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ON FINITE AND COUNTABLE RIGID GRAPHS AND TOURNAMENTS
V. CHVATAL, Praha

Let V be a non-void set and E a binary relation on V,
ECVxV , Let f be a transformation of V . If (x,y)e.E
implies (£(x),f(y))eE , then f is called compatible with
the relation E .

Let C(E) denote the set of ail transformations compatib-
le with a relation E . Then C(E) with the binary operation

O (O is defined, as usual, by the compositions of trans-
formations) is a semigroup, and its unity element is the i-
dentity transformation.

The pair [V,E] will be considered as a graph, where V
is the set of vertices, E the set of edges. The transfbrmu-
tionsin C(E) will be called endomorphisms of [ V,E] . If,
for every x,y € V , precisely one of the cases (x,y)€E ,
(y,x)€E holds, then the graph [V,E] is called a tourne-
ment. We emphasize that a tournament contains all loops; thus
every congstant transformation is an endomorphism.

An fe C(E) is called an automorphism of the graph
(ViE] if £ is 1-1 mapping; an f€C(E) is calledgproper
endomorphism of the graph [V,E] if £ is not 1-1.

Let C(E) contain |V |+ 1 elements (here | V| denotes
the cardinal of V ), namely the identity and all the con-
stant transformations of V . Then the graph [ V,E] is cal-

led _rigid, x)

x) We remark that the expreasion "rigid graph" is often used
in a different sense.
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The purpose of this paper is to prove some theorems concer-
ning rigid graphs, and to show how rigid tournaments can be
constructed for [V | > 5 .,

Theorem 1. There exists no rigid graph for |V| =3 nor
for | V| = 4 ; there exists just one rigid graph
for |Vi=2,

x) rigid tournaments for [ V| =5 .

Theorem 2. There exist two

Theorem 3. There exist at least three rigid tournaments for
IvIiZ6.

Theorem 4. There exists a countable rigid tournament.

First, we shall prove some lemmas.

Lemma 1, Let [V,E] be a rigid graph, [¥[>1 ; then
(x,x) ¢ E for all xeV.

Proof. If E =g , then C(E) contains all transformations
of V and [V,E] is not a rigid graph. Hence E contains
some couple (u,v) , and all the constants are endomorphisms;
thus (x,x)eE for all xe V.

In.the sequel we shall confine ourselves to graphs with all

the loops.

Lemma 2., Let [V,E] be a rigid graph, x,yeV , x#&y,
(x,3) € E. Then (y,x) ¢ E.

Proof. Let (x,y) e E and (y,x) € E . Define a transfor=-
mation £ by f£(x) =y, f(u) 2x for all us x . Then
fe C(E) , and we obtain a contradiction.

Lemma 3. Let | V| & 3, [V,E] be a rigid graph.
If we define G(x) ={u: (x,u) € E, ukxy
atx) =:[u: (ux) e E, ustx},

_then {G@I21, 1672 1 forall xe V.

x) Two rigid tournaments are explicitly given in the proof;
it may be easily shown that there are no other ones.
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Proof. Let 1G(x)l = |6~T(x)] = 0 . Define £(x) = x) ama
£(u) =y, y#x, for all ug x . Then fe C{E) and this
is a contradiction.

Let 1C(x)I =0, |6"(x)|> 0. Define f£(x) = x and f(u)=
=y, y€G (x), for all us%x . Then f€C(E) and we have

a contradiction.
Similarly for |G- (x)l =0, la(x)I > 0.

Lerwa 4., Let [V,E] be a rigid graph. Then tlere exists an
x € V, for which |C(x)| =le""(x)| =1 .
does not hold.

Proof. Indeed, assume the relstion for 2ll x &€ V . Put
f£(x) = G(x) for all x € V. Then f e C(E) and we obtain

a contradiction.
lerma 5. Let [V, EJ bec a tournawent, |VIZ 3, (x,z) € E,

(z,y)e L, fe C(E), fix)=+f{y) . Then flz) =
= f£(x) = £(y) .
Proof. (fix), f(z))e &, (£f(z), flx))e E and [V,u]

is a tournament; hence f(x) = f(z) .

Lemma 6, Let L[V,E] be a tournament such that C(E) con-
tains & non-identical automorphism. Then there exist
at lecost three different points x,y,z € V , for
which 1G(x) 1= [6(y)l = 1c(z)| holds.

