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CONSTRUCTION OF CERTAIN SYSTEMS WITH TWO COMPOSITIONS
Véclav HAVEL, Brno

A double guasigroup is defined here as a triple

(5,+0) where S, caxd S 2 2

two binary compositions on S such that (S, +) 1is a

; is a set and +, O

loop with a neutral element 0 satisfying x o0O=0ax=0
for all X € S and (S5 N\ {0},a) is a quasigroup. If
(SN {0},0) has a neutral element, then (5,+,|:x) is
called double-loop [4, p. 61].
Each doubleTquasigroup (S ,+,0 ) with a prescribed
additive loop (S, +) may be constructed as follows,[7a]:
.Let (B, o) be the group of all bijective mappings of S
onto S reproducing the element () , with a natural com-
position o ; also, set 0 : S — {0} . Choose any
mapping 7 : S — B U {0} satisfying 7 (0) = 0,
q(x)*o far x € S N\ {0} such that 12(5\{0})
operates on S\ {0}  simply transitively, and define the
composition O on S by x O Y = q(.x?zy_ for all
X,y e'S « Then ( S’ +, 0 ) is the double-quasigroup
associated with 7 -, and every double-quasigroup (S, +, O)
with a prescribed additive loop may be obtained in this way.
Now we exhibit the familiar algebraical properties of a‘
given (S, +,0) 1in the following way: _
At (x+q)+z-.x+('y-.-x) for all X, i,z e S .(Asgociativity,
CY X+n=gex forall x, ye S . (Conmtativity,)
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RI*® xo(y+z)e xpy +Xx0% forall X, %,x € S.

(Right distributivity,)

for all X, ¥, X € S .

(Left distributivity,)

Rpro Any equation ~aOx + ox = ¢ has a unique
solution X € S for any given @, &; ¢ of S
with a = ¢ . (Right plapapity.)

LD*9(x+y)nx=x0Z + 4 0%

Lp*o Any equation x0a - xa & = ¢C has a uni-
que solution for any given @, 4, ¢ o S with
a + b, (Left planarity.)

In the theory of incidence structures (partial planes)
in the sense of [4 , p.2] and in the theory of systems with
generalized parallelity [7b] there are important the double=~
quasigroups satisfying the axioms Af, .Lp*o@ G'A+, RPE,

In the sequel we shall use modifications of the Moulton
construction from the classical paper [1]) (also see, e.g.,[4],
(5],[6)), and we wish to obtain some double-quasigroups
( S,+,0) satistying A*, C*, RP*P or A%, c*, LP*®
respeotively. It remains an open question whether double-qua=
sigroups in which emactly one of the laws RP*% , LP*0O
holds are obf&inable by this process.

We note that in a double-quasigroup (S, +, 0 ) from
A* , RD*B  on AT, LD*P  there follows LP*©
or RP*O respectively.

A double-quasigroup (S,+,0 ) satisrying AT,RP+O
LP*Y and either RD*ET or LD*? 45 umally cal-

led a pight or left quasifield, respectively, [4, p. 921.
We shall begin with the additive loop (S, +) of a



double-quasigroup (5, +, - ) and also a mapping 7:5- B,

and construct the associated double-quasigroup.

leLet F= (S,+,) be a left quasifield and $ : S—> S
a bijection with d (0)= 0 . For arbitrary a € S  let
7(a) be the mapping X — $(a)x, X € S ; then the asso-
ciated double-quasigroup (S, +,0) 4is also a left quasi-
field, RD*H holds if and only if ® is an additive
mappinge. .

Proaf. The validity of AT, C* in (S5S,+,0) is, of
course, trivial, - There is xo(y+x)= P(x)(y+2)=P(x)y+
+d(x)z=xay+xoz,60 that LD+ S  nolds. Any equation
—aox + &oxX=c,fo given a,b,c € 5\{0}, a+ &, nay
be rewritten as — P (a)lx + (&)X =c , and the unique
solvability follows fron RP Y : If & is not additive,
there exist a,, &z € S  such that & (a,+ L)+ § (a,)+
+@ (&;), and this implies (a,+&)az=dla+4;).2+P@)z+
+¢(,e;)z-a,nz+&nz for all z € SN {0} ; thus
RD+O  is violated. If ¢ 1is additive, then RD* Y gol-
lows directly.

