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ARCH. MATH. 2, SCRIPTA FAC. SCI. NAT. U J E P BRUNENNSIS, 
I X : 49—56, 1973 

EMBEDDINGS OF LATTICES IN THE LATTICE 
OF TOPOLOGIES 

J. Rosicky, Brno 

(Received December 15, 1971) 

R. Duda put the problem (Coll. Math. XXIII, 2 (1971), Problem 749) whether 
any lattice can be realized as a sublattice of the lattice of all topologies (or even of 
all Ti-topologies) on a certain set. We even prove that for any lattice L there exists 
a set E and an embedding ip of L in the lattice of all topologies on E such that \px 
is a completely Hausdorff topology for every xe L. This embedding we get in two 
steps. Firstly, there exists a set E and a sublattice L' of the lattice of all topologies 
on E isomorphic to L, which follows from the well-known Whitman's result that any 
lattice is isomorphic to a sublattice of the lattice of all partitions on a certain set. 
Secondly, we construct a completely Hausdorff topology X on E such that tpi(<Z) == 
= S v I for S e F defines an embedding of L' in the lattice of all topologies on E 
finer then X. 

This construction is given in §3. In §3. it is also shown that there exists a lattice L 
for which no embedding \p of L in the lattice of all topologies on a set exists such that 
\px is a metrizible topology for every xe L. In addition we give in § 2. another but 
far simpler proof that any lattice can be embedded in the lattice of all Xi-topologies 
on some set. 

The author expresses his deep gratitude to M. Sekanina for his encouragement and 
advice during the preparation of this paper. 

§1. B A S I C N O T I O N S 

Definitions concerning lattices can be found in [12]. We recall some of them. 
A mapping 99 from a lattice L into a lattice Lf is defined to be a V -homomorphism 
if (p(a V b) = (pa V (pb for every a, b e L. Dually we define a A -homomorphism. An 
embedding is an injective homomorphism. A lattice L is called simple if any homo­
morphism of L onto a lattice L[ is either an isomorphism or U consists of a single 
element. Let L be a lattice. We put [a) — {xeL/x ^ a}, (a] = {xeLjx ^ a}. The 
set-theoretic union (intersection) will be denoted by U(n) , a lattice join (meet) 
by V(A)- All necessary topological definitions are given in [4]. We identify a topology 
with the system of its open sets. The closure of a set X in a topology X, we denote by 
Cl%(X). A topology £ on E is called completely Hausdorff if for any two distinct 
points a, be E there exists a continuous function / from X to the real line with 
fa 7- fb. Any completely Hausdorff topology is Hausdorff. 

We shall give some results concerning lattices of topologies. Let @I\E) be the 
system of all topologies on a set E ordered by the set-inclusion. 88(E) is a complete 
lattice. The least element is the indiscrete topology {0 , E} and the greatest element 
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is the discrete topology exp E. Meets coincide with set intersections and the join 
of two topologies %i, %2 is the topology with the basis {Vn W/Ve%\, We%2}. 
38(E) is atomic and any topology is a join of atoms. Atoms are precisely topologies 
{ 0 , X, E}, where 0 / X £ E (see Vaidyanathaswamy [13]). 38(E) is dually atomic 
and any topology is a meet of dual atoms. Dual atoms are precisely topologies © U 
U exp (E — {a}), where a E E and © is an ultrafilter on E different from the principal 
ultrafilter generated by a (see Frohlieh [1] or Sekanina [10]). Letjf (K) be the lattice 
of all Ji-topologies on E.Jf(E) is a complete sublattice oi 38(E). The least element 
in Jf(E) is the cofinite topology R(E) = {X c E/E — X is finite} U { 0 }. It holds 

(E) = [.ft(K)). Hence jf(K) is dually atomic. The dual atoms of jf(K) are free 
ultraspaces, i.e. ultraspaces for which © is a free ultrafilter. A topology is called 
principal if the union of an arbitrary family of its closed sets is closed. Principal 
topologies form a sublattice of the lattice of" topologies (Steiner [11]). More detailed 
information on lattices of topologies can be found in Larson, Zimmerman [6]. 

§2. O N E C O N S T R U C T I O N OF E M B E D D I N G S 
OF L A T T I C E S I N T H E L A T T I C E OF ^ - T O P O L O G I E S 

It was already mentioned that the starting point of our investigation is the 
following well-known Whitman's result. 