Proof. .yidently |G(x)| = la(e(x)){ for all x& V , and
there exists a ue V for which fl(u)s u , If

fo f£(u) =u, then (u,f(u)) , (£(u),u) € £ , and this is a

contradiction.
One cannot have £ e f(u) = £(u) , because f 1is a 1-1 trans-

formation. Hence | G(u) | = | G(£(u)) = lc(f o £(u))l.

Now, we shall prove our theorems.
Proof of theorer l. Using lemmas 1,2,3,4 it is easy to show

that no other graphs except Gy, G, Gq G, on fig. 1 are
rigid for V = 2,3,4. We find easily that the graph Gg
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is rigid, and the others have the following endomorphisms:
o (Ta) s o (Fea)» a(m) -

Proof of thearem 2. Both the tournaments T1 ’ Tz on
fig.2 are rigid. We shall denote by Pp the number of those
x€ V for which |G(x)] = n ( n a positive integer). For
T, and T, we then obtain

T, ip, =1, Pp=3, pg=1,

'.I."z:p1=2,pz=1,p3=2. .

By lemma 6 , the tournament T, has no non-identical
automorphism.

Let the tournament T,, have an automorphism f . It fol-
lows that f(x) = x, f£(y) =y . But (z,u), (u,v), (z,v) e E,
and thus f must be the identity.

It remains to investigate the proper endomorphisms.

r (x,y), (y,2), (z,x) e L, put A xyz = {(x,y), (y,2),
(z,x)3 , and Axyz~Auw if Axyz N A uww % 0. If
A xyz ~ Auww , £eC(E) and f(x) = £(y) , then it fol-
lows from lemma 5 that f(x) 2 £(y) = £(z) = £(u) = £{v) = £(w).

Now, it is easy to show that every proper endomorphism of

T, , Tz is constant.

1 For T, there is Axzy ~ Axay , ODxuy~ Awy ,
Avuy A~ Avuz ; and it follows from lemma 5 that £(x) =
= f(v) =3 £(x) = £(z) , if fe C(E) .

For T, there is ' Axzy A~ Ayuz , Ayuz~ Avuz ;
and it follows from lemma 5 that f£(x) = £(v) = £(x) = £(z),
£lv) = (y)=2F(x) = £(y) , £(x) = £(u)=>£(v) = £(u) , if
£ e c(E) .

Hence T, and Tz have no proper endomorphism except
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the constants.

Proof of theorem 3. We shall construct the rigid tourna-
ments ror | V|&6 .

Let [V, , E,] be a rigid tournament, |V |=n, n=5,
P, _5€ (1,2) . Denote by X, ,¥, the points for which
IGxg)l=n-2, (3,%x, )€ E, and if p,_, =2 then
la(yy )l = n =2 . Nowset V=YU{x}, E=EU E |,

E, = {xw:uev, , uexjU{(x, , x), (x,x)f.
Then the tournament [V,E] is rigid.

Indeed, assume that [V,E] has a non-identical sutomorph-
ism £ . If £(x) = x, then [V, ,E, ] has the non-identical
sutonorphism f, , defined by £, (u) = £(u) for all ue v,
but this is a contradiction.

If fix)# x , then there must be flx, ) =x, flx)=x, ,
because | G(x)| =/G(x, )|l =n=-1 and uskx,usktx =
= |6l /< n-1.

Hence (x,x, ) € E , and this is a contradiction.

Now assume that [V,E] has a proper non-constant endo-
morphism f , and write £ 7(u) ={v: £(v) = u}. I £ 7(u)N
N ¥,# & , we may choose an element of TN ¥V, and de-
note it g(ﬁ) « Then go £ is a transformation of V, .

Let (u,v)e E, .If go f£(u) = g o £(v) , then evident-
ly (gofl(u), go£(v))eE, . If go £(u)tgo £lv) ,
then (£(u), £(v)) € E implies (go £(u), go £(v)) e E_.
Hence go fe C(E, ) .

' Assume that go f is the identity. Then u, ve V, ,
usk v "imply £(u) s £(v) . One must have £(x) = £(u) for

some u & W° 9 because £ is not 1-1 . But there exists a
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ve V, for which (vu)e E, vatx, and (£(u), £lv)) ,
(£(v), f(u)) € E ; this is a contradiction.

Assume that go £ is a constant. Then f£(u) = v for
all ueV, and (f(x),v), (v,£(x)) € E . It follows that
£(x) = £(v) , so that £ is a constant transformation; but
this contradicts our assumption.

It results that [V ,E ] is not rigid, and this is a
contradiction. Thus we have proved that [V,E] is rigid.