One simple special case can be stated as follows: Let F
be an ordered left quasifield [4 , p. 237); the set of all ne-
gative elements of F will be denoted by N . We choose
d@)=a forall a =0 eamd F(N)=N (so that &P
must map N bijectively onto N ), and suppose d (m)+ m
for some m € N . Then ¢ is not additive and the assump-
tion of theorem 1 is fulfilled. “
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If 7(a) 1o taken as x—» 6( (@). FxN, xesS,
where &, ¥, 0 are the bijections of S onto S with
$0)m Y(0) = 6(0)= 0, thenthe associated double-
quasigroup (S,+,0) fulfils L pra and R P+ O
whereas LD¥9 o RDY P 45 satisfied mrecisely
it $, 0 or ¥,6 respectively are additive. This ia
the special case of the known notion of weak-isotopy, in-
troduced in [3 , p. 460). In theorem 1 only a special case
of this weak-isotopy ‘ras used. The connection between weak
isotopic double=aquasigroups and their associated systems
with generalized parallelity [7b] can be investigated when
the correspondinz ternary compositicn T is introduced by
T(a,R,e)=aa bl +c.

If (S5,+, -) is a double~quasigroup, then we may
chome Q as the identity mapping on S, ¥ as the
papping X —» o \"ﬂ, xX€S, and 6 as the mapping
X —» X/f,x€S; here ¢, 3 € S\ {0} are fixed
elements, and N\ and / denote, respectively the left
and right divisionin (SN {07, . ) . The associe
ted double-quasigroup (S, +, O) satisfies oc O X =
=X O = X for all X € S N{0} , and was in~
troduced in [3 , p. 461] (but only under the assumption of
LP*' and RP™*° ) according to the description given
by Hall.

For our aims, the most impartant special case of theo=
rem 1 is that in which F =(S5,+,-) 1s a skew-field. If
$ 1s not additive, then (S, +, ) 4s a proper left
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quasifield without the identity element. According to [3 ,
pe 463 ] ,. in this manner the left quasifields, which are a
form of "generalized natural field" [3 , p. 451) of desar-

guesian planes, may be obtained.

2, Let F = (S,+,+) be a double-guasigroup. Take a map-

ping 9: S5 —=>Bu {0} with 7(0):0 such that
each 7 (a), @ € 5N\{0§ has the forr x —pad, (x),

xX€S , vwhre §: S S is an additive bijection
with &, (0) = 0 and 9 (S N\ {0} ) acts simply tran-
gitively on S \ {0} . Then the associated double-

quasigroup (5,4—, 0) satisfies RD*D H the a-
ziom R P*Y9 45 fulfilled precisely if the mappings
- —a@o (X)+ b8P (x), x€S are bijective
for all distinct @, & of S \N{0} .

Proof. We have X O(Y+2 )= x P, (Y)+xPy (2) =xoy+x02Z
for all X,4, £€ S, sothat RD* P nolds. The rest
of the theorem is obvious.

The André quasifield [4 , p. 206 ] is constructed as des~
cribed in theorem 2 on taking a field for F , and &, >
aeS\1{0} , @s suitable automorphisms of F 1eaving
fixed each element of some proper subfield of F .

3a. Let F = (S,+, ©) be an ordered non-commutative field
and @ and additive bijective mapping of S onto S sa~

tisfying x > 0 = (%) >0 and X < 0= $ (x)<D.
Define 7 (a) a8 the mapping X —Q-X, X € S it a=20,
and as the mapping x —»P(x)a, X€ S if a<0.
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Then the associated double-quasigroup ( S, + , 0 ) satisfies
A+, C*, RD*A (and thus also LP* 2 ) and does
no gatisty LD* O . Moreover, RP* O holds if
and only if the mappings X — - Q . X +$(x)-&; x €S, for

@ >054% andXx—a-d(x)a+d.x,xeS rora<0<t
are bijections of S onto S

Proof. For x =2 0

we have x O (y+2)=x0%+X0Z,
and for x < 0  we have X O +2)=P (Y+2z) x=(Ply)+

+d&N'x=x0y + xO0z , sothat RD*? is valid.

