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Commentationes Mathematlcae Universitatla Carolinae 
5, 4 (1964) 

ON THE PROXIMITY GENERATED BY ENTIHE FONCTICNS 
M. K/LTÉTOV, J. VANÍCEK, Praha 

We examine the proximity atructure of the complex plane 
generated by the set of all entire functions. It is shown that k 

this structure coincides with the finest proximity compatible 
with the usual topology of the plane.' 

In § 1, aome fundamental concepta conceming proxlmity 
spaces are recalled, and the problems under consideration ara 
formulated in terms of projectively generating mapping8 (how-
ever, this formulation is not ušed in what followa). In § 2, 
the problems in question are stated by meana of current elemen-
tary topological concept8f In § 3, main theorems are stated, 
as well a8 some auxiliary propositions. Finally, § 4 containa 
the proof8. 

§ 1 . 
The simplest concepta of the theory of topological and 

uniform apaces are assumed to be knoím; however, for convenien-
ce, we recall certain concept8 conceming proxiaity apaces (the 
theory of these spaces is due oainly to YiuM* Smlmov [see, e.g» 
5l ; a ahort survey of main concepta and results, aa well ae • 
list of references, is contained, e.g#f in [l]. 

If M is a set, then a blnary ralation & on the collec-* 
tion of all subseta of M ia called a proxlmity structure (or 
simply a proximity) on M if, for any subseta X, T, Z of M, 

(1) X * Y<—fr Y t»X , 
C2) ( X u í ) * Z < « 4 ( X - n oř Y # Z ) , 
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C3) I ň í ^ M X ^ í , 
(4) x 1** Y -» X * 0 , 
C5 J if X non # t , then theře exist X1 c M , tx c M 

such that X-, u Yĵ  * M and neither X & T^ nor Y t* X^ • 
The palr (Mf # ) is called a proximity space. If Xiíí , 

we shall say that X and Y are near (under t£ ); if not, 
they are said to be distant (under 1* ). A mapping f of a 

proximity space (M, & J into another one, (M^, lí^) , is call­

ed proximally continuous if X 1* Y implies f(X) 1^ f(Y) . If 

lJ> f ^ are proximities on the samé set M and X i > T 4 

-*̂  X tí̂  Y , then we shall say that t^ is coarser than & 

©r that & is finer than -^ . It is well known that if # 

is a proximity on M , then the f ormula x e X *=•* (x) i£ X de-

flnes a completely regular tdpology on M ; we shall say that 

this topology is induced by the proximity & • 

fe re call two simple instances of proximity spaces. If 

(K, p } is a metric space, then let t> be determined as 

follows: X t? Y if and only if for every £ > 0 there are 

pointa x c X f y e Y with p (x, y) < £ ; we shall say 

that & is induced by the metric p • If M is a normál to-

pologlcal space, put X-t*Y «&=> X n Y *f 0 I then t* is the 

finest proximity inducing the prescrlbed topology of M * 

We shall now introduce the concept of projective generation 

(for topological, unifora, and proximity spacesh It will not 

ba m&á in what followe; however, its introduction may help to 

ahow the connection of probléme considered here with certain 

notions of a qulté generál character. 

I*et us say^ for contenience, t-space, u-sp&ce, p-epace in-

ataad of topological (uniform, proximity) space* The terme t-, 

t**9 p-oontinuous mapping, t-f u-f p-atructure will be ušed in 
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au analoguous way, Finally, the letter c will be ušed as a 
"variable* to be replaced by t oř u or p . 

Now let X be a set; for any a € A , let fa be a mapp-
ing of X into a e-space Xa * It is easy to show that there 
exists A coarsest c-strueture on X under which every ffi 
is c-continuous; we shall say that this structure is projecti-
vely generated by the mappings fa . An important speciál ča­
se is obtained if tQ are mappings into the reál line IR. or 
the complex plane C endowed with the usual structure íre-
call that the proximity and uniform structure of IR or C 
are defined as follows: X* and T are near if inf |x - yf * 

K*X,yeY 
s 0 ; ty is a uniform covering if there is a number £ > O 

such that for every point x there exists a G € 9" with 

Ix - y l < £ -* y e G ). 