Setting |¥|= n, one has p

m
can construct two sequences of rigid tournaments. Then

-2= 2 + It follows that one

P, =2, 1.72'=p3 = ... pﬂ-a‘l N pm_z=2

for the sequence derived from 'L‘z , and

B =1, p =3, p=0, p =2p .. p =1,
pn-zaz

for the sequence derived from '1‘1 o

If we take complements of graphs from the second sequence pre-
serving loops, we obtain a sequence of rigid tournaments dis-
tinct from both;for this sequence there is

Py =2, Pz'Ps eee %_’.'ls P,,-,,'e’ %_3’30

P,.2® 1.
Proof of theorem 4.
In this part we shall denote vertices by positive integers.
If we construct the second sequence of rigid tournaments
and proceed to infinity, we obtain a countable tournament
[N,E), where N is the set of all positive integers and
E=BUS,
B = {(1,2),(3,1),(4,1),(5,1),(2,3),(2,4),(5,2),(3,4),(5,3),
(4,5),(1,1),(2,2),(3,3),(4,4),(5,5) }
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g =f{(x,y): x,ye N, x>5 ,y<x=-1 VELy=>x+1VELy=
=x} U{(56)}

There 18 A 123~ A124~ A245 ~A 345~ A 456 A~ A 56T ..
cee~Ann+tl n+2A Ann+l n+2 n+
* 3~ ..
and for no other set A except these. Moreover, using lemma 5,
there is for fe C(E)

£(1) = £(5) = £(1) = £(3) ,

£(u) = £(v)=> £(u) =f(u+1l) if u>5, u>v+1l,

It follows that if £ is an endomorphism of [N,E] and
there exist x,y € N, x#y , f£(x) =£(y) , then f is a
constant.

Let us assume that [N,E] has a non-constant endomorph-
ism £ ; then s y = £(x)# £(y) .

The edge (4,5) 4is an element of three distinct sets
A245 , A345, A456 , sand no other edge is an element of
three or more sets A . It follows that f£(4) = 4, £(5) =
= 5 , because the edge (£(4), £(5)) is an element of three
y sets A « The edge (£(5),£(6)) is an element of two sets
A. , hence £(6) = 6 . Similarly, f(u)= u for all u>6 .

If f(us# u for some ue€{l,2,3f, then T, has the
autbmorphism £, , defined by £, (u) = £(u) , which is not
the identity transformation; this &s a contradiction.

Thus f is the identity, and we have proved that (N,E]
is rigia.

Remark to theorem 4., If we derive a countable tournament from
Ty , we obtain the tournament [N,E°] , where
E" = {(x,y): (x,y) € E ET (x,y)#(2,4)} U { (4,2)7 ;
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however this tournament is not rigid since it has the endo-
morphism f , defined by f(n) =n+h, where h is an ar-
bitrary positive integer.
Applications of the results.
1, Algebra. A set M with a binary operation © , which
assigns to any ordered pair of elements M some element of
M , is called a grupoid. If uov = vou for all u, ve M,
then M 1is called a commutative grupoid. The elements ue M
with uou = u are called idempotents. If f is a transfor-
mation of M and for-every u, ve M there is flu)o fly) =
= f(uov) , then £ is called a homomorphism of the grupoid.

Let [V,E] be a rigid tournament. We may define a bina-
ry operation O on V hy uov =u for (vyu) € E

uov =y for (uv)e E.

Evidently, the set V with the binary operation o0 1is a
commutative grupoid such that all elements are idempotents
and that each homomorphism is either constant or the identity
transformation. Thus

There exists a commutative grupoid G such that all ele-
ments are idempotents and that each homomorphism is either
~ constant or the identity transformation for 5£1G | £ «,.
2, Rigid closure spaces. If P 1is a set with a rule which
assigns to any set Mc P its closure ¥ in such a manner

that the axioms

g=9 (1)
Mc (11)
i, UK, = ii1 U iz (11I) (see [1])

are fulfilled, then P 1is called a closure space. A transfor-
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formation £ of P 1is called contimuous if £(M) c £(M) ’
where f£(M) ={x: x = £(u), ue M}.

Let [V,E] be a rigid tournament, and set
Y={x: (u,x) € E,ue€ Y} for any set Yc P . The set V
with the so defined closure is a closure space, all continuous
tranaformations of which are either constant or identical.
Thus:

There exists a closure space P such that all continuous
transformations of P are either constant or the identity
transformations provided that 5 € IPl € ¢, .

I thank Z. Hedrlin for much valuable advice.
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