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Commentationea líathematieae Univereitatia Carolinae 
5, 4 (1964) 

ON THE CHARACTERIZATICN OF BANACH SPACES WITH THE STRCNG 
ORTZBRAUN-VALENTINE PROPERTY 

Jiří VANÍČEK, Praha 

Let X * (Xfp) and Y * (Y, <o ) be metric apacea« If 
gf is a transformatlon of X into Y , then $> ia sald to 
be Lip8Chitzian wlth the constant X , provlded 

& ( 9> (x), ? (y)J £*\p(x, y) 

for all x, y f X • A Lipschitzlan transformatlon cf wlth 

the constant A = 1 ia called a contractlon. 

The problém of extending of a Lipachitzian transforma­

tlon A to Y (where A ia a subapace of a space X ) to 

a transformatlon of X to Y waa studied by varlous authors. 

The exiatence of such an extenaion for Y * E^ is proved by 

Banach In [2]* Aa a conaequence of the re suit of Aronszajn 

and Panichpakdi [l] we get the existence of an extenaion for 

a hyperconvex space Y (i*e« apac^s whlch háve the followlng 

property: If <% » { JI (x±9 rjL) t i € I / ia a ayatem of 

CT- metric cells in Y such that for each i 6 I, j e l 

there ia o^tx^ xJ £ v± • r,, then H <% + 0 ). 

Mc Sbane [5jf Kirtzbraun [4l and Valentine £64 £7j ahow-

ed that thla extenaion problém is associated, wlth the follow­

lng interaection property* 

A pair of metric apacea (X, p ) and (Tf 6* ) is sald 

to háve a Valentine interaection property provided that: 

If f » { JI (xif r^ : i £ I } 
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l s a systém of Q> - ce l la in X and 

<% * {JI ( y i t r±) i i * I f 

a sy8tem of & -ce l la in X auch that for each i £ I , J í I 

there la 

^ Cxif xj) 5 ff (yit yj> t 

then 

In thia páper we ahall discuaa contractiona oaLy, aince 

the generál Lipachitzian extenaion problém can be reduced to 

an adequate contraction problém (8ee [7]p»93) if X ia a 

normed linear 8pace# 

There Í8 proved in the páper of Valentine [7]9 that the 

aituation ia the following one: 

For any metric space8 X and X the following two 8ta~ 

tementa are equivalent: 

(1) (X, Y) haa the Valentine interaection property; 

(2) for every ke X and every contraction f of A 

into X there exiata an extenaion F 3 f auch that F ia 

a contraction mapping X into X # 

There ia alao proved in [7J that for each of the follow­

ing caaaa the Valentine interaection property ia satisfied 

(a) X i8 an arbitrary metric apace, I « B^ , 

(b) X » X » l n ; 

(c) X * T • H , H belng a Hilbert apace; 

(d) X « X » Sn, S b being an n-dimenaional Euclidean 

aphere. 

In the casea (b) and (c) it may be proved that the extenaion 

F of a contraction f of A c X into X may be found in 

auch a way that 

conv f(A) * conv F(X); 
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where the symbol conv B denotes a closed convex hulí of 
the set B . 

In connection with the results above we formulate the 
following definitions: 

A metric space X is said to háve a Valentine inter-
section property if the pair (X, X) has the Valentine in-
tersection property. 

A metric linear space X is said to háve a stroig Va­
lentine intersection property provided that: 

if ? * { Ji (xif ri) : i e I } and <% * { JI ly^r^, 

±€1} 

are systems of cells in X such that 

ť* *xi> xj* ž *° *yi» yj^ t0T *ach i» ^ 6 1 $ 

then 
O T » 6 =d$> ( Ci<% ) n conv j ^ x yi * 0 . 
It is easy to prove the following: 
Let X be a Banach space* Then the following statements 

are equivalent: > 
(1) X has a strong Valentine intersection property; 
(2) for each A c X and each contraction f of A into 