It appears that the characterization of projectively gene­

rated proximity and uniform structires is not quite trivia! 

even for some rather simple and naturel sets of generators fa • 

We shall consider the followiňg two problems here* 
I*et H denote the set of all entire functions on C (i. 

e. of those functions <f z £ —• C which are holomorphlc 

at every point x € C )• 

Cl) To characterize ths proximity on £ projectively ge­

nerated by H ; in particular, to declde whether it coincidea 

with the finest proximity compátible with the usual topology of 

C (i.e. with the proximity under which X and 1 are die-

tant if and only if X n X * 0 ). 

(II) To characterize the uniformity generated by H ; to 

decide whether it coincides with the finest uniformity compátib­

le with the usual topology of C «, 
- 269 -



The problém (I) ie anawered in the present notě whereaa 
problém (II) remaina unaolved. 

Clearly, there erlae eimilar queaxiona if we conaider, in-
stead of H , the claaa of all holomorphic mappinga f : C-+ 

-^ S where S ia locally convez topologlcal complez linear 
apaoe* 

Finally, the above-mentioned probléme are dosely connect-
ed with the theory of A -atructuree introduced in £ U by 
one of the preeent authora. However, we aha 11 not go into the-

ae questions here* 

S 2 . . 

Let ď and v denote, reapectively, the proximity 
and the uniformity generated by the set H of all entire fun­
ěti ona. 

Clearly, the structir es cT and V may be deacribed as 
follows: 

Two seta X c C and T c C are near (under ď ) 
if and only if, for any entire functions f^,*.*9 fn and any 
6 > 0 , there exiat pointy x e X , y € T with 

lfk(r) - *k(y)l << £ for k « l,.**f n . 

A eolle&tlon £. of subsets of í ia a uniform covering 

of the apaoe ( C f v) if and only if there exiat entire func-

tione flf.*.f fn and a number 6 > O with the following 

property: for every x e C there ie a set G € §u auoh 

that y € G whenever I fk(x) - fn(yj I < £ for k * 1,..,, n 

Probléme (I) and (II) may now be reformulated aa followa. 

ProbJjt£_i. Let X c C , T c C be diajoint eloaed 

aeta. To óVeeide whether there exiata a naturel n (which may 

depend on Z and T ) auoh that, for approprlate entire funě­
t i ona f l f . . . f fn , mas | f k (x ) - f k (y ) l S I for any 
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x e X , y € Y • 

Problema 2 and 2*. Let £ be an open covering (for Prob­

lém 2#: a finite open covering) oř £ « To decide whether the­
re exists a natural n (which may depend on £. ) sudí that, 
for appropriate entire functions f^,..*, fn , the following 
holds: if x € € , y e (D and max If^tx) - f^íy) I < 1 f 
then there is a set G 6 £• with x € G , y e G • 

It is well known that, for any two distant sete X and T 
in a proximity space M , there exists a proximally continuoua 
function h which separates X and Y in the sense that 
h(z) * O for z € X , h(z) • 1 for z e Y . It is also 
clear that, in the čase of the space £ , h cannot be an en­
tire function, in generál (not even for a far weaker condition 
requiring that x e X — £ / h(x) I < £ , y € X =& I h(y) -
- 1 l< 6 ). 

Therefore, the following question seems to be natural: 
Problém 3, Let X c C , X cz C be disjoint closed 

sets, and let G c C , H c C be disjoint open non-void» 
To decide whether there exists a natural numbér n (which may 
depend on X, Y, G, H ) such that there exist entire functions 
f-̂ ,..., fn with the folllowing property: for any x€ X , y € 
€ Y , there is a number k » !,•••, n with fk(x) 6 G , 
fk(y) € H . 

To illustrate this problém, we are going to show that, for 
certain sets X, Y, G, H , n « 2 is not suffieient. 

