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CONCERNING UNIVERSAL CATEGORIES
A. PULTR, Prsha

Introduction.

The present paper contains s definition of universsal cate-
gory and some results concerning this notion. In the § 1 we give
the definition snd two simple criteria which enables us to show
that some frequently discussed categories are not universal. At
the end of the paragraph we prove that the qategory of commuta-
tive semi-groups and their homomorphisms is not universal, which
result is not an immediate consequence of the criteria.

The category R of sets with binary relations and their
compatible mapping is shown to be universal in the § 2 . A proof
of the fact was sketched in [2] using the constructions introdu-
ced in [1]. Here it is done in a more detailed way.

The main results of the paper are gi'ven in the § 3 . We ex~
amine some categories similar to 7¢ and state which of them are
universal. Every transformation ¢ : X —> X mey be considered
&s = particular case of a relstion on X , namely {(¢(x), x)|
|x € X} . Another particulsr kind of relations form multivalued
mappings ¢ X—>X , i.e. such relations, that for every xe€ X
there is at least one y with y (« x . Roughly speaking, the de-
finition of %'. contains two kinds of relations: namely, relati-
ons in objects and morphisms, which are, in fact, a particuiar
kind of compatible generalized relstions. To suggest it, we write
R = R(r, f) . We may replace r by £ ,m or r and the
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same for f ( r means relations, m mltivalued mappings, f
meppings). In this way we obtain nine categories 72 (o, ).
Considering asnother kind of compatibility, we shall define anot-
her nine categories J2*( o, ) . Exact definitions of the ce-
tegories R(x,Bf), R*(ox,pB ) are given in the begin-
ning of § 3 .

We remark that throughout the § 3 we work in a set theory
without inaccessible cardinals.

§1.

M(a, b) denctes, as usual, the set of all the maphisms from
an object a to an object b (in a given category). A class ob-
tained by choicing a representsnt in every equivalence class (gi-
ven by isomarphism) of A , where A 1is a class of objecta, is
called a skeleton of A . Small category is a category such that
the class of s8ll its objects is a set.

l.l. Definition. A categ;ry & is celled universal, if any
small category is isomorphic to a full subcategory of £ .

The following statement is evident:

le2. Theorem. The dual category of a universal category is
universal, If & is isomorphic to & full subcategary of &£ , and
if & is universal, then & 1is universsl.

I.3. Remerk. Since semigroups with unity elements (in particu-
lar,groups ) are smell categories, the following holds: Let & be
a universal categary, s] any semigroup with unity element. Them
trere exists an object @ in 4 such that St
M(a, a) .

is isomarphic to

l.4. Theorem. Let & have the following property: There ex-
ists a class A of objects of & such that its skeleton is a
set and such that for every a € & N A there exists a bed&
with M(a, b)s @ +=M(b, a) and such that a is not & direct
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summand of b x) - Then the cstegary & 1is not universsl.
Proof.let the category &£ be universal and let G be any

group; let us dencte a(G) an obkct of & such that

G~ M(a(G), a(G)) . Cbviously, if G, G° are not isomorphic,

the obJects a(G), a(G’) are not isomorphic. If a =a(G)¢ A ,

there exist b, 9, ¥y e& , g:a—~>b, o :b—> 8, a

being not a direct summand of b . Therefore Yo has not

an inverse morphism snd we lave a contradiction, for M(a, a) is °

a group., Hence a(G)e€ A for any group. But there is a proper

class of mutually non-isomorphic groups.

1.5. Theorem . Let &€ have the following property: There
exists a clas® A of objects of & such that its skeleton is @
set end such that for every b e £ there exists an a € A
such thst M(=, b)# & = M(b, a) . Then the category & 1is not
mwniversal,

Proof . We are going to obtain the statement by proving that
any object of any category has only a set of mutually non-isomorph-
ic direct summands. Let us have an object & , Let b, b‘ be its
non-igomorphic direct summands. let o : b —> a, B :a—>b,
«’:b°—> a, pA’:a-— b’ be morphisms such that 4 e ,

B’ox’ are isomorphisms. K efB = «’o B' implies (B oo’
ol(B'ox ) =fBexoefB o emd (B'ox)o(Box’)=
=R'0cx’o A'0x’ ,i.e. b isomorphic with b’ , in a contra-
diction with the assumption. The assertion cencerning the sét of
mutuslly non-isomorphic direct summands is therefare sn imediate

consequence of the fact that M(s, a) is a set.
x] a is called a direct summand of b , if there exist morphisme

