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EMBEDDINGS OF LATTICES IN THE LATTICE
OF TOPOLOGIES

J. Rosicky, Brno

(Received December 15, 1971)

R. Duda put the problem (Coll. Math. XXIII, 2 (1971), Problem 749) whether
any lattice can be realized as a sublattice of the lattice of all topologies (or even of
all T-topologies) on a certain set. We even prove that for any lattice L there exists
a set £ and an embedding g of L in the lattice of all topologies on E such that ya
is a completely Hausdorff topology for every x € L. This embedding we get in two
steps. Firstly, there exists a set £ and a sublattice L’ of the lattice of all topologies
on E isomorphic to L, which follows from the well-known Whitman’s result that any
lattice is isomorphic to a sublattice of the lattice of all partitions on a certain set.
Secondly, we construct a completely Hausdorff topology T on E such that ¢,(S) =
= G Vv I for S e L defines an embedding of L’ in the lattice of all topologies on £
finer then I.

This construction is given in §3. In §3. it is also shown that there exists alattice L
for which no embedding y of L in the lattice of all topologies on a set exists such that
yx is a metrizible topology for every x € L. In addition we give in §2. another but
far simpler proof that any lattice can be embedded in the lattice of all T;-topologies
on some set.

The author expresses his deep gratitude to M. Sekanina for his encouragement and
advice during the preparation of this paper.

§1. BASIC NOTIONS

Definitions concerning lattices can be found in [12]. We recall some of them.
A mapping @ from a lattice L into a lattice L’ is defined to be a Vv -homomorphism
if p(avb) = pa Vv @b for every a, b € L. Dually we define a A -homomorphism. An
embedding is an injective homomorphism. A lattice L is called simple if any homo-
morphism of L onto a lattice L’ is either an isomorphism or L’ consists of a single
element. Let L be a lattice. We put [a¢) = {x € Ljz 2 a}, (a] = {x € Ljx £ a}. The
set-theoretic union (intersection) will be denoted by U(N), a lattice join (meet)
by V(A). All necessary topological definitions are given in [4]. We identify a topology
with the system of its open sets. The closure of a set X in a topology T, we denote by
Clz(X). A topology T on E is called completely Hausdorff if for any two distinct
points a, b € E there exists a continuous function f from T to the real line with
fa # fb. Any completely Hausdorff topology is Hausdorff.

We shall give some results concerning lattices of topologies. Let @(E) be. the
system of all topologies on a set E ordered by the set-inclusion. Z(E) is a complete
lattice. The least element is the indiscrete topology { @, £} and the greatest element
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is the discrete topology exp E. Meets coincide with set intersections and the join
of two topologies I;, I, is the topology with the basis {V N W/VeI,, Wel,}
Z#(E) is atomic and any topology is a join of atoms. Atoms are precisely topologies
{2, X, E}, where @ # X & E (see Vaidyanathaswamy [13]). Z(E) is dually atomic
and any topology is a meet of dual atoms. Dual atoms are precisely topologies & U
U exp (E —{a}), where a € E and ® is an ultrafilter on E different from the principal
ultrafilter generated by a (see Frohlich [1] or Sekanina [10]). Let# () be the lattice
of all T,-topologies on E. ) (E) is a complete sublattice of Z(&). The least element
in X (E) is the cofinite topology KR(E) ={X < E/E — X is finite} U { 3 }. It holds
(E) = [R(£)). Hence X' (E) is dually atomic. The dual atoms of ) (E) are free
ultraspaces, i.e. ultraspaces for which ® is a free ultrafilter. A topology is called
principal if the union of an arbitrary family of its closed sets is closed. Principal
topologies form a sublattice of the lattice of topologies (Steiner [11]). More detailed
information on lattices of topologies can be found in Larson, Zimmerman [6].

§2. ONE CONSTRUCTION OF EMBEDDINGS
OF LATTICES IN THE LATTICE OF I,-TOPOLOGIES

It was already mentioned that the starting point of our investigation is the
following well-known Whitman’s result.

