a unique solution u> exists by
(2,); similarly for (24)¢=> (2,) .

Corollary to Propositions 4 and 5 : The condition
(21) catd (A~ E)=1 for all A€ X (where E is
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defined in the proof of Proposition 4 and & in (1)) im-
plies X =Y. If (21) and (2,) are satisfied then U » {food=
=Y. Thus, in the case that (21) and (2,) hold, the sys=
tem (X,+,+) is a double=loop. ‘>’

Proof. (21) =5 6  is a bijection; (22) =@ is
a bijection.

Proposition 6. Let &) = (X,+, ) be a double-loop,
and let the map T: X x X x X u{w?—> X be def1ined
by the linearity property ‘6’

(22) T(a,a-&+c¢, & )=c toralla,d,cel,
ald by T (a,d,c0)=a forall a,& € X, where
0 is & new element not belonging to X . If the ternar
T= (X, X, Xu{o03,X,T) satisfies (5), then 7 ia spe-
cial and satisfies (7,).

Proof. cawd X>2 because D has the zero and unit e~
lements. From the loop properties of &2 there follows the
remaining conditions (6),(7;) and (7,).

Broposition 7. There is a special parallel system /=
c (XxY,,C, 1) of the following type:
(5) That is, (X,+) is a loop with a neutral element o,
(XN{0j}r)is a loop with a neutral element € and X.0"=
=0 X=0 for all Xx€ X (cf.[7], p.61).
(6) Compare with [2], p.10 or [4], p.505, resp;ctively.

- 331 -



\

1) P satisfies (2,) but it does not satisfy one
of tMe conditions (3),(4),

2) P satisfies (3) but not (2,),

3) P satisfies (2,) and (3) but not (4).

_ Proof. 1) First, note that if (X,+,-) is a neo-
field (8 with right cancellation, i.e. @ +¢ = b+C =
’?d:»b‘,\tﬁ_en for every choice of 44,,v;, 4, ,7; With
Uy % 44, there exists an X & X such that X-dbs+
Tk XMy + Y
Consider the examples of non-planar neofields with right
cancellation constructed in [5]. Then, by Proposition 7,
we obtain special garallel systems of the required type
({25) is valid, one of (3),(4) is not valid).

2) We shall use the examples of (S,+,0) con-
etructed in [3], and by Proposition 6, obtain a parallel
’(§)$=(KL+J')13 a neofield, if (X,+) is a loop with
neutral element o, (X \ {0 $) 1s a group, and both dis-
tributivity laws hold (c£.[5],p.40). A neofield & is
called plapar if it satisfies the conditions (cf.[5], P
55):

a) ax+&=cX +c  is uniquely solvable in X for gi-
vena ,&,¢,d with a # ¢,

b) Xea+4&r = x.0 +c is uniquely eolvable‘ in X for gi-
ven c‘i,lr,a,d with @ % ¢ .
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systen of the required type ((3) valid, (2,) not valid).
One may also apply the procedure of [6], p.337, as fol~
lows: A halfcartesian group G, may be imbedded in any
halfoartesian group G; satisfying (5),[6], p.335 for
all a,4; ¢ €G. G may be imbedded in a halfcarte-
sian group G, satisfying (5)[6], p.335 for all a,&;ce
€ G, . On repeating this process we obtain a sequence
(G, )., , the union of which is a halfcartesian group G
satisfying (5)[6], p.335 for all a, b, e e G. It may be
shown that G does not satisfy (4),[6], p.335 if this
law is not valid in G . And such a G, exists: for ex-
ample, G;, may be chosen as the ring of integers. From
G_, we obtain the desired parallel system using Proposi-
tion 6.
3) In this case one may use the last example of [3],
and apply Proposition 6 as before.
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