*:a—> b, B :b—>a suchthat SooC is an isomorph

ism,
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1.6. Corollary. If there is an object a &€ & such that
both M(b, a) and M(a, b) are non-void for any b &€ 4 , in
particular, if & has = singleton resp. cosingleton, then £
is not a universal category,

1.7. The criteria 1.4 and 1.5 do not give an immediate ans-
wér to the question whether the category of semigroups (in gene-
ral, withouta unity element) is universal. We close this paragraph
by showing that at least the category of commutative semigroups
and the ir homomorphisme is not universal, The statement is an im-
mediate consequence of the following theorem:

Theorem, Let S be a semigroup, & € S an element such
that a®™ = a™ for some m # m . Then there is an element be& S
with b . b =b , Consequently, a commutative semigroup either con-
tsins an element b with b l. b =b , or its endomorphism semi-
group is infinite (more precisely,it contains sn isomorphic image
of the semigroup of natural numbers with multiplication).

Proof. Let a™ =a® with n > m , Hence a®

ak(n—m) .

m.amzam

and consequently a® = a™ o Let us take a k such that
k(n - m) m ., Multiplying the both sides of the last equatiom by
aK(-B)-B o et b.b=b for b=afP B | Noy 1ot S be
a commutati ve semigroup; Iet b . b4+ B for every b € S , Hence
for sny & and sny ms=# n - holds a™ = a? o Let us dencte N
the semigroup of natural numbers. The mapping & : R — E(S) de-
fined by @ (n)(x) = x™ s evidently & monomorphism.

§a.

2.1. Denotations. Let X, ¥ be sets, R, S binary rela-
tions on X, ¥ respectively. By a compatible (mare precisely,
RS-compatible) mapping f : (X, R) — (Y, S} we mean a mspping
f : X—> Y such that the implication x R x’= f(x) S f(x")
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holds. The sets with binary relations and their compatible mapp-
ings form obviously a categary, which will be denoted by 2
Let us dencte 323 (?2;' resp.) the full subcategary of 22 ge-
merated by objects (X, R) with antireflexive R such that for
every x € X there is a ye X with y Rx (with either xRy
a YRx ).

let A be a set. We denote by AR  the category, described
&3 follows: objects are systems (X ;{Ra} s 8€ A) where X is‘
a set and every R8 is & binary relation on X , and the morphisms
from (X 3 {R,} , a€ A) into (Y ;{Sg}, 2 € &) are all the map-
pings f : X-> Y , which ere Ra Sa -compatible for every ae€ A,
Let (X, R) be a set with a binary relation. We denote C(X, R)
the semigroup of all the compatible mappings of (X, R} into it-
self. The object (X, R) 1is said to be rigid, if C(X, R) is
trivial,
‘ 2.2+ Theorem. Any small category <& is isomorphic to a full
subcategory of some AZA . The set &' o the morphisms of o€

‘

may be talen as the set A .

Proof. Let us denote by K the set of the objects of & .
Let us define ¢ (a) = (U(M(b,a)I b e K?; {R ], x &€ £'), whe-
re BBy iff B =yoex 3 S(R)={yr—>Box].Obvi-
ously, & is a 1-1 functor into £‘'72 .Llet f : $(a) >
— $ (b) be a morphism in &% . Let us denote € the i~
dentity morphism of b . Since o€ = E eoC , we have oc R_E
and hence f(oc) R, f(E) , i.es floc) = f(£) occ o Hence f =

d(£te)) .

203. Lemme. Let (X, R) € R} . Then there exists a (Y, S)e
€%, with card Y » card X and C(X, R} ~ C(Y, S) , such that

e e .-

x) Let (X,R}JeR. A sequence x3 fxz'".]'.'ﬂ €X) with the proper-
xinxi*l(isl,...,nsl XpRxy 1% called a “ecycle of the length n.
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2or 3.

Proof. Let us take Y =Xu Ru U , where U=0, W , 0 =
*{u%, l%} , B? ={u§, ug, ug } « Let us define the relstion S
by:

wsw, Bsuy, ¥sw, (1=1,2),dse ;
for every x€ X , 1=1,2,m§$x;
for every (x, yJe R x8S(x,¥) , (X, ¥)Sy =

Evidently, the length of eny cycle in (Y, S) is divisible
by either 2 or 3 . Since the image of any cycle under a compa-
tible mapping is & cycle of the same length, we get immediately
9 (Ui)c U1 (1 =1,2) for any compatible ¢ € €(Y, S) . Now,
let us take an x € X . Since ui,Sx y Wwe have ¢ ungvx
ond we easily obtain ¢ wy=uj emd @ (X)c X . Let us take
(xy yJ€ R . Since x S(x, y) end (x, yJ Sy , we have
¢xS glx,y) and ¢ (x,y)S ¢ ¥ and we get ¢ (x,y) =
= (X, $¥) by the fact that & (X)e X .