If ve choose X,, Yo, <, € S such that X, > 0 > 44, ,
X, +y, >0, z, =1, then (X+4,)02,=X,+Z,+Y, %+
* X, Z,+ PR, Y= X,02,+Y, 0%, ; thus LD*P  ig viola-
ted. It remains to examine a mapping X —m —a O X +Aro x,
x e S for given distinct elerents a, & of S N{07} .
We distinguish the following four alternatives:
—a0x +4ox=-a-x+P(x). & for a >0, & <0,
—qox +b0x=(-a+&). x for a>0, & >0,
—QeOXx +40x=d(x).(—a+L4) for a <0, <0,
-2, O0x+dox==d(X)ra+b.x for a<0, & > 0.
In the second and third cases the required bijectivity
is easily obtained; the first and fourth alternative figure

explicitely in the last condition of the theorem.

3be Let F = (5, +,+) be an ordered non-commutative s —
field, and $ an order preserving mapping of S onto S
with $ (0)= 0 . Define ” (a) as the mapping x > a- X,
xe€S ,if a =20, and x— P(x)a, xe S, if
a < 0.
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Then the associated double-quasigroup ( S,+, 0 )  satisfies
A*, €T, LP*? and dces not satisty LD* 9 . Moreover
RD*P holds if and only if the mepping X — — @ - X +
+P(x).- b, xeS, fr @ >0>4 amd x—-d(x)a+
+—?r->(, xe S ‘for a < 0 < 4 are surjections & S
onto S .,

The proof is analogous to that of theorem 3a with the ex~-
ception of the axiom L P+ 9 |, But any mepping X—»X OQ-
-x 04, xeS has the form X X.a — X -Lax.(@a-L) for
X200 andx—3@)xX=>P)x=p@)-P(LNXfor X <0 .
From the order-preservation of § there follows bijectivity
of the mapping considered. At the end of the theorem, we have
utilized surjectivity, this being possible because ¢ is or-
der=-preservinge.

For the construction of a non-bijective mapping X-poC X +
+d(x)x, x € S , for some positive of (if such situation
occurs at all), the known ordered non-commutative sfield of Hil~

bert does not seem to be sufficiently general.

4. Let F = (5, +,+) be an ordered sfield and let N be
the set of all negative elements of F . We denote by $: N—
- N an order-preserving bijection and Y ¢ S - S an or-
der-preserving bijection with 7 (0) =0 . Let 7 (a)

be the mapping X = ¥ (@)X, x€ S, if a =2 0 ana
x—=>ya)x, x20 and x=>d(alx, x< 0 ir

@ < 0. The associated double-quasigroup (S, +,0) satis-
ries A%, c*, RP* Y, Moreover, LP*©° holas if
and only if the mappings x — Y (x).a-P(x)- &, x & N
te a >0,b<0,anax>dx)a-yx)L, xeN for
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a < O,Ir > 0 are surjections of N onto N

Proaf. Consider the mapping X > ~a o x + Ao x, X e S »
for given distinct @, & of S N\ {0} . Without loss of ge-
nerality we may restrict ourselves to the case a < 0, a < 4.
Then we distinguish three cases
—aox +Lox=Cd@)+y&)) x for x < 0, 4620,
—aax +Lax=(-d@)+ ) x te X < 0, &< 0,
~a0X+box=(-PR)+y(8)) x for x & 0.

Since @ and 7Y are order-preserving and Yy (0) = 0;
the considered mapping is bijective. Analogously, consider the
mapping X = X O0a —.XDII; xe S ; Where one may suppose
without loss of generality, that A& < 0, @ > £ . Then we
distinguish three alternatives:

XxXoa -xagb=y(x)a-px)-& for x<0, a>70,

xOa ~-x0b=dx). (a -4) for x<0, a< 0,
xpa-x0b&=y(x)(a-4£) for x = 0.

