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Commentationes Mathematioee Universitatis Carolinae
4, 1 (1963)
CONCERNING CONGRUENCE RELATICNS O COMMUTAT IVE SEMIGROUPS
(Preliminary communication)

Karel DRBOHLAV, Prsha

Let S be a commutative semigroup. For eny congruence
relation C on S let [(C] denote the ideal consis-
ting exactly of all & € S with the following property:
there exists a positive integer ©  such that zu Caxfy
is true for all « ad v in S . A primery con -
gruence relation is a congruence relation c satis:tying‘

the following eondition: if xulzv end « (non C)v
hold for some « and v in S , then x e [C] . 1
C 1ie primary, then xy € c] end y ¢ [C]

implies ax e [C] .

A decomposition
) C=C N Awenl,
is seid to be a stgndard decomposition of ( , if every
C, (i=1,2,...,4) is a primery congruence relatién, it
(C1+L[C;] for i#+j end if no (; in (1)
can be omitted. 5 is said to satisfy the meximelity con=

dition for congruence relations, if every non empty set of
congruence relations on S’ contains a maximal one (in the
sense of the well-known partial ordering of congruence rela=-
tiops). In this case for every ( at least one standard
decomposition is possible. Moreover, there is a unicity theo-
rem: In any standard decomposition (1) the number 4 and
the ideals [Cj (A =21,2,..., 1) are uniquely deter—
mined by C . . Further on, as in the classicel idesl theory
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of commutative rings, the second unicity theorem can be pro-

ved: if

t=Cncn...nCnC,, ne-nC=
=CnCn..nCnC,, n..nC

are two standard decompositions of C , if [CJ-[C;J

for all i 4, 2,..,%4 emdir [;]1¢ [C] for

all 4 =1,2,.., & end j= A+41...,24 , then

(NG n...nC=0Cn C,n... nC, -

The preceding theory cen be treated a3 an ideal theory as
well, A subset J of S  is celled a copgruence ideal of
S , if there is a congruence relation c on S such
that o€ J  holds if end omly if a2« Cax 2  is true
for 811l 4 and 2 in S . If, among all possible con-
gruence relations C corresponding to J a primary can be
found, then J is called primery.
A congruence ideal J is always an ideal. By [] we denote
the ideal consisting exactly of all ax e S such that
there is a positive integer @  with m’e J . The in-
tersection of any system of congruence ideals is always a con-
gruence ideal.
A decomposition

(2) J=3nJn...n J,

is 8aid to be a stendard decomposition of J  if all

3 (i =1,2,...14) ere primary congruence ideals, if .
(3] + L[] for T % J end if no J; in (2)
den be omitted, If S satisfies the max;Lmality condition for
congruence relations, then for every congruence ideal J at
least one standard decomposition of J is possible. More-
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over, both unicity theorems are true: In (2) the number 4

and the idesls [ -'Z_J are uniquely determined by J  and

g J=

= i”jzn‘-- AN Ta N n L= T AL NnenI N, nwn

are two standard decompositions of J  with [J ] = []
for 21l =1, 2,50  anair [T ¢ [2,) holds
for all i= 4, 2,...,R ana g'- /‘b*"’,-—-, T ’ theri

InIneenTo= LnIn...nd, -
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