2.1 Theorem. (see [14]): Any lattice is isomorphic to a sublattice of the lattice of all
partitions on a certain set.

The lattice of all partitions on a set £ will be denoted by #(E). We recall that
R, < N, for Ry, R, eP(E) iff for every X € R, there exists ¥ € Ry such that X < Y.

From this Whitman’s result it follows that any lattice can be embedded in the
lattice of topologies. A topology is called a partition topology if every its open set
is closed. -Let Z°(E) be the system of all partition topologies on K.

2.2. Theorem (see [13]): #°(E) is a sublattice of B(E)

Proof: Evidently the intersection of two partition topologies is a partition
topology. Let Ty, T, eP°(E). It is easy to show that V N W is open-closed in T, v I,
for every Vel and W e I,. Any partition topology is a principal topology. Thus
T, v I, is a principal topology for principal topologies form a sublattice of #(E).
T, vI hasa basis {(VAW/Ve T, We T,} composed of open-closed sets and there-
fore it is a principal topology.

But #°(E) is not a complete sublattice of Z(E) as it is stated in [13]. Even the
following theorem holds.

2.3. Theorem: Let E be an infinite set. Then the smallest complete sublattice of B(E)
containing P°(E) is B(E) itself. ~

Proof: Let £ be the smallest complete sublattice of Z(E) containing Z°(E). At
first we prove that any T;-topology belongs to .#. It is sufficient to show that any
free ultratopology belongs to .Z. Let T = & U exp (E — {a}) be a free ultratopology.
® U {E — X/X € 6} is a base of T composed of open-closed sets. Hence T = VY {&,

Xe®
X,E— X,E} and {@,X,E — X,E} ¢®P°(E) for every X € 6. Therefore Te £.
Now we prove that any atom of Z(E) belongsto. . Let o # X ¢ E. If E — X
is finite, then{ o, X, E}={ 2, X, E—X, B} N K(E) e L. If X and E—X areinfinite,
then{o,X,E}={2,X,E—X,E}N(K(E) V{2, X,E}) ¥ becauseR(E) v{ o ,X,E}
is a I;-topology. Let X be finite. There exist infinite sets X;, X, < E such that
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E — Xl, E—Xz are infinite and X = Xl N Xz, E = X1U Xz. ThuS{Q', X, Xl,
Xz,E}Z{Q ,Xl,E} V{Q ,X;,E}ef.Hence{Qf ,X,E}:{Q,X,Xl,Xz,E} A (R(E) \%
vio, X, E}))eZ.

Since any topology is a join of atoms, ¥ = #(E) holds.

2.4. Theorem (see [9]): The lattice P°(E) of all partition topologies on E is isomor-
phic to the dual of the lattice (E) of all partitions on E. This isomorphism ais defined
by this way: aR = {{J Xi/X; € R} for every R eP(E).

2.5. Corollary (see [6]): Any lattice is isomorphic to a sublattice of the lattice of all
topologies on a certain set.

Proof follows from 2.1., 2.2. and 2.4.

2.6. Lemma: Let E, F be sets, R a partition on F, &: E— R an injective mapping.
Let £g(T) = { U &(x)/ X € T} for every T € B(E). Then the mapping &xn: B(E) — B(F)

s an embeddmg

Proof is evident.

Let E be a set and m an infinite cardinal number. Put K(Z, m) = {X < E/card
(E—X) <m}u{g}. It is K(E, m) eHB(E). It holds K(E, m) = K(E, n) form < n.
It is R(Z, No) = K(E). Larson in [5] proved that K(Z, m) and the indiscrete topology
are exactly topologies which are the least or the greatest element with respect to
some topological property.

2.7. Lemma: Let E, F be sets, card E = m and card F = n. Let n be regular, n = No,
n > 2™ Let R be a partition on E such that card R = n and card X = n for every
XeR. Let & E — R be an injective mapping. Let T = Ex(T)—K(F, n) for every
TeH(E). Then w: B(E) — [R(F, n)) is an embedding.

