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NOTES ON QUOTIENT MAPS
Otomar H&JEK, Praha

Summary: The relations between several properties of
quotient maps are studied; in particular, an internal c;m-
racterization of commutativity with formation of products
is exhibited (Proposition 2).

Let P, G be topological spaces, and e : G = P a
continuous map onto, (These assumptions will be preserved
throughout this paper; the terminology and notatiom is u-
sually that of [2].) The following properties and appelle-
tions are quite current:

(closed) e is a closed map, i.ec e[Y] 4is closed
in P whenever Y 1is closed in @

(open) e is an open map, i.e. e [¥Y] 4s open inP
whenever Y is op>en in- @& 3 -

(sectionable) there existe a section to e , i.e. @
continuous map 6: P— @ with e o s=1, (the identi-
ty map of ‘P ); .

(quotient) e 1is a quotient map, i.e. X 18 closed in
P if e'[X] 4s closed in Q .

Also consider the following properties:
() X=ele'[X1] for all Xec P;
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(int) Int X=ellnte'[X]] foreall Xc P,
(limit 1ifting) Whenever X, —» X in P, there
exists a subnet {x;} and also Y,y in Q with
ey, = x, ) ey = X.
It is a simple exercise to verify the implications in
the following diagram:

(closed) (sectionable) (open)
(cl) G (1imit lifting) (int )
\ (quotient)

We proceed to present several slightly lesa elementary
interrelations (it is still assumed that e : @ —~ P 1is
continuous onto). One of these, namely (c€ ) et (<int )
asdy (open)is contained in Proposition 1 below; this
yields, inter alia, that in general (¢l ) =d (int ) ,
since a closed map need not be open, etc. The example in
[1,I,§ 9,11)) shows that e can be closed and not limit
lifting.

m:.m_l Bach of the rollow:lng properties is
equivalent with (open):

1° (el) et (int);

e [X1~ €7LX) for all X c P;
3° e'[Int X]=Inte'[X] for all X c P,

4° (1imit covering) Whemever X;—»X in P and
X = @y , there exists a subnet {X;} &ad 4
Q with 4; 4y e ey = %5



*

5° (bi-open) For every topological space R , the
map e x 1o ¢ 6 x R— Px R 1is open.

Proof. Obviously (bi-open) =% (open); the opposite
implication is well-known [1,I,§ 9, prop.9]. Next, (open)>
=» (limit covering) may be established similarly as
(open) =% (limit lifting); and the opposite implication
is easily obtained e.g. by contradiction. Obviously 2%
&> 3% and (open) => 1° is in the diagram above.

Thus it only remains to prove that
1° =y 2%, 3° = (open).
Assume 1°, and take any X < P; then
Int (P<X)=<P-X= P-ele” [X]]

=elInt e'[P-X]1=e[@-Q-€"[ P-X)-e[@-€"[X1],

80 that the set Y = e " [ X] has

P-el(Yl=el[@-Y1.

Now take complements and inverse images:
Yce'le[Y11=G-€'[Q-YI1cB-(Q-Y)=Y;

thus Y= e'[e [ Y]] and returning to X,
e LXi=e'[ele [X111=€"[X]
having applied (¢f ) agein. This establishes 2° as required.
To prove that 3° ==> (open), first note that for any
G open in @ there is
elGl=elinte'lelG11] (1)
since G cInt e'[e[G11] from openness of G, end

ellnte'[e[Gl]1])c ele'[e [GJJ;- elGl.

.
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Now, using 3°, the set
elInt e'[e[G11]1 = e[e'[Int e [G1]1=1Int e [G]
is open in P ; with (7 ) this yields that indeed e 1is
an open map, and this completes the proof.
~ Eroposition 2. Assume that P 1is a Hausdorff space;

then each of the following properties is equivalent to
(1imit 1ifting):

1° Far every topological space R , the map

ex1:@x R~ Px R

is limit 1ifting; A

2° (bi-quotient) e x 1q  is @ quotient map for eve-
ry topological space R

3% e x 1a  is a quotient map for all compact Haus-
dorff spaces R with a unique non-isolated point.

Proof. Easily or obviously, (limit lifting) = 1% =
=» 2%= 3% thus it remains to prove that, e.g., non (li-
mt lifting) ==> non 3°. Assume the premiss; thus there
is & convergent net { x; /[t €I} in P , say X;— X,
such that for every subnet {X;j one has that e'[x;13
34 —>Y implies ey < X. Moreover, since P is
Hausdorff, it even follows that no net 4y € e’ [x’-J con-
verges. i

Now take for R the one-point compactification R =
= L v (c0) of the directed set I , topologized in the ob-
"vious manner: all i €1 are isolated, each neighbour-
hood of co intersects I in a residual subset.Xor X
take the set {(X;,£): 1 eI} c Px R ; obviously
(x,00) e X = X. -
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To prove non 3° it is only needed to verify that
(ex1 Y[ X1 is closed.
Thus, let
(ex 1Y "[X13 (4,5 )= (g,4)-

Due to the special topology in R , one has the follow-
ing alternative, Either eventually 1, = 1% 0, 80
that 4; € e "Lx;] and hence also a4 € e"[x;1,
y,i)e(ex '1&)" [X1. Or 1w co; but then {xiii is
a subnet of {x;}, and by assumption the Yy € e[ x.;iJ
cannot converge. Thus only the first case obtains, and .
hence (ex4)" [ X1 is closed but X is not. This
concludes the proof.

Corollary 3. If P is a Hausdorff space with count-
able character, then (quotient) &=> (c€ )¢==d (1limit 1Lif-
ting) ¢==> (bi-quotient). » s

Proof. On using the diagram and the preceding propo~
sition, it suffices to prove that (quotient) == (limit
1ifting). Take any X; — X in P, and then a (countab
le) sequence {x, } which is a subnet of {X;}{ . If no_
subsequence of any 4, € e’ L X, 1 converges, then
the set X of terms of {X,} would be non-closed with
closed e *[X] , and hence e could not be a quotient
map. )
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