2.1 Theorem, (see [14]): Any lattice is isomorphic to a sublattice of the lattice of all 
partitions on a certain set. 

The lattice of all partitions on a set E will be denoted hy^(E). We recall that 
Mi ^ 9l2 for 5RX, SR2 e0>(E) iff for every X e 9^ there exists 7 G % such that X c Y. 

From this Whitman's result it follows that any lattice can be embedded in the 
lattice of topologies. A topology is called a partition topology if every its open set 
is closed. Let 3P°(E) be the system of all partition topologies on E. 

2.2. Theorem (see [13]):^°(K) is a sublattice of 38(E). 
Proof: Evidently the intersection of two partition topologies is a partition 

topology. Let %\, %2 e£P°(E). It is easy to show that V n W is open-closed in %x V %2 

for every V e %\ and W e%2. Any partition topology is a principal topology. Thus 
%i V %2 is a principal topology for principal topologies form a sublattice of 38(E). 
%i V %2 has a basis {VO W/V e %\, We %2} composed of open-closed sets and there­
fore it is a principal topology. 

Bnt^°(E) is not a complete sublattice of 38(E) as it is stated in [13]. Even the 
following theorem holds. 

2.3. Theorem: Let E be an infinite set. Then the smallest complete sublattice of 38(E) 
containing 0>°(E) is 38(E) itself. 

Proof: Let jSf be the smallest complete sublattice of 38(E) containing3P°(E). At 
first we prove that any Ii-topology belongs to <jSf. It is sufficient to show that any 
free ultratopology belongs to JS?\ Let % = © U exp (E — {a}) be afreeultratopology. 
© \J {E — X/X e ©} is a base of % composed of open-closed sets. Hence % = V { @ » 

X,E — X,E} and {0 ,X,E — X,E} e3P°(E) for every KG®. Therefore %e &. 
Now we prove that any atom of 38(E) belongs to jSf .Let 0 7- X ^ E. If E — X 

is finite, then { 0 , X, E} = { 0 , X, E—X, E} n &(E) e^.HX and E—X are infinite, 
then{0 ,X,E} = {0 ,X,E—X,E}n(R(E)v{0 ,X9E})e&becaweSt(E) v{0yX,E} 
is a Ii-topology. Let X be finite. There exist infinite sets Ki, X2 c= E such that 
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E — Xu E — X2 are infinite and X = XXC\X2, E = XXKJ X2. T h u s { 0 , X, Xu 

X2,E} = {0,X1,E}v{0,X2,E}e^?.Hence{0,X,E} = {0,X,XliX2,E}A(S{(E)v 
v{0,X,E})e&. 

Since any topology is a join of atoms, jSf = 3S(E) holds. 
2.4. Theorem (see [9]): The latticed0(E) of all partition topologies on E is isomor­

phic to the dual of the lattice ̂ (E) of all partitions on E. This isomorphism a is defined 
by this way: a9t = {U Xt/Xi e 9*} for every 91 e0>(B). 

2.5. Corollary (see [6]): Any lattice is isomorphic to a sublattice of the lattice of all 
topologies on a certain set. 

Proof follows from 2.1., 2.2. and 2.4. 
2.6. Lemma: Let E, F be sets, 9t a partition on F, | : K->9t an infective mapping. 

Let £%(%) = { U £{x)IX e %}for every % e3S(E). Then the mapping £&'.3S(E) ->36(F) 
xeX 

is an embedding. 
Proof is evident. 
Let E be a set and m an infinite cardinal number. Put St(E, m) = {X £ E/card 

(E — X) < m} U { 0 }. I t is St(E, m) e^l(E). It holds $t(E, m) s R(E, n) form <£ it. 
I t is $t(E, Ko) = Si(E). Larson in [5] proved that SK(E, m) and the indiscrete topology 
are exactly topologies which are the least or the greatest element with respect to 
some topological property. 

2.7. Lemma: Let E, F be sets, card E = m and card F = n. Let n be regular, n .> Xo> 
n > 2m. Ze£ 91 be a partition on E such that card 91 = n and card X = n for every 
Xe9i. Let £: K->9t be an infective mapping. Let xp% = £&(%)—St{F, n) for every 
%e3S(E). Then \p\ 31(E) -> [R(F, n)) is an embedding. 

Proof: It follows from 2.6. that ip is a V -homomorphism. For verifying that \p 
is a homormophism it is sufficient to show that \p%\ A ip%2 ̂  y(%i A %2) for every 
%i, %2 e&(E). At first we prove some property of a topology tp%. 