In the second and the third case the required bijectivity
follows directly, and in the first case it is stated in the

last condition of the theorem. As @ and ?Jf are order-pre-

serving, bijectivity can be replaced by surjectivity. From this
the rest of the proof follows. The bijection ¢ amd F

can
be chosen in such a way that RD'© and LDY 9 are both
violated [6 , pp. 93-94).

I y(x) for x€S eand P(X)=px for x € N

for fixed o > 0 , we obtain the classical case of the con-

struction, especially the initial case of [1].

5. Let F = (5,+, ) be a pseudoordered field (6 , p. 427],

and denote by N the set of all negative elements of F
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Let $: S— S, ¥ : 5 =S be pseudoorder-preserving bi-
Jections [6, p. 4281 with & (0) = 0 and y (0) = 0 .
Suppose that % (a) is a mapping x = y (@)'X, X = 0
or Xx—>da) x, x‘<0 far every @ € S . Then the
associated double-quasigroup (S, +, O) satisfies AT ,
C*, RP*9 . Noreover, L P*8O holds if and only if
any napping x — P (x)-a -y (x).- &, x €S for given
A, & with opposite signs (in the sense of [6, p. 427)) is
a surjection of S onto S .

Procf. The validity f RP*?  must be obtained in a
manner differemt from that of the proof of thearem 4. Following
L6, p.90], we replace the requirement of the unique solvability
in RP*TE by requiring only the existence of solutions

U n.qc-aud=&ac-‘bc¢-¢c-d far @, b,c,d6 S ;

if c 20, d=20, then agc~-aod=A4oc ~-Lad=
= y@)(c~d)my (b)) -(c-d);

it c <0, d< 0, then aoc-and «boc-4bod=
= Q) (c-d)=P(4)- (e -d);

i ¢ <0,d 20, thenaoec-aocd=~boc-bod=
=>($a)-$(BN.c =(y@)-y(8))-&;

and if ¢ 20, d <0, then anc-aod=Aoc-bod>
- (y@)-y(8)-c=@@)-yw) -d .

In the first and the second case ¢ = d follows,
e da)-$k)
whereas in the third case =< 0 = m =
dR)-$(8)  y@)-y(4) d@)- p#) v@)-y &)
etk it F <V m T +teF
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and one of the mappings ¢, ¥  cannot be pseudoorder-pre-
serving, contradicting the hypothesis. The fourth case may be
studied analogously. Thus the condition U holde in (S,+,a),
We verify that any equation @ aox —&'gx = ¢  has at Jeast
one solution X € S for given a, &, ce S, a + 4,
Indeed, far X & 0 +this equation can be rewritten as

' [
() -y ) x=c, thusif Fry_wrgy >0, ve nay

[A
use the solution X = m) . For X < 0

Oone

may rewrite as (P (@) - $C4 N+ x =¢ , so that for

—c <0 W X = S Tt
3@ -5@) ve mw PR X = F@) -dBy - tie

e . . y@-y@ c . $@)-&)
clear thatw(a)-zy(&) Py Ay = >0<‘pat.@'—_—_‘a-£r >0,

while in the contrary case one of the mappings &, ¥ is

not pseudoorder—-preserving.

Finally, we investigate any equation xODa - xa& = ¢
for given v, &, c € S, a 4« & . Fora=0, 46290
or for a¢<07‘@'<0 we have y(x). (a -4&) = ¢ or
(x). (a~4) = ¢ respectively, and the unique sol-
vability follows from the definition of % and & . The
remadning cases a =20, b <0 and a <0, 4 =0
yield the equations 3 (x).a -d(x)- & = ¢ and
d(x)a - X)) b =¢ respectively, stated in the
lest condition of our theorem.

