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ON THE PROXIMITY GENERATED BY ENTIRE FUNCTIONS
M. KATETOV, J. VANIEEK, Praha

We examine the proximity structure of the complex plane
generated by the set of all entire functions. It is shown that °*
this structure coincides with the finest proximity compatible
with the usual topology of the plane.’

In § 1, some fundamental concepts concerning proximity
spaces are recalled, and the problems under consideration are
formulated in terms of projectively generating mappings (how-
ever, this formulation is not used in what follows). In § 2,
the problems in question are stated by means of current elemen-
tary topological conceptsy, In § 3, main theorems are stated,
as well as some suxilisry propositions. Finally, § 4 contains
the proofs.

§1.

The simplest concepts of the theory of topological and
uniform spaces are assumed to be known; however, for coﬁvenien-
ce, we recall certein concepts concerning proximity spaces (the
theory of these spaces 1s due mainly to Yu.M. Smirnov [see, e.g.
5] ; a short survey of main concepts and results, as weil as a
list of references, is contained, e.g., in [1].

If M is a set, then & binary relation + on the collec+
tion of all subsets of M is celled a proximity structure (or
simply a proximity) on M if, for any subsets X, ¥, 2 of M,

1) X4 T Y ¥X,

@) (XUY) $Zimp (XBZ or YHZ),
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(3) XnYsf =X8Y,

(4) X9 =X %0,

(5] 4if X non ¢ Y , then there exist X;c M, Y;c M
such that X; v Y) = M and neither X ¥Y nor YUX .

The pair (M, ¥ ) 1is called a proximity space. If XY ,
we shall say that X and Y are near (under % ); if not,
they are said to be distant (under 1 ). A mapping f of a
proximity space (M, ¢) into another one, (M;, ;) , is call-
ed proximslly continuous if X Y implies £(X) 1}1 £(Y) . It

% , 7, are proximities on the same set M and X DY =
=» X %, Y, then we shall say that %, 1s coarser then
or that < 1s finer then %} . It 1s well kmown that if
is a proximity on M , then the formula x € X ¢= (x) %X gde-
fines a completely reguler topology on M ; we shall sgy that
this topology is induced by the proximity ¥ .

We recall two simple instances of proximity spaces. If
(M, p ) 1is & metric space, then let 2% be determined as
follows: XYY if and only if for every £ > O there are
points x€X, ye&¥Y with p(x, y)< € ; we shall say
that 2 1s induced by the metric @ o If M is a normsl to-
pological space, put X4PY ¢> XA T+ 0 ; then &4 1s the
finest proximity inducing the prescribed topology of M .

We shall now introduce the concept of projective generation
(for topological, uniform, and proximity spaces). It will not
be used in what follows; however, its introduction may help to
" show the connection of problems considered here with certain
notions of a quite general character.

Let us say, for convenience, t-space, u-space, p-space in-
stead of topological (uniform, proximity) space. The terms t-,

u=, p-continuous mspping, t-, u=-, p=structure will be used in
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an analoguous way. Finally, the letter ¢ will be used as &
wyariable® to be replaced by t or u or p .

Now let X be a set; for any ae A , let £, be & mapp-
ing of X into a c-space X, . It is easy to show that there
exists a coarsest c-structure on X under which every fa
is c-continuous; we shall say thet this structure is projecti-
vely generated by the mappings f_ . An important special ca-
se is obtained if fa are mappings into the real line R or
the complex plane € endowed with the usual structure (re-
call that the proximity and uniform structure of R or C
are defined as follows: X  and Y ere near irxe’)??s.ylx -yl =
=0; & 1is a uniform covering if there is & number € > O
such that for every point x there exists a G € @ with '
Ix=-yl< E=»y e G),

It appears that the characterization of projectively gene-
rated proximity and uniform structures is not quite trivial
even for some rather simple and natural sets of generators fa .
We shall consider the following two problems here.

Let H denote the set of all entire functions on € (4.
e. of those functions ¢ : € — €  which are holomorphic
at every point x ¢ C ).

(I) To characterize the proximity on € projectively ée-
nerated by H ; in particular, to decide whether it coincides ‘

with the finest proximity compatible with the usual topology of
C

tent if and only ir TN T =2p ).

(i.e. with the proximity under which X and Y are die-

(II) To characterize the uniformity generated by H ; to .

decide whether it coincides with the finest unif ormity compatib-
le with the usual topology of €
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The problem (I) is answered in the present note whereas
problem (II) remains unsolved.