Ixamole, Let {oCkf be an lncreasing sequence of positi­
ve numbers, <?Ck ~+00 • Denote by Tk the set of all x c C 
such that I xl » ack 5 let X and T denote, respectively, 
the union of all fk with k odd, and with k even. Let 
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Q c C , H c C t>e disjoint bounded open non-void# 

5uppoae that \here are entire functions f ,̂ f̂  auch 

that, f or any x e X , y e T , elther f-^x) e G , f^íy) e H 

W f2(x) c G , f^íy) € H . We may suppose that fx , f2 are 

not constant. Por k * 1 , 3 , 5 , . . . , let Ak and ^ denote the 

set of those x c Tk for which f ^ x ) « G , respectively, 

ř 2(x) c G . Clearly, T k c Ak u ^ , k » 1 , 3 , 5 , . . . . There 

ex i s t s an odd kQ such that B^. - Ak + 0 ; for otherwise 

f ,(Tk) c G for k » 1 , 3 , 5 , . . . which i s a contradiction since 

G i s bounded. Choose xQ e Bk - Ak • Por any y e Y , we 
o o 

obtain f^í^) non e G , hence f2(xQ) e G , fg(y) e H ; 
thus fo-ly) c H which is a contradiction since H is bounded. 

§ 3 • 
We may now statě the main propositions. Observe that Theo­

rem 1 solves Problém 3 . As an lmmediate consequence, we obtain 
Theorem 2, which solves Problém 1; Theorem 3(which solves Prob-
lam 2#) alao folio*© from Theorem 1. However, the solutions are 
not definitivě; we do not know whether a smaller number of func­
tions is sufficient. 

Theorem 1. Let X c £ , Y c € be disjoint closed and 

let G c C , H c C be disjoint open non-void. Then there 

•xist entire functions ř^ f^ such that, for any x e X , 
j € T , fk(x) e G , fk(y) e H for some k * 1,..., 9 . 

Remark. The example above shows that we cannot replace 9 
with Z in this assertion. On the other hand, we do not know 
whether 9 can be replaced by some k » 3,..., 8 . 

Theorem 2. Let X c C , T c C be disjoint closed. 
Then there exist entire functions r\,..., fg such that, for 
sny x e X , y e Y , max Jf^íx) - fv(y)l Š 1 . 

Reaark. We do not know whether 9 can be replaced by 
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soae k * l , . . . , 8 . - I f w e denote by (U. tbe metric proxi-

mity on C (i.e. the proximity under which X and t are 

near tf and only if inf I x - y I a O ), then Theorem 2 as-

serts that, for any X c C f T c C with f n T * 0 , 

there exists a holomorphic mapping f : C —» ( C 9 (tc) such 

that f(X) and f(Y) are distant. 

Theorem 3. Let <£. be an open cover of C ; let §-* 

consist of p sets. Then there exist entire functions f^,«## * 

• ••t fqp such that the following holds: if x e € , y c C 

and . max lfv(x) - fv(y) I < 1 then there ia a aet G m 9-

with x e G , y e G • 

Remark. In contradistinction to the preceding theorems, the 

number of functions given in this theorem depends on $- • We 

do not know whether thia dependence is subatantial or whether 

there is a number q with the following property: for any f i-

nitě open cover C^ of € , there exists a holomorphic mapp­
ing of C into £** such that, with an appropriate £ > 0 , 
II fix) - f(y) M < £ implies the existence of a set G € fy 

such that x €G , y c G . 
The proof of Theorem 1 leans on two propositions from the 

theory of functions of a complex variable. The first of them 
is well known theorem of M.V. Keldysh [2J ; its proof is omitt-
ed. The second proposition is an easy consequence of the first 
(and a speciál čase of some generál theorems due to M.V. Kel­
dysh and M.A. Lavrentiev [31 ; see also [4J )• 

Proposition A » If E c £ is compact and C - 1 is 
connected, then for any complex-valued function f continuous 
on B and holomorphic on Int E , and any £ > 0 , there 
exists a polynomial g such that I f(z) - g(z)l< £ for % c 1 * 
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Proposltlon B« Let 1 c C be closed an suppose that ths-

re exist compact seta B^ c C , k * 1,2,..., such that 

(1) U By.9 C , 

(2) for any k • 1,2,,.., B^ ia contained in Int B ^ ^ 

and does not intersect E - B^ , 

(3) the eomplement of B n B ^ as well as of every B^ u 

U (B A Bj^^) , k * 1,2,..., ls connected. 