. If we neglect the postulate of unique solvability for
X € S\{0} or for ryeS\{O} of the equation
XOmy=2 forgiven 4, 2 € SN{0} or x,z€ S\

{0} respectively, then we may construct, by the method -
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of theorem 5, & system (S, +, 0 ) such that (S, + ) is
an Abelian group with neutral element 0, xO00= 0o x = 0
for all X €S and (SN{0},0) 4s a groupoid satis-
fying condition U . In the agsumptions of theorem 5 it is
sufficient to replace the requirement that @ be a pseudo-
order-bijection by that $ is to be a pseudoorder-injection.
Then the resulting (S, +,0) satisfies A, C¥, U,RP*"
and does not satiafy LP* o . To obtain a concrete case
choose F = (S,+,:) to be the field F (§)  of ratio-
nal expressions over the basic field F = (S,,+, ) and
define the peseudoorder on F as follows [6, p. 428]: if
#(f)
“ 9%y
mials -F(f),g,(f), thenset x >0 or x < 0
according as dzg«f(f)—dzg, g,(f) is even ar odd.
Next, choose J(a)=a?, ae $ , emd F@),acS;
it may be shown that é is pseudoorder-preserving injection

eSS has the lowest form with non-zero polyno-

which is not a surjection and the same conclusion holds for
the mapping X — 1 -y (xX)+41-P(x) = X+ x3 , €85
(e.ge for f there is no X such that x3 = f or

x +x3= £ ). Another example is obtained if F=(S,+, .)
is the rational field with the following pseudoorder [6, p.
4271: choose some prime v and express every rational in

the form £ %; where q ,4 are the lowest integers

prime to ., and then say that this rational is positive or

negative according as 7 1is even or odd. Now set ?//((L) =@,
@ €8 and (@)= a®, a€S . It may be proved that

3
® is a pseudoorder-preserving injection which is not a

- 423 -



surjection and that also the mapping x —» 1. Y (x)+1-$ (x)=
ar X +x3 is of the same type. = The so-obtained systems
(S,+,0) may be interpreted as near-planar ternary rings,
which are not planar (see the following definition) if the
corresponding ternary composition T on S is introduced
by T(x,M,v) = x0ux + v for all x, 4L, v € S.
Now we use theorem 5 for rational field F = (S,+,-)
with the pseudoorder described above and put ¥ (@) =@ ,

Q,
a.eS,andd)(n“;:)-ﬁ"%-‘; for .p."‘g-’-i

in canonical form in S N\ {0% , whereas & (0) =0 ¥

Then d) is a pseudoorder-preserving bijection because for

d-ﬁﬂ% ;ﬁ-ﬁ"ﬁl €SN\{0} with m - m 20

- b-
there is bﬁ)_' (m--ﬂ’ a 4 L a, s 0.

by T a -4,

Then, for o = 2 , the mapping X —» X +P(Xx), X €S,

m m X
is not surjective since the equation 2 3‘% + 2 -&—"' =
1

1 Xq \2 1-m,X
=2 (-1)e= (5(-;> +2 (5(_:)"1=0 has only a non-rational
solution 5—::[”: Va-2m_ 41, m=0, *4,% yeesy 3 the ele=

memt 27 (1) €S  does not have an inverse image with
regard to @ . The obtained system (S,+,0) can be in-

terpreted as a near-planar ternary ring which is not planar

n_) The existence of such @ was orally communicated to me by
0. Kowalski.
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(see the following definition) if the corresponding ternary
composition T on S is introduced by T (X, 4, ) =
=xga+7v forall X, «&, €S .
This ternary ring satisfies the condition of "symmetry":
T (x, 4,2 )= 1is uniquely solvable in Xx € S for
given «, v, 4 € S , « #* 0. The existence of such
ternary rings is important because it shows that the notion
of symmetric near-planar ternary rings ([7b]) is in fact more
general than that of planar ternary rings. R
By a tepnary ring ( S, T ) is meant here a non-empty
set S with a ternary composition on T satisfying
T(S,5,5)=5. The ternary ring (S, T ) 1s called
peap-plangr if
1° there exists an element O € S such that T (x,0,v)=
=v, TOwu,»)=v» faoall X, «, 6 S,
2° any equation T (a, &, v )=d is, for given a2,
deb , uniquely solvable in 2 € S ,
3% for given X,,4,, X, ,%, € S  with X, % X, , the
equations T (Xj, 4,4 )=44:, 4= 4,2 have a unique so-
lution x € S .
The near-planar ternary ring ( S, T ) is said to be
planap if '
4% for given Ly, 4, Aby, % €5 with L, # 4, the
equation T (X, 4q,0;) = T(x, A ) has a unique so-
lution x € S .