Now, it is easy te see that the mapping ¢ = C(Y, S) — C(X,R)
defined by ¢ (g Mx) = @ x is an isomorphism.

2.4, Corollary. Let 4¢ be a cardinal less than the first
in=ccessible one. Them there is & rigid aebject (X, R} in %a
with esrd X » 44 , such that the length of any cycle in (X, R)
is divisible by either 2 or 3 .

Proof. By [1] there exists & rigid (X°, R’) in 22 with

card X » . . Without a Joss of generality we may suppose <z > l.

Then (X°, R’) ¢ R, , since if x R’ x,

into x, 1is compatible, and, further, a point which is not in the

the ¢onstant mapping

relation with any other may be compatibly mapped everywhere. Now,
we get the statement using 2.3 .
2.5+ Theorem. In & set theory without inaceessible cardinals
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the category 72, (and hence # , too) is universal.

Proof. By 2.2 it is sufficient to prove that, for card A
asccessible, the category AR is isomorphic to a full subca-
tegory of 72, . Let us teke a rigid object (B, S)€ X, with
card B 2 card A + 1 with cycles of length divisible by either
2 a 3 ., Let Pps ooy Py be mutually different primes, Py ¥
2,3 ,and let U; (L =1, ..., 4] consist of formal elements
8y(1), +eoy uglpy) 5 let, finally, U =0y ve.av Uy . .

Since card A + I £ card B we may choose a 1-1 mapping
o: A—> B such that there is a b, € B ~ o (A) . Let us define
By = {(a, 1) lae Bf, s; ={((a, 1), (2", 1)) I (e, a") e S}
( =1,2) . Let us define &, : A—> B; by o;a=(ca,i).
Let us, for an object X =(x 3{Ryf,a€A)e AR denote
Yo ={(x, ¥,2)| (x,y) e R, §, Y=U{Y |8 &A} and define
$ ) = (x), By ,where X =XUYuUUUBUB, =d R is
defined as follows:

;(J) Ry wy(J+1) (=1, ooy 4, J=1,000,py-1),

wy(pg) Ry wy(l) (1 =1,...,4) ;
for every (b, 1) € B, u;(1) Ry (b, 1) (4 =1,2) ;
for every (b, 2)e B,, u;(1) Ry (b, 2) (1 = 3,4)
(b, 1) Ry (b°, 1) iff bSDd’ (1 =1,2);
for every xe X , (b, i)R]x (1 =1,2) ;

for every a€ A, (x,¥)e Ry, XRy(x,y,8) Ry ¥ ,&,y,a)RY,
A;aR;(x,¥y,8) (1=1,2).
Now, let ¢ : (X; {R,f, ae A) = (X"; {R;}, ac A) be
a morphism. & () : & ) -3 (X°) 1s defined as followe:
for x€X & (g)lx = gx, Jlglix,y,a) =
=(gx, ¢y, 8),
$ (¢) 1identical ver UuwBju B, .
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Obviously, ¢ forms a 1-1 functor into %R, . Now, let
rf:d X — Fa (X°) be s morphism. Similarly as in 2.3 we get
flu(3)) = w(§) , f(B;).c B; . By the rigidity of (B, S) imme-
distely f£(b, i) = (b, 1) for every be€ B . Since, particularly,
flbgy 1) = (b, 1) , flx; 8) = «, & , we get f(X)c X and
2(Ye Y, .By xR (x,¥y,8), (x,¥,8) Ry ¥ we have
fx Ry f(x, y,a), f(x,y,a)Rf £y and hence f(x,y, a) =
= (fx, fy, a) . Hence, finally, f = & () , where ¢ : T %
is defined by g x =fx .

§3.

3.1. Denotations. Let X, Y, Z be sets, Ac ZxY , Bc Y=
» X . The set {(z, x) | there exists a yeY , (z,y)e A,
(y, x)€ B 1is denoted by A o B . The categwry % (r, r)
( R*(r, r) respectively) is defined as follows: Its cbjects are
couples (X, R) , where X is a set, R&€ XX , the morphisms
from (X, R} into (X°, R°) are triplets (S, (X, R) , (X°, R"))
such that Sc X< X and Se Rc R0 S (So R=R‘eS res-
pectively). The composition of morphisms is defined by the formula
s’y X, Ry, (X", R°7)) o (S, (X, R) , (X°,RT)) =

=(s’e s, (X, R), (X", R"")) .