Proof: It follows from 2.6. that  is a Vv -homomorphism. For verifying that ¢
is a homormophism it is sufficient to show that T; A pT; < 9(T A T,) forevery
T, T, €B(E). At first we prove some property of a topology <.

Let TeH(E), o # XeypT. It is X= { Vin Wi, where F # V;e &n(T),

1el
@ # WieR(F, n) for every ¢ € I and further V; # V; for ¢ # j. Itholds W; = F —
— X, where card X; < n for every i € I. Hence X = q (Vi — Xy). Since V; # Vy
1E.
for i # jand card E =m, it is card I < card &xp(T) = card T £ 2™ < n. Hence card

U X: < n for n is regular. From U Vi— U XcXc U Vi it follows
iel el

that there exists Ve &p(T) and ¥ < F w1th card Y < n such that X =V — Y.
Let T, T, € #(H), X € T N ypI,. There exist Vi€ Iy, Yi = F with card Ye<n
for k =1, 2 such that X = V; — Y; = V, — Y,. Since the symmetric difference

Vi = Vi is contained in ¥; U Y3, it holds card (V1 = V) < n. Itis Vi = | &(x),
zelU,

where Uy € Iy, for k = 1, 2. Hence V; = V), because card &(x) = n for every z € E.

Thus V= V,e€T AT, and from X = V; — Y, it follows that X € (T, A T2).

It remains to prove that y is injective. Let I;, I; eB(E), T = »T;. Let

XeTI;. Then U &(x) € Ep(T1) € pT1 = pTz. There exists Ve pp(Tz)and ¥ = F

with card Y < n such that |J &)=V —7Y. Further V—Y = |J &()—7Y
zeX xelU

for a certain U € I;. Since card &(x) = n for every 2 € E, it holds X = U. Therefore
T < ;. Analogously we can prove I, < I;.

2.8. Theorem: Let n be an infinite cardinal number. Any lattice can be embedded
in the lattice [R(F, n)) for a certain set F.
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Proof: Let L be a lattice. According to 2.5. there exists a set E such that L can
be embedded in Z(E). Let m = card E, p = max {n, 2"}. Let p* be the successor
of p. Since p* is regular, it follows from 2.7. that there exists an embedding y:
HB(E)— [K(F, p*)), where F is a set of cardinality p*. Since [R(F, pt)) is a sublattice
of [R(F, n)), the proof is accomplished.

2.9. Corollary: Any lattice is isomorphic to a sublattice of the lattice of all X,-topo-
logies on a certain set.

The constructed embedding 9 maps elements of a lattice L to topologies structure
of which is to be easily clearyfied. For instance they are locally connected and
disconnected T,-topologies.

§3. REPRESENTATIONS OF LATTICES BY MORE .
SPECIAL TOPOLOGIES

Let R be a partition on a set E, «R the partition topology from 2.4. Let ZR(E) =
=P°(E) N (aR]. Evidently Z5(E) is a sublattice of Z(E).

3.1. Lemma: Let E, F be sets and R a partition on F with card E = card R. Then
the latticesP°[E) and Py(F) are isomorphic.

Proof: There exists a bijective mapping & : £ — R. Let &g : #(E) > ZB(F) be the
embedding from 2.6. Evidently &p(#(E)) = («R] holds. Since &x(T') is a partition
topology iff T is, &x/P°(E) : P°(E) —>Px(F) is an isomorphism.

3.2. Lemma: Let E be a set, S €H(E) and ReP(E) with card R > 1. Let ¢ :
:Py(E) >BE), ¢ =SV I for every TePy(E), be a homomorphism. Then ¢
ts injective iff aR & S.

Proof: Supposing aR = S, ¢TI = & holds for every I ePy(E). Since card
R > 1, ¢ is not injective.

Assume that aR ¢ S.Then ¢p{ @, E} = & # SV aR = @(aR)and{z, E}, aRe
eP5(E). Ore proved in [7] that the lattice of all partitions on a set is simple. Hence
it follows from 2.4. and 3.1. that the lattice Zg(E) is simple. Thus ¢ is injective.