Let %s3S(E), 0 * Xexp%. I t is X= \J ViC\Wi, w h e r e 0 # F ,e f«($) . 

0 / Tf̂  e A(F, n) for every iel and further V* ̂  Vj for i 7-- j . I t holds Wi = F — 
— Xi, where card Xi < n for every i e I. Hence X = \J (Vi — Xi). Since Vi ^ Vj 

iel 

for i / j and care? E = m, it is card I ^ card 1^(2) -= card X ^ 2m < n. Hence card 
U Ki < n for n is regular. From U ^ — U X{ £ X c U V< it follows 
iej te/ ie/ te/ 

that there exists Ve £ R ( $ ) and F c K with card F < n such that X =,V— F. 
Let Xi, 2 2 e3S(E), Xzxp%xC\ \p%2. There exist Vk e %k, Yk^F with card Yk<n 

for k = 1, 2 such that X = Vi — Fi = V2 — F 2 . Since the symmetric difference 
Vi -7- V2 is contained in Fx U F 2 , it holds card (Vi -f- V2) < n. It is Vk = U £(#)> 
where Uk G %k for k = 1, 2. Hence Vi = V2 because card g(x) = n for every xeE. 
Thus V! = V2 G I i A £ 2 and from X = Vx — Yi it follows that K G ip(%x A £2). 

I t remains to prove that xp is injective. Let %\, %2e3S(E), \p%\ = %p%2. Let 
Jr G 3,i. Then U f (*) e fw($i) S Y^i = V3*- T h e r e e x i s t s F e Vtefa*) and F c K 
with card Y < n such that U £(*) = F — 7 - Further V — F = U f (*) — r 

seX .re (/ 

for a certain U e%2. Since card f (#) = n for every a: G E, it holds X = U. Therefore 
I i c I 2 . Analogously we can prove %2 ^%x. 

2.8. Theorem: Let n be a^ infinite cardinal number. Any lattice can be embedded 
in the lattice [5t(F, n)) for a certain set F. 
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Proof: Let L b e a lattice. According to 2.5. there exists a set E such that L can 
be embedded in 88(E). Let m = card E> p = max {n, 2m}. Let p+ be the successor 
of p. Since p+ is regular, it follows from 2.7. that there exists an embedding tp: 
06(E) -> [5\(F, p+)), where F is a set of cardinality p+. Since [5t(F, p+)) is a sublattice 
of [5t(F, n)), the proof is accomplished. 

2.9. Corollary: Any lattice is isomorphic to a sublattice of the lattice of all Xi-topo-
logies on a certain set. 

The constructed embedding xp maps elements of a lattice L to topologies structure 
of which is to be easily clearyfied. For instance they are locally connected and 
disconnected %i-topologies. 

§3. REPRESENTATIONS OF LATTICES BY MORE 
SPECIAL TOPOLOGIES 

Let 5R be a partition on a set E, a$R the partition topology from 2.4, L e t ^ ( K ) = 
=0>°(E) O (aSR], Evidently^(K) is a sublattice of 31(E). 

3.1. Lemma: Let E, F be sets and SR a partition on F with card E = card SR. Then 
the lattices0>°\E) and^(F) are isomorphic. 

Proof: There exists a bijective mapping f : E -> JR. Let fw :3S(E) -+3S(F) be the 
embedding from 2.6. Evidently £M(3S(E)) = (aSR] holds. Since £m(T) is a partition 
topology iff % is, £nl&0(E) : 0>°(E) ->0>®(F) is an isomorphism. 

3.2. Lemma: Let E be a set, <Ze3$(E) and iSie^>(E) with card <R > 1. Let <p : 
:0>M(E)->3$(E), <p% = <SvZ for every Xe^(E), be a homomorphism. Then q> 
is infective iff aSR ^ 2>. 

Proof: Supposing aSR c g>, q>% — <S holds for every Ze^(E). Since can£ 
5R > 1, 9? is not infective. 

Assume that aSR £ S. Then <p{ 0 , E} = ® ^ S v aSR = <p(a$R) and{ 0 , E}, a<Re 
e^i(E). Ore proved in [7] that the lattice of all partitions on a set is simple. Hence 
it follows from 2.4. and 3.1. that the lattice ^ ( K ) is simple. Thus <p is injective, 

3.3. Definition: Let E be a set, (5 e31(E), SRe^(E). 
L e t M e a ^ L e t W i ^ E ^ M ^ f t / M ^ 5Ri A <R2,9li v5R2 = {M}. Let93(S,«,./¥, 

<Ri, «2) = {<{^ }x e ^ , { - ? i } W / { ^ } ; r * , { ^ i } * * , £ S, (J ( Z i n X ) = 
X69?! 