6. Let F = (S,+,+ ) be a pseudoordered field and

P : S > S abijection with fixed element 0 . We defi-

ne a ternary composition T on S as follows:
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T(x, s, )= xX- 44+ 2» for 4 20 amd T(x, u,v)=
=@ (x)w +v) foo 44 < 0 .Then (S, T)
is the ternary ring satisfying 1° and 2°; moreover 3° holds
precisely if @ is a pseudoorder-monotonic (in the sense of
[6, p. 428]).

Proof. According to the definition of $ anmd T, 0
satisfies condition 1°, Condition 2° is obvious for « = 0
and follows from the bijectivity of @ if « < O . Given
the equations #44; = T(X, , 4, v), 1= 1,2, with X,,%,,
Xyy%y € 5, X, % X,, Yy, ¥4y, b we distinguish two cases:

1) gy, =X, b+v; 1=1,2 for « = 0,
2) dy,)=d(X) su+v, i=1,2 for u < o .
Thus from (1) there follows (X,~X,) AL =)~ Y, , 59 (%-X,)=
=/=g_('v,—:y,) and from (2) there follows (@(X.,)—@(Xz»'u-
=P ¥,)- §y,), 5g (DX, )-P(x, N+5g Py, @,)) . ¥e conclude
that 3° is satisfied precisely if %17_‘_% > 0=

dy,)-dy,) N Yo=Yz P, ) - DX,

$lx)- & (xy) X K D@ D (H)
5 FO0E6D_ )-8

Xq—Xg Yi~ Yo

is a pseudoorder-monotone. Condition 4° holds in ( S , T)

>0 or

, all of which mean that &

precisely if for 4, < 0 < 4, each § (X)-tt;+ v =
- PCx. 4y + Y3 ) is uniquely solvable in X € S . For
F  the real field emd P(x)= x>, x €S , we ob-
tain the situation investigated in [2].

7. et F = (S,+,:) be a pseudoordered field and
g:85—>5 a bijection with H(0) = 0 ; let T be




the ternary composition on S defined as follows:
T(x, s, )=Px)-tetrr for « =0 am Tlx, )=
=dxa +(v)) for w4 < 0. Then (S, T) is a ter-
nary ring satisfying 1% and 2°; moreover 3° holds precisely
if § 1is pseudoorder-monotone.

Proof. Condition 1° is ohviously satisfied. Condition
2% i valid for w« = 0  trivially, and for 4 < 0 fol-
lows from bijectivity of @ « Thus we need only consider
condition 3°: assume given X,, %,, X,, y, €S, "
X4% X, ,4,% 4, , and distinguish two alternatives: &
G) y; =) +v, t=1,2 for «w = 0.
(1) dyY) =X, 4 +d(v), i=1,2 for w< 0.
From (3$&he)re¢f(o;l;ws (Cx )P e =y, - g, , #0
thet ——L—=-"2~ > ( : from (4) there follows

Y1 - %2
- 6 (4
(Rq= %) 4 =9,)-5(y,) , so that é_'_?_g_(_'y_{_< 0.
17 %2
- §0xp) 2
We conclude that M—é—{’—‘- and dwy,) 5(93)
Y- Y2 Xq = X

simultaneously have the same sign, which implies that &

is pseudoorder-monotone (and conversely). Condition 4° holds

in (S ,T) 4if and only if, for «, < 0 < 4, , each

Xaty, + & (v;)=d(P(x)u, +7 ) 1is uniquely solvable inm

X€S .+ If F is taken to be grational field and & = 1

chosen according to André’s procedure [5, p. 204-205], one

obtains the planar ternary ring investigated in [5].
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