3.3. Definition: Let E be a set, S € #(E), R P (E).

Let M e aR. Let Ry, R, € P(M), RIM < RiAR2; R VR, = {M}. Let B(S, R, M,

ml’ sRZ) = {<{Z3Y}X eR, > {er}Xem,>/{Z,lr}Xsml {ZAZX}XemZ c 6, g (Zl N X) =

= rU (Z% N X)} be a set of pairs of subsystems of &. Let & = ({Z%}xen.

{ZX}Xem,>e%(e R, M, R, Ry). Put 4y(n) = U (ZLyNnX) = U (23N X),
XeR,

Aa(m) = [g ZL v U 7%, A(m) = Ay(7t) U (dAa() — M). Let ‘zl(cs R, M) =

—{A(ﬂ) 9{1, mzey(M), m/M < ml/\mz,mlvmz———:{M} nE%(@ 91 M 931 9‘2),’
Let WS, ) = Y AG, R, M).
MeaR

3.4. Definition: Let E be a set, T € #(F) and R eP(E). Put T = T. Suppose
that the topologies T§ are defined for every ordinal £ < o. For an isolated « let Tg

be the topology generated by the system T3 ' U A(T5 ', R). For a limit « let T =

=V T%. We have constructed the transfinite sequence T < ... < itmg ... of
<a
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topologies on E. Evidently there exists an ordinal y such that I§ = T4 for any
£> y. Let Tp = Th.

Let & = & v Ty, for every S Py (E). We get a mapping @ = p(T. R) :PR(E) >

3.5. Lemma: Let E be a set, TcHB(E) and ReP(E). The mapping ¢(T, R) :
:Py(E) —~RB(E) is a homomorphism.

Proof: We shall prove that for every ordinal § and for every I,, ¥: ePy(E)
it holds (T, vI&H) N (T.vIB) = (TN T) v

Let B be an ordinal and I;, T, ePR(E). Let Ve (L, vzm)ﬁ (‘;r,vzm) From
2.4.itfollows that there exist partitions R, R, on E such that R, ‘Rz >Rand ;=
=aR; for =1, 2. Evidently V = U (Zx N X) = U (Z% N X), where

XeR, XeR,
nye z& for every XeRi,i=1,2.Let MeR, VR,. It is M € aR. Let R, =§i—|/M,
R, = R2/M be partitions induced by R:, R, on M. It holds R/M < R AR: and
R VR, = {M}. Further y(U (Z}y NX)y=VNnM= an (Z§(n X). Hence mpr =
R, R,
= 2%} xem,» (3} xeny € BT, R, M, Ry, Ro). Thus A(ma) € W(Th, R) = T
It holds A(mpr) N M = Ai(wm) N M = V N M.Therefore V= |J (A(zm) N M).
MeR,\/R,

Since T, N T, = a(Ry VR,), it holds Ve (TN T v LT

Since ’Im =3k = :‘i"“ for a certain ordinal y, it holds ¢T NI, = (T1 V Ij;g) N
NIV im) c(TiNI)V I,;g = @(Ty N ;). Therefore ¢ is a homomorphism
because according to the definition ¢ is a Vv -homomorphism.

3.6. Lemma: Let E be a set, T e B(E) and R a partition on E such that every element
of R vs dense in T. Let M € aR and A(n) e W(T, R, M). Let VeI, TeR and V
NAFRYNT = . Then VN Ay(n) = & holds.

Proof: Let TN M = @. Then VN Ay(n)NT = VAA@Rr)NT = & because
Ay() € M. Since T is dense in I and VN Ay(n)e I, it holds VN 4x(n) = &.

Let TNM # . Then T< M. It is n = <{Z}Y}Xem,; {Z2X}XEX,> e BT, R, M,
Ri1, R;) for suitable R, R, eP(M) with R/M < Ri ARz and R, v R, = {M}.There
exist X; e Ry, X, €N, such that T = X, N X;,.