Clearly, there arise similar queswons if we consider, in-
stead of H , the claae~ of a1l holomorphic meppings £ : C—
—» E where E is locally convex topological complex linear
space.

Finally, the above-mentioned problems are closely connect-
ed with the theary of A =-structures introduced in [1] by
one of the present authors. However, we shall not go into the-
se questions here.

§2.

let ¢ and v denote, respectively, the proximity
and the uniformity generated by the set H of all entire fun-
ctions.,

Clearly, the structwres oJ° and % may be described as
follows:

Two sets X ¢ € sand Y c¢c C are near (under J° )
# and only if, for any entire functions fl,..., f, and any

€ > O, there exist pointg x € X, ye Y with
If)(x) = £,(3)1 < € for k=1,...,n.

A collection § of subsets of C 4is & uniform covering
of the space ( C , v) if and only if there exist entire func-
tions f,..., f; and anumber € > O with the following
property: for every x € C there is a set G € g such
that  y € G whenever [f.(x) - £, (y)I<€ for k=1l,...,n.

Problems (I) and (II) may now be reformulated as follows.

Problem l. et Xc € , Y c C be disjoint closed
sets. To decide whether there exists & naturel n (which may

~Qepend on X and Y ) such that, for appropriate entire funce

10°°°s £ 4‘*‘“.?270- k’. e or any



xeX, yet.

Problems 2 and 2°. Let G be an open covering (for Prob-
lem 2°: & finite open covering) of € . To decide whether the-
re exists a natural n (which may depend on & ) suh that,
for appropriate entire functions fl,..., f, » the following
holds: if x e C , y € € end “nhaxgnlrk(x) -2 (y)l<1,
then there isaset G € @ with x€ G, ¥y €-G .

It is well known that, for any two distant sets X and ¥
in a proximity space M , there exists a proximelly continuous
function h which separates X and Y in the sense that
h(z) =0 for zeX, h(z) =1 for ze Y. It is also
clear that, in the case of the space € , h cennot be an en-
tire function, in general (not even for a far weaker condition
requiring that x ¢ X => | hix) I< € , ye€ Y =1h(y) -
-1ll< € ). .

Therefore, the following question seems to be natural:

Problem 3. Iet X c € , Y« € Dbe disjoint closed
sets, and let G c € , Hec C be disjoint open non-void.
To decide whether there exists a natural number n (which may
depend on X, Y, G, H ) such that there exist entire functione
Trreee, f, with the folllowing property: for any x« X, Y€
€ Y, there is a number k =1,..., n with f,(x) € G,
n(y) e B, . ’

To illustrate this problem, we are going to show that, for
certain sets X, ¥, G, H, n =2 1is not sufficient.

Examplg. Let { «y § be an increasing sequence of positi~-
ve numbers, oy —» 0 .o Denote by T, the set of sll xe C
such that | x| = o, ; let X and Y denote, respectively,
the union of all Tk with k odd, end with k even. Let
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‘@c € , Hec € be disjoint bounded open non-void.
Suppose that there are entire functions £, f, such
that, for any xe€ X, ye€ Y, either f1(x) &€ G, f,(y) € H
or fz(x) e G, fz(y) € H . We may suppose that f, , f, are
not constant. For k =1,3,5,..., let A, and B, denote the

. set of those x e Ty for which fl(x) « G , respectively,
fz‘(x) € G . Clearly, Tyc 4, UB  , k=1,3,5,... « There
exists an 0odd k, such that B, - A, + @ ; for otherwise
£;(m) c G for k =1,3,5,... which is a contrediction since
@ is bounded. Choose x e Bko - Ako «. Forany yeY , we

obtain fl(xo) non € G, hence rz(xo) G, fz(y) € H;
thus fz(y) c H which is a contradiction since H 1is bounded.

§3.

We may now state the main propositions. Observe that Theo-
rem 1 solves Problem 3 . As an immediate consequence, we obtain
Theorem 2, which solves Problem 1; Theorem 3(which solves Prob-
lem 2°) also follows from Theorem 1. However, the solutions are
not déﬁnitive; we do not know whether a smaller number of func-
tions is sufficient.

Theorem 1. Let X c € , Y c € be disjoint closed and
"let @cC , Hc € bve disjoint open non-void. Then there
exist entire functions Tyreeey f9 such that, for any xe X ,
YeY, filx)eG, fi(y) €« H for some k = 1l,..., 9.

Remerk. The example above shows that we cannot replace 9
with 2 in this assertion.- On the other hand, we do not know
whether 9 can be replaced by some k = 3,..., 8 .