Then, for any complex-valued f continuous on S and ho-

lomorphic on Int S and any mono tone positive function t>» on 

reals t fc O , there exists an entire function g such that 

|g(z) - f (2) I << & (fzl) for every z c B • 

In the proof of Theorem 1, the following assertion will be 

ušed* 

Proposltlon CU If B c C and S ^ c C , i * 1,..., n , 

are convex compact seta*, and every two S* , S,. , i + j , are 

disjoint, then C - D - , Ú S, ls connected. 

Thls proposltlon (in an essentially more generál form) ls 

well known. Its proof ls omitted, 

§ 4 . 

Proof of Proposition B. Let £ k denofce the greatest lo*er 

bound of t M í z l ) for z e B^ . Then E k £ S-j^x > ° f o r 

k • 1 , 2 , . . . . Let ď^ > O be such that .2^<o£[ *s £*, t 

k * 1 ,2 , . . . • Put B0 * 6 ; l e t g0(z) * O for every z 0 C • 

By Proposltlon A , there exis ts a polynom!al g1 such that 

I tlz) - g^íz) I < cf for s s B r t B ^ • 

Now suppose that for a cer tain m » 1 , 2 , . . . there are a l -

ready chosen cer ta in polynooials gx , g g , . . . , gm such that 

cQ f cr s e t i n B^) - B^j, and 

l á n á m , 

: d£ for s m B^x and U n ž o . 
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As a matter of fact, thia has been doně for m • 1 • We 
shall now construct a polynomial g^^ f o r wilich ^ * ' hold* 
wlth m + 1 instead of m • 

Put gp(z) » 0 for z e B m , gp(z) * f(*) - g^z) for 
z e (E n B +,) - Bffi • Then cf is continuous on Bmtf (E n Bj^) 
and holomorphic in its interior. Since the complement of 
Bmu (E n Bj^j) Is connected, there exists, by Proposition A f 
a polynomial h such that I h(z)l< GT*I for z c Bm , 
lf(z) - gjz) - h(z> I «c c ^ for z € (E n Bffi+1) - Bffl • 

Now put g^^ a ^ + h • Then, clearly, (* ) holds with 
m • 1 instead of m . By induction^ we obtain a sequence of 
polynomials g,, g^ ••• satisfying the inequalities (*). Put 
g(z) « lim gv(z)» It is easy to see that this sequence conver-
ges locally uniformly in C • hence g is an entire function. 

Clearly, if z € (E r% B^) - B ^ ^ , k - 1,2,..., then 
lf(z) - g(z)!<J^cř < 6^ , and therefore I f (z) - g(z) I ̂  
< # (Iz!) . 
Proof of Theorem 1. For any <ť > O let y ( ď) deno-

te the collection of all squares with sldes of length cT and 
vertiees of the form p ď + i q ď where p, q are intege»*« 
For n « 1,2,... let í^ denote the set of those % e C 

for which - n * H(z) á n , - n tf y (z) á n . Choose positive 
numbers dfn , n • 0,lf2,..# in such a way that <£* is an 

integer greater than 2 , and 

(1) for each n • 0,1,2,... , ďn ** Q^ </"rH.1 where c^ 
is an integer greater than 1 , and 

(2) i f n * l f 2 f 3 , . . . , x e X A U n , y c T n Dn , then 
a a x ( | » ( x - y ) l , 12 (x - y ) | ) > 4 c T ^ . 