Let X € R; U R2. According to the construction of joins in the lattice #(E) there
exist 7 e R UR, fori=1, ..., nsuch that 7'y = X;, Tp=X and T NTe .  # @
fori=1,..,n—1.Itholds g = VNAR)NT o2 VN A@mRNT > VN(Z, N
NTY)NT =VNZ, NT. Since T is dense in T and VN Z}, € I, it holds V N
N Z}, = @ . Suppose that VN Z4, = o, where k < n, TxeR,,s = 1,2. Let T"
=TeN Ty It is Z5, NT' = U Z5nX)NnT' = Y @xynX)NnT

XeR,
= 2., N T, where re{l1, 2}, Tk+1e§R, Hence o = V(‘\ ZHNTe 2 VN ZH N
NT' =Vn Z e VT, Since T" is dense in I, it holds Vﬂ ZT,,“ = ¢ .It can be
concluded that V N Z% = @, where X € R;.

Therefore V N A,(x) = ® and the proof is accomplished.

3.7. Lemma: Let E be a set, T B(E) and ReP(E). Let every element of R be
dense in T. Then every element of R ts dense in Ty

Proof: We shall use the transfinite induction. Suppose that every element of R

Il
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is dense in ‘:ist for every ordinal £ < . If § is limit, every element of R is evidently
dense in lm Let g be isolated. The system of all finite intersections of elements of

U AL, R) forms a basis of Th. Let Y be such an intersection. We shall
show that Y ;é @ implies YN T # @ for every T € R. Thereby the proof will be
accomplished.

n
ItisY =Wn n A(7;), where W € zﬁrl and A(m;) € W, R) fori=1, ..., n

i=1
There exist M; € aR such that A(mw) e A(TH , R, M. z) for t =1, ..., n. Suppose that
TeR exists with YN T = @. There exist Xieim with X1 NT = A(nl)mT
foreveryt=1,.,n.Itisg =YNT=Wn n Arm)N T = (WﬁnXi)ﬂ

n—1

r\A(nn)ﬂT Since W N n Xiezﬂ_ , it follows from 3.6. that VN n XN
i=1
n—k
N Azmn) = @. Suppose that W N ﬂ Xin n Az(m) = @. Then @ = WnN

t=n—k+1
n—k—1

N n Aa(m) N n XinT=(Wn n Az(m)n _n X)N A(mpx) N T. 3.6.

i=n—k+1 i=n—k

n—k—1 n
implies W N n Xin N Axm) = @.Wecan conclude that W N f']1 Arm)= @
t=n—k 1==

Since A(m;) <: Az(m) for every 4, it holds ¥ = (.

Let m be a cardinal number. A topology ¥ is called m-resolvable if it contains m
pairwise disjoint dense sets. A 2-resolvable topology is called briefly resolvable.
The concept of resolvable topologies was introduced by Hewitt ([3]). He proved
that every metrizible topology devoid of isolated points is resolvable.

3.8. Lemma: There exists an m-resolvable completely Hausdorff topology for any
cardinal number m.

Proof: Let I be a set, card I = m. Let Q be the set of all rational numbers and S
the usual topology of Q. Put E = 1_[ Qi, T = H i, where @; =Q and &; =&

for every ¢€ I. Evidently T is completely Hausdorff Since & is resolvable, there
exist sets A;, By = @ — A; dense in &; for every t€I. Let B = {H X/ X; =

1€l
or X; = B;}. Every element of B is dense in T and elements of B are pairwise dis-
joint. Since card B = 2", the topology T is 2™.resolvable and therefore it is m-
resolvable.

3.9. Theorem: For every lattice L there exists a set E and an embedding v : L — #(E)
such that yx is a completely Hausdor[f topology for every x € L. .