X the re exists an extension F a f of f such that F is 
a contraction of X into itself and conv f (A) » conv F(X) « 

The problém of characterization of all Banach spaces 
with the Valentine intersection property is stlll unsolved* 
The main result of this páper is the complete characterization 
of all Banach spaces with the strong Valentine intersection 
property* The situation is described by the following theorem: 

Theorem: Let X be ajreal Banach space* The following sta­
tements are equivalent: 
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(1) X haa a atrong Valentine intereection property; 

(2) for eaeh A c X and each contraction f of A 

into X there exiata am axtenaion ¥ o f such that F ia a 

contraction of X into X and cén? f (A) » conv*F(X); 

(3) for each A c X and each contraction f of k in­

to X thera exists an axtenaion F z> f such that F ia a 

contraction of X into X and ap f(A) • ap F(X), where ap B 

denotea the cloaed line ar hulí of the set B c X ; 

(4) either X ia an inner product apace (i*e* Euolide-

an oř Hilbert apace) oř X ia a two-dimenaional apaca £°£ 

whose unit aphere ia a paralleJograiu 

Proof: Obvoualy (l)<=*t> (ř) ~» (3)# The atetement 
(4) a«á> (1) ia proved in C7J for the caaa that X ia au in ­
ner product apace* As an eaay conaequence of [1] we get imme-
diately the validity of (1) in the 8pace £°£ » 

Hence i t remains to prove 

the impllcation (3) *£ U)» Let X be a apace with the pro­

perty (3) and %. a two-dimensional aubapace of X • It ia 

clear that Z hrna the property (3) , too* Let S be a unit 

ce l l in Z and l e t 2 be the unit aphere whlch ia boundary 

of S . We diatingulah the following two casea: 

km Let S be atrLfctlv convex ( i . e . 1 , y e l , 0 «: * < 

< 1 » X x + ( l - A ) y c Z = * > x * y ) 4 l n thia caae we 

ahall prove that 2 ia an el l ipae. 

Let x1 and x^ be diffarent pointa of Z and lat 

yj, and y2 be pointa lying in different half-planee with the 

atright l ine x^f x^ ea the conmon boundary and which háve 

the property 

B x x - y 2 I « II Xj - y i II f » xx - y2B » Jlxg - y^L 
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Lat x * ~ (x* • x^) and let y0 be the common point of 

xXt *2 and H'~*2 # 

Let ua as sumě y 0 +• xQ • In thia ca8e exaetly one of the 
cella 

xx • 8 x x - x 0 | S f ^ • | a* -* 0 " S 

contain a point y 0 • Let, e*g«9 

y ©« *1 * B *i * xo • s • 
Therefore 

| X^ - XQ 1 a I Xg - x 0 || , 
( J i ^ i J l - ^o* S ) n ( y 2 +11 y2 - y 0 J S)n (xx • I x ^ - xQf S t y * 
and (aince S Í8 atr ict ly convex) we get 
( y l * " y l ~ y o 8 s ) r > ( y 2 * " y 2 " y o* S ) o ( x2 * ' *2 " x o" S ) * *» 
which fa#fc ia a contradiction with the Valentine interaection 
property of Z • 

Therefore there ia yQ * x Q and we get that, if x,, Xg 
are arbitr ary pointa, then the centera of all cella containing 
xlf %2 are lying in the atright line« By me&na of eleaentary 
geometrie conaiderationa it may be proved that ellipse ia the 
only one poa8ible convex cell with thi8 property^ 

B« Let S be not atrictl.v convex* At fir8t, let us mind 
that the corollary of the Valentine interaection property of 
Z ia the following property of Z : 

(A) If there exist8 a cell with a radiue r in Z 8uch 
that lt containa the pointa x^, i * 1, ..., n and if 

II x£ • xi I » II x^ - x* II for each i, j - lf...f n , 

then there exiats a cell with the radiua r containing all 

point8 x^ t i • 1, ..., n . 