Put D0 • 0 and, for n • 1 , 2 , . . . , denote by Xn the 
collection of those squares S e if (čC^) which are eontained 
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in Bn - Int D n - 1 . Put X • U.*Cn • Then X ia a locally 
finite collection of compact aet8 and the following condition 
ia fulfilled: if S± € X , i * 1,..., 4 , and .L^ S± ia 
connected, then either X A , U S4 » 0 oř Y n t(J, S* * 0 • 

We ahall now conatruct three collectiona Xco), Xa\Xa) 

of rectangle8 in the following way: Jť* and Xa) conaiat of 
aquare8 with 8ldea parallel to the axea; a 8quare belong8 to 
X(9* if and only if, for aome n 9 the length of it8 aide Í8 
equal to T cf^ , and it8 center x ia a vertex of 8ome 
S^ € yC n , but of no 8quare Sg c Xn + i ; a aquare be-
longa to yCa) if and only if, for aome n , the length of 
Ít8 aide is equal to cQ - » ďn + 1 *&& *ts centre coinci-
de8 with the centre of aome S « Xn ; finally, it may be 
ahown that the cloaure oř C - UXro) - U Xay mfíg be ex-
preased as the union of a disjoint collection of rectangles, 
and thia collection le taken as JCCI} . 

Obvioualy, the collection X* * X m u VtaX u Xa) haa 
the following propertiea: (1) U X * » C , (2) X* ia lo­
cally finite, (3) each Xeí) ia a diajoint collection, (4) 
eVery T e X* ia a compact eonvex aet, (5.) every TeX* 
ia contained in the stár (with reapect to X ) of aonta xc 
e C • 

For J * 0,1,2 , denote by XČ;f> and ^ú) the collect­
ion of thoae T e Xc?* which interaect the aet X (reapect-
ively, t ); let xf^' denote the union of all T r X&} , 
and aimilarly for T ( J ) ; put X * ~ X Í O ) u X { 1 ) u X ( 2 ) , T * * 
» T C 0 ) y T a ) u T { 2 ) . Then X c X * , T e t * , X * n T * » 0 , 
and X*«" , T;^ are cloaed* Chooae pointa a c G t b € H ; 
lat E > 0 be such that 1 x - a 1 < £ impliea x c G , 

I y - b l <c £ impliea y e H ; put £' * | b - a I"1 £ • 
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To conclude the proof, i t i s now sufficient to find, for any 

given i , j « 0,1,2 , and entire function g * g±* such that 

l g ( z ) | < £ ' for z e X ( i ) , l g ( z ) - " l | < £ ' for z e Y ( J ) . 

If such functions are constructed, then putting *%\+\+\^%} a 

* a + (b - a) g*.t(z) we obtain functions f^,..., fg with pro-

perties described in the theorem. 

Now let i , j be given. Put E 3 X ( i ) u Y Í J ) and denote 

by Bjg the union of Dk and a l l those T e XCl) u y.Cj) which 

intersect D^ • Then Proposition C implies that the assumptions 

from proposition B are fu l f i l l ed . Put t?1 (t) » £* for O £ t , 

f( z ) « O for z e X f l ) , f (z ) * 1 for ze T < j ) • By Propo­

sit ion B, there exists an entire function g such that í g(z) -* 

- f (z) í <: S' for every z € E , hence I g(z) l <: €,' tor ze 

€ X ( i ) , 1 g(z) - 11 -c € ' for z e T ( J ) . 

Proof of Theorem 3. Let £- consist of sets G-,,. . . , G • 

Choose open sets V̂  such that V i c G* , U 7. » C . B y 

Theorem 2, there ex i s t , for any i = 1 , . . . , p , entire functions 

f i if . . . » f± Q such that max | f, . (x ) - f. . (y ) I & 1 

whenever x e 7± , y s C - ^ . Consider the functions 
f l f l f * t f i 91 • • • ! í p g • l ř x e C , y e C and 
t f i , j í x ) • ' i ^ W ^ 1 ^ o r a H i - 1 , . . . , P , J » l , o . f 9, 
then, for some i , x c V̂  and therefore y does not belong to 
C - Oi , hence y 6 G£. This concludes the proof. 
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