Proof: Let L be a lattice. According to 2.1 and 2.4. L can be embedded in the
lattice of all partition: topologies on some set F. According to 3.8. there exists a
card F-resolvable completely Hausdorff topology . Let E be the underlying set of T.
There exists a partition R on E every element of which is dense in T and card R =
card F. From 3.1. it follows that L can be embedded in PR(E). Let ¢ = (T, N) :
:Py(E) —H(E) be the mapping from 3.4. According to 3.5. ¢ is a homomorphism.
3.7. implies that every element of R is dense in I. It follows from 3.2. that ¢ is
injective. Since pZR(E) < [Tx) S [I), every topology from ¢Pg(E) is completely
Hausdorff. The proof is ready.
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Since the topology of the rationals numbers is O-dimensional, every topology
yz is totally disconnected. Even in the same way as the previous theorem we can
prove the following one.

3.10. Theorem: Let € be a class of topologies with the properties: 1°T € € N A(F),
YeHRF),TcT >T'e¥
2° € contains an m-resolvable topology for any cardinal number m.

Then for any lattice L there exists a set E and an embedding y : L — ZB(E) such that

Lc¢.
Y Analogously as in 3.8. we can show that % fulfils 2° whenever it is closed under
products and contains a resolvable topology.

A question arises whether any lattice can be represented by topologies more
special than completely Hausdorff. We shall show that for metrizible topologies it is
not true.

3.11. Lemma: Let E be a set and £ a sublattice of B(E). Let A < EwithE—A eI
for every T e L. Then a mapping pa: L —>B(A), waT=TI[A is the relative topology
for every T € L, is a homomorphism.

Proof: Evidently w4 is isotone. Hence 431V 9432 S wa(T1 vV IT2) holds for
every T;, 36 Z. Let T1,T,€ L and X € pa(Ty vV Iy). There exist VeI, Wiel;
forieIsuchthat X = | (Vin W;)NA. Hence X = | [(Vind)N(WiN d)e
1= QPAzl V; Q/)AZZ' el el

It holds pa(T1 N T2) < paT1 N paTe. Let Ty, T€ L, X € waZi N paT;. There
exists VeI, and WeZ, with X =V NA=WnNA. It is (F—A4)U VeI,
and (F—A)U WeZ;. Since (B —A4A)UV=E—-4)V(VNnA4d)=(E—A4AU
U(WNA)=(E—A)U W, it holds X € p4(T1 N IT,).

Let m be an infinite cardinal number. A topology T on a set E is called m-generated
if it has the following property: X e Tiff X N 4 € T/A4 for every A < E with card A <
< m (see Herrlich [2]). ‘

3.12. Theorem: Let m be an infinite cardinal number and L be a simple lattice
with the least element a. Let there exist a set E and an embedding vy : L —J8(E) such

that ya is an m-generated Hausdorff topology. Then card L < 22", where n = 22".

Proof: In the case card L = 1 the theorem holds. Let card L > 1. Then there
exists b € L with @ < b. Thus pa < yb. There exists X < E with X € yb and X ¢ ya.
Since wa is m-generated, there exists B = E with card B < m such that X N B¢
¢ ya/B. It is card (B — X) < mand Ol,y(B — X) ¢ Cl,q(B — X).Let C = Cl,o(B—
— X). Since ya is Hausdorff, every filter on E has at most one limit point in ya.
It implies card C < 22" = n. Since E — C € ya < yx for every z€ L, it follows
from 3.11. that ¢ : L —Z(C), pcT = I/C for every T € yL, is a homomorphism.
Since Clp(B— X) ¢ C, it holds yeyb # yeya. Since L is simple, the mapping
wey is injective. Therefore card L < card J(C). Pospisil proved in [8] that card
AB(C) = 2" ? whenever C is infinite. We have obtained that card L < 22",

3.13. Corollary: There exists a lattice L for which no set E exists such that there
exists an embedding vy : L —JB(E) having the property that wx is a metrizible topology
for every x € L.

Proof: Evidently any metrizible topology is No-generated. The result follows
from 3.12. and from the existence of simple lattices of an arbitrary cardinality
(e.g. the lattice of partitions is always simple).

There is a problem whether for any lattice L there exists a set E and an embedding
v : L —>9%(E) such that yz is a (completely) regular T;-topology.
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