At firat we a halí prove that S ia a 2n~gon with si-
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des of equal lentgh (in the sense of the norm in Z ). 
Let Z p Xp be endpolnts of some maximal (straight line) 

segment of SE* • The cell x^ • f Xg - x^ I S has a center 
in the boundary of the cell • x, • 2 S • Theref oře the boun-
daries of these cella háve two common pointe, one of these 
pointa being x> • Let us denote x*j the second one, 

The pointa m~$ x-, - x, are contained in S • The pro-
perty (A) of Z implies the existence of a cell of radios 
1 , containing all points x^9 x^9 - x^ . Because S is the 
unique cell of rádius 1 , which contains both x, and -x^ , 
there is x^ € S ; since I x* • ( - x^)l « 2 , there is 
x% c £ • Obviously || ^ (xj * x^) I a 1 and theref ore 

the whole segment x^, x<j lies in 2 , i.e. x^f x- is a 

part of some segment of Z with a length at least // x~ - x*lí 

As a consequence we get the f act that S ia a 2n~gon 

with sides of equal (Minkowski) length* 

Nowf we shall prove n = 2, i.e., S is a parallelogram. 

Let n > 2 and let x^, x^, x^ be three conseoutive verticea 

of S • It is easy to show that 

II x x - Xg U < | x 1 - x 3 11 . 

Let us consider thě points 

\ (xx • Xg) 

* " **" í*2 -*1> -

2|J£ 

Ix*-x, || 

-L-j(^-^) t Ĵ  • J <»x • V -

2ÍÍ2 -xxl 

Sinea fl y2 - Xg II < | I Xg - Xĵ  I , the point 

s » - £ (a^ • xg) - <y2 - x ^ 
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l i e s in the interior of the segment - x-p - Xg and therefWe 

' ?2 * Í < x l * x 2 ) ' * ' *2 " z * * 2 a " x3 * ( " *2 } ' • 

Further we are able to prove that the segments 

háve the aame length, The pointa x^, - x^t X3 are contal-

ned in the cell of rádius 1 , but the points y^f y2t 

- f (x-. * x~) are not contained in any cell of rádius 1 \ 

which fact is a contradiction with the property (A) of the 

space Z • 

Meanwhile the following statement was proved: 

If % is a two-dimenaional aubapace of X and if X 

has the strong Valentine intersection property, then the unit 

cell in Z is either an ellipse, or a párallelogram. 

Let 2 be a unit sphere in a normed line ar spaĉ e 

with the strong Valentine property X • Let us denote by A 

the set of all interseotions of JE with the two-dimenslonal 

subapaces of X • Let p be the metric in X j for S € A , 

S ' e A put 

h(S, s') * max (sup a> (xf s'), sup p (xj S))# The 
xéS xe S r 

function h is a metric on A (so called Hausdorff metric) • 

The mapping tf of S ?< 2" into A , which to every 

(i, j) € 2 x Si coneignates the intersection 2 with 

the plane sp (i, j) is obviously continuous as the mapping 

into the metric space (A , h) • As the subaets 

{ (i, j) *žxž r ^ (i, j) is an ellipse ) and 

{ (iy j) c SI M S L : ^ (it j) ia a parallelogram } 

are etidently open in 2, x X t one of these seta muat be 

•»pty. 
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Then f o r a l l spaces s a t i s f y i n g the condit ion (3) only 

one of the fo l lowing s i t u a t i o n s can occur. 

íoC) The i n t e r s e c t i o n £ with every plane containing the 

o r i g l n i s e l l i p s e . 

(/$ ) The i n t e r s e c t i o n Z with every plane containing the 

o r i g i n i s a parallelogranu 

The s i t u a t i o n {/$ ) can occur only i f X i s a two-dimen-

s i o n a l space X * Z^ • 

I f the (oc) occurs , very two-dimensional subspace of 

X i s Euclidean and therefore in a consequence of [33 p,115 

(«3NT ) X i s an inner product space. 
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