We associate with every object (X, R} the adjoint morphism
a(x, R) = (R, (X, R} , (X, R)) .
A multivalued compatible mepping (strongly compstible mapping, res-
pectively) is a morphism (S, (X, R), (X°, R")) such that for eve-
ry xe€ X there exists 8 x° with (x°, x) € S . If there is al-
ways exactly one such x° , we call the morphism a compstible
(strongly compatible , resp.) mapping. If there is no damger of mis-
understanding, we omit the wards (strongly) compatible . Sometimes,
we shall write simply S instead of (S, (X, R), (X°, R*)) .
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By R(m, r) (R (f, r) resp.) is dencted the full subca-
tegry of 93 (r, r) generated by the objecta (X, R) such that
@ (X, R) 1is a mltivalued mapping (& mapping, resp.).

By R (r,m) ( 93 (r, f) resp.) is denoted the subcatego-
ry of R (r, r) consisting of the seme objects ss n (ry )
and of all their multivalued mappings (mappimgs, resp.). (It is
easy to see that n(r, f) 1is isomorphic to the category
from the § 2 .)

R (m, m) (R (£, m) resp.) is the full subcategory of
R (r, m) generated by the objects (X, R} such that a(x, R)
is a multivelued mapping (a mapping, resp.).

Finally, ®R(m, f) (R (f, f), resp.) is the full subea-
tegory of 71 (r, f) generated by the objects (X, R} such that
Q (X, R) 1is a multivelued mapping (a mepping, resp.).

The categories NR*(a,p ) («, # =r,m, f) ere de-
fined =naloguously.

The categary ﬂia is evidently isomarphic to a full subcae-
tegwry of & (m, f) . Hence the categariea X (m, f) and
MR (r, f) are universal ones. In present paragraph we shall pro-
ve that with exception of these two and R *(m, f) and
R¥(r, £} no category defined above is universal. On the other
hand, we shall rove that both R*(m, £) end ®R*(r, £) ere
universal, Hence, the situetion for both & ( o« ,3) and
R*(«,f) (x,B =r,m f) is described hy the following
table ( + means: the categary is universal, - : the category is

not universsl):

‘ﬂ f m r
f - - -
m + - -
r + - -

3.4, Theorem, The categories K*(o(,ot) (e =r, m, f) are
not universale. - 235 =



Proof . Let us consider the group P3 o the permitations
of a three-point set. If R*(r, r) (R*(m, n) , R*T, £)
resp.) were universal, there ought to be a relation R (multiva-
Ived mapping « , mapping & , resp.) on a set X such that P,
were isomorphic to the semigroup of all the morphisms of (X, R)
( (X, 4) , (X, @) resp.) into itself, i.e. to the semigroup
of the sets R'c X » X (multivalued mappings (a.': X—=>x,
meppings ¢': X —» X , resp.) with R°c R=Re R’ (‘a'of‘=
= wew' , go'cy = @o g’ ,resp.). Since R (u, g ,
resp.) itself is en element of the semigroup, it has to corres-
pond to an element of P3 , which commites with any other one.
But only the unity element possesses in P3 this property, and,
on the other hand, the unity element obviously corresponds to the
@agonal A of X X .We gt a contradiction, since, except
of one-point X , the semigroup of all the morphisms from (X,A4 )
into (X, A ) is not a group.

3.3. Corollary. &K*(m, r) , R*(f, r) and &R*(f, m)
are not universal,

3.4, Lemma, Let G be a group rovided by a (reflexive) par-
tial ordering -4 such that the following implication holds:

X, ¥y 23€ G, x 3y = zx <42y, x23Yy2.
Let for some g € G and for every x€ G x g< g2 x , Then
xXg&=ggx forevery x€ G .

Proof. Let x € G ., Since xlg 3 gx'I , We get g x 3
3 x g (mltiplying by x from both the right snd the left),

and hence, sssuming x g 4 g8x , gx =x 8 »

3.5. Theprems R (ot ,o0) (o€ =r, m, f) are not univer-
Balu )
Proof. Let the semigroup aof morphisms be ordered by inclusion.
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Using the lemma 3.4 we may now repeat the proof of 3.2 .