Theorem 2. let Xc € , Y C be disjoint closed.
Then there exist entire functions Lygeees f9 such that, for
my x€eX, ye¥Y, o 1 ,Ifk(x) iyl z 1.

® Tyreey

Remark, We do not know whether 9 can be replaced by
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some k =1,..0, 8. « = If we denote by  the metric proxi-
mity on € (i.e. the proximity under which X and Y are
near if and only if "}Eyf‘ylx -3yl =0), t§en Theorem 2 as-
serts that, forany X ¢ € , Yc € with TAn T=9,
there exists a holomorphic mapping £ : € — (C , (u.)g such
thet £(X) eand f£(Y) are distant.
Theorem 3. Let G be an open cover of € ; let &

consist of p sets. Then there exist entire functions f,... *

eeey fgp such that the following holds: if x € C ,yeC

and h,#f’,‘gplfk(ﬂ - £,(y)l < 1 then there is aset Ge &
with xe G, yeG. .

Remark, In contradistinction to the preceding theorems, the
number of functions given in this theorem depends on & . We
do not know whether this dependence is substantial or whether
there is a number q with the following property: for any fi=-
nite open cover 9— of € , there exists a holomorphic mapp-
ingof € into €% such that, with an éppropr:late E>0,
I£(x) - £(y)H < € implies the existence of a set G & G
such that x€G6G, ye G. )

The proof of Theorem 1 leans on two propqsitions from the
theory of functions of a complex variable. The first of them
is well known theorem of M.V. Keldysh [2] ; its proof is omitt-
ed. The second proposition is an easy consequence of the first
(and a special case of some general theorems due to M.V, Kel=-
dysh and M.A. Lavrentiev [3] ; see also [4] ).,

Proposition A . If Ec € is compact end € -E 1is
connected, then for any complex-valued function £ continuous
on E and holomorphic on Int E , and eny € > 0, there
exists a polynomial g such that [£(z) - g(z)I< & forzeE .
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Proposition B. let E c € be closed an suppose that the-
re exist compact sets B, c C , kx=1,2,..., such that -

1) v B> € , .

(2) for any k =1,2,..., By dis contained in Int By,
and does not intersect E - By ,

(3) the complement of E N B; as well as of every B, u
'U(B n Bk*l) , k=1,2,..., 18 connected.

Then, for any complex-valued f continuous on E eand ho=-
lomorphic on Int B and any monotome positive function *» on
reals t & O , there exists an entire function g such that
lg(z) = £(z)| « % (lzl) for every z€E.

5 In the proof of Theorem 1, the following assertion will be
used.

Proposition C. If Dc € and S c¢ €C , 1 =1,...,1n,
are convex compact sets’, and every two S§ » SJ sy 1 4 J, are
disjoint, then € - D =~ iy’: S; 1is connected.

This proposition (in an essentially more general form) is
well known. Its proof is omitted,

§4.

Broof of Proposition B. Let €k denot e the greatest lower
bound of 1’\(!:!) for z€By .Then €, 2 €,, >0 for
k=1,2,... . Let J) >0 be such that ‘.g‘d} < & ,
k=1,2,... . Put B, =0 ; let gz) =0 forevery z & c.

By Proposition A , the;'e ex‘l‘stg a polynomial & such that

lf(z)-gl(z)l<d1' for £€EnB .

Now suppose that for a certain m = 1,2,... there are al-
ready chosen certain polynomials 8 1 &0y B such that

1£(z) - g (z)l< ] for se(EnB) -B _, end

(Xx) léenén, '

18,(2) = gy y(s)l<d] for seB _; and 1#ngn.
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As & matter of fact, this has been done for m = 1 . We
shall now comstruct a polynomial g ., for which (x) holds
with m + 1 instead ot‘ m .

Put ¢(z) =0 for ze€ By, @(z)=1(e) - g (z) for
z€(EnB,,) -B . Then ¢ is continuous on B uU(En Bpey)
and holomorphic in its interior. Since the complement of
B,u(En B ,;) is connected, there exists, by Proposition A ,
a polynomisl h such that. | h(z)l< d,; for z € By »
1£(z) - gm(z) -hiz)l<d,,; for ze(EnB ) -B .

Now put g ., = g, *+ h . Then, cleerly, (x ) holds with )
m+ 1 instead of m . By induction, we obtain a sequence of
polynomials g, & ... satisfying the inequalities (%). Put
g(z) =.|;}»12 g (z). It is easy to see that this sequence conve.r-
ges locally uniformly in c ; hence g 1is an entire function.

Clearly, if ze (Bn Bk) =By k=1,2,..., then
1£(z) - g(z) “i{ d < € , and therefore |f£(z) - g(z)l<

< 9 (lzl) .

Proof of Theorem 1. For any & > O let (") deno-
te the collection of all squares with sides of length J° and
vertices of the form pd + 1 q & where p, q are integers.
For n=1,2,... let D, denote the set of those z € T
for which -~ ng€R(z)&n, -n€ Y(z) £ n . Choose positive
numbers J, , n -'0,1,2,,,, in such a way that d;-d is an
integer greater than 2 , and

Fl) for each n =0,1,2,... , Jd, =q, Jd,; where q
is an integer greater than 1 , and

(2) 1f n=1,2,3,.e0. , xeX N D,», Y€ YA D, , then
pex(| R(x=-y)l, IF(x=3))>40dp, .

Put bo =g and, fori n=1,2,..., denote by X, the

collection of those squares S e ¥ (d|) which are contained
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in D, -Int D, . Put X =UX, . Then X 1s & locally
finite collection of compact sets and the following condition
is fulfilled: if S; € X , i =1,..., 4, and ig Sy 1s
connected, then either X ,\ig{l S =8 or ¥n Ql Sy =80.

We shall now construct three collections cho” JC“’,JZ'(’”
of rectangles in the following wey: KX and X @) consist of
squares with sides parallel to the axes; a square belongs to
X it ena only if, for some n , the length of its side is
equal to % d:‘ , and its center x is & vertex of some
S, € X, , but of no equare S, € X,.1 ; & square be-
longs to X ?' 1f and only if, for some n , the length of
its side is equal to o) - é- Onel and its centre coinci-
des with the centre of some S e X, ; finslly, it may be
shown that the closure of € - UX® - UX?) nay be ex-
pressed as the union of a disjoint collection of rectangles,
and this collection is taken as J Y’ .

Obviously, the collection X * =2 ?, K3 X ?) nas
the following properties: (1) UX*=C , (2) X* is lo-
cally finite, (3) each X9’ 4s a disjoint collection, (4)
every T € X * is a compact convex set, (5) every Te X'*
is contained in the star (with respect to X ) of some xec
eC .

For j =0,1,2 , denote by X9 ana yd’ the collect-
ion of those T € X’ which intersect the set X (respect-
ively, Y ); let X‘J) denote the union of all T e X! |
and aimilariy for !‘J) ; put x*:xw)u xu)u x(2) , Y¥=
=0, v, v®@) | mhen xcx*, Tecr*, T*a1X=p,
and X.(J) ’ !’f‘” ere closed. Choose points ae G, be H ;
let €> 0 be suchthet {x~al< € implies xe G,

ly=-bl<c €& 1implies ye H ; put E"lb-ll‘le
-276-



To conclude the proof, it is now sufficient to find, for eny
given 1, J=0,1,2, end entire function g'= g4 such that
lglz)l< €' for ze x4 , lglz) =11< €' for ze 9,
If such functions are constructed, then putting r31+'j+1(z) =
=a+ (b-~a) gid(z) we obtain functions f,,..., fg with pro-
perties described in the theorem.

Now let 1, J be given. Put E = xPy ¥(3) ana genote
by By the union of D, eand all those T e x(‘“ u y.("’ which
intersect Dy « Then Proposition C implies that the assumptione
from proposition B are fulfilled. Put 1 (t) = €' for 0 g t
£f(z ) =0 for ze X“) , 2(z) =1 for ze Y(J) « By Propo-
sition B, there exists an entire function g such that ( g(z) =«
-f(z)l< E' forevery z€ E , hence |glz)l< g’ for z.€
e x(¥) , 1g(z) =1l<€' for ze L L

Proof of Theorem 3. Let §. consist of sete Gyseoey Gp .
Choose open sets V4 such thet V1 c Gy %/ vy C . By
Theorem 2, there exist, for any 1 =1,..., p , entire functions
4,10 +oos fi’z such thatk f&iglfi K(x) - ty, MC NI TS |
whenever xeV; , ysg C = G4 . Consider the functions
£3,20000 f1,91 cses fp g If x € €C, yeC ama
lri’d(x) "fi,:](y“ < 1 forall 1=1,iee,P, J=1,0ea, 9,
then, for some 1 , x e -V-i and therefore y does not belong to
C - G; , hence y € G;. This concludes the proof.
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