3.6. Corollary, The categories 42 (m, r}, & (f, r) and
R (£, m) are not universal.

3.7. Theoren, # (r, m) snd #K*(r, m) are not universsl,

Procf . We prove, that ax;y non-trivial group of' all the morph-
isms of some (X, R) into itself contsins a non-trivial element,
commuting with every other one. Really, (R u 4 , (X, R), (X, R))
is & multivalued mapping. If (S, (X, R), (X, R)) is another one,
we have '
So(RuA)=So RyuSoeAc( =resp.) Re SUAe S =

=(RuA)es.,

3.8. Theorem. The categary Ra is isomorphic to a full
subcategory of R¥(m, £) .

Proaf. Let (X, R)e R, . Let us denote by X; (1 =1, 2)
the set {(x,y, 1)/ (x, y)e R}, by X5 the set { (x, 3)|
|x€e X?. let us define a relation R on the set X =
=XvXuXu x3 as follows:

for every x € X x R(x, 3) end (x,3)Rx ,

for every (x,y)e R x R(x, y,2) , yR(x, y, 2) .

yR(x,¥y,1) and (x,¥y, )R (x,5,2) .
Let us denote & (X, R) = (X, R) . Let ¢ : (X, R) = (Y, S)
be a compatible mapping. The mpping & () : & (X, R) —»
- & (Y, S) 1is defined as follows:

for xe¢ X dloex = gx, () (x,3) = (gx, 3),

for (x, y)eR , 1=1,2 $(p)x, 5y, 1) = (gx, @y, 1)o
Evidently dle) e Rc S od ) . We are going to prove the
converse inclusion. let (a, b)e Se¢ ® (¢) . First, let b =
= (x, y, 2) ; we have. & S (¢x, ¢y, 2) and therefore the ele-
ment a mst be equal to either (@ x, ¢y, 1) or gx or
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¢y . In any of these cases (a, b) € é (q)o-ﬁ . Let b=
= (x, ¥y 1) ; then we have a s (@ x, ¢ ¥y 1) and hence a =
=¢gy,so that (a,b) e " P (g)o R, too. Similarly, in the
case of b =x ( b = (x, 3) resp.), which I;ads to a = (¢px, 3)
. (a= ¢ x resp.). Hence, finally, d)(q)o‘§=§o§ (¢),
i.e. & (¢) is » strongly compatible mapping, and ¢ is an
(evidently 1-1 } functor into R™(m, £) . It remsins to move
that the image of Q is a full subcategary of R*(m, f) . Let
g ()-(', .ﬁ) - (-!, E) be a strongly compatible mapping. Since the-
re are no cyclesg in (i, -I-i-) and (-Y-, E) but cycles of a type
either x, (x, 3), X, ees, (x, 3) & (x,3),x, (x, 3), veu, x,
we have f({x, (x, 3)})ec{x’’, (x"°, 3)} for every xe€ X .
Since, for every xe€ X , there is & ye X with yR x , the
eqality fx = (x°’, 3) 1leads (by xR (y, Xx,1) and xR(y, x, 2))
to the equalitles f(y, x, 1) = £(y, x, 2) = x°° , in a contradic-
tion to f(y, x, 1) S £(y, x, 2)
s flx, 3)=(x"* 3) .
Now, let us turn eur attention to f(x, y, 2) « If f(x, y, 2) 1is

oo

Hence we have fx =x

equal to either x° o (x’, 3) or (x° y°, 1), we get

flx, y, 1) =fy , what is not possible. We have hence f(x,y,2) =
=(x’, ¥°, 2) and f(x, y, 1) is equal to either (x°, y’, 1) a
x“or y°. However, the second and the third case impliea fy =
=(x°, 3) ( =(y° 3) resp.) in a contradiction with fy e ¥
proved above. Hence f(x, y, 1) = (x°, y°, 1) and, consequently,
fy=y°,end fx is either thh x“orthe y  .But fx =y
'1lp1:les Seflx,y,2)=8(x% ¥y’ 2) ={(x", ¥, 1) ,x", 77,
and foRI(x,y 2)=£{(x,y, I), x, yi)= {&x’ ¥y’ 1), 5%
only. We get f x =x° and we see that £ = & (¢f) , where

@ :X—>Y is definedby g x=fx .
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3.9. Corpllary. The categories XR¥(m, £) and R*(r, r)
sre uniwersal.
References:
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finit e semigroups, to appear in Monatshefte fir
Mathematik.
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