= U (^.r ^ -2-")} be a set of pairs of subsystems of ®. Let n = <{Z V}xe>Ht> 

{Z2
x}x^ e ®(®, «, if, 5Ri, «2). Put AUM = (J ( £ V ^ * ) = U ( ^ n - I ) , 

xeg?. * xm2 

A2(n)= U Z ^ U (J Z£, il(w) -=.41(w)U(42(w) —Jf) . Let 9C(®, SR, if) = 
= {A(n)l9ti, <R2 e ^ ( if), SR/M c SRX A 5R2, « i V <R2 = {If}, n e 93(6, SR, if, <Ri,<R2)}-

Let M(S, » ) = U 2*(®> % M). 
MexfR 

3.4. Definition: Let E be a set, %e3S(E) and SRe^(K). Put 3& == X. Suppose 
that the topologies i j j a r e defined for every ordinal f < a. For an isolated a let %£ 
be the topology generated by the system I ^ - 1 U SlC-taT"1* 5R)- For a limit a let 3# = 
= V 2E.U • We have constructed the transfinite sequence 1 ^ £ ... c 3;mc ... of 
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topologies on E. Evidently there exists an ordinal y such that 3 | = 3& for any 
| > y. Let3:^ = 3 | t . 

Let 9)S = S v j J j for every <S e^\(E). We get a mapping <p = <p(Z. 91) :^m{E) -> 
->^(K)« 

3.5. Lemma: Let E be a set, Ze3S(E) and <He&>(E). The mapping <p(Z, 91) : 
\3P\(E) ->&(E) is a homomorphism. 

Proof: We shall prove that for every ordinal /? and for every Zlf X 2 6 ^ ( K ) 
it holds (3:x v 3:̂ ) n (3:2 v Z^) c. (Z, n z2) v 3&+1. 

Let p be an ordinal and Zlf Z2e0_k(E)L Let Ve (Zt V Z_) n(Z2 V 3&). From 
2.4. it follows that there exist partitions 9?i, 9l2 on E such that 9ti, 9?2 ^ 91 and Zt = 
= a9*7 for i = l , 2. Evidently V= {J^nX) = \J_(ZxnX), where 

__ x ^ _ xm* _ 
Zx e 3& for every X e M<, i == 1, 2. Let_M _9ti V 9t2. It is M e a9t. Let « i = 9^/M, 
<R2 = <R2/M be partitions induced by 9*i, 9?2 on M. I t holds SR/Jf < 9?i A 9t2 and 
9*i V » 2 = {M}. Further U (Zx n X) = V n M = \J (Z\n X). Hence nM = 

= < { ^ } ^ , , {^ |}x^ 2 >e»(3:L » , .¥, » ! , »2). Thus ,4(7rM)G2I(3;&, « ) S 3:£+1. 
It holds A(nM) n M = ^ I ( ^ M ) n M = F O l . Therefore V = U _ (M^M) H M). 

__ __ Meffl.Vffl-

Since 3,1 n 3:2 = a(«i V »2), it holds Ve(Z1n Z2) V 3&+1. 
Since Z& = 2$R = 3 ^ + 1 for a certain ordinal y, it holds (pXin^S^ = (2i V Z«R) n 

n (22 V 3^) £ (Z1 n Z2) vZ$i = <p(Zi n Z2). Therefore <p is a homomorphism 
because according to the definition <p is a V -homomorphism. 

3.6. Lemma: Let E be a set, Z e3$(E) and 91 a partition on E such that every element 
of 91 is dense in Z. Let M e oc9i and A(n) e 91(3:, % M). Let V e Z, Z e 91 and V n 
n A{n) nT = 0 . Then V n A2(n) = 0 AoMs. 

Proof: Let T n M = 0 . Then V n ^42(^)nT = V A-4(;r) n T = 0 because 
A\{n) c M. Since 3P is dense in I and V n A2(TI) e Z, it holds V n A2(n) = 0 . 

Let T n M 7- 0 . Then T c M. I t is TT = {{Zx}x^, {Z2
x}XeX2} e »(3,, » , M, 

9li, »2) for suitable 9li, 9?2 e0>(M) with K/Jf ._ 9ti A 9*2 and SRi V 9t2 = {if}. There 
exist Ki e 9?i, K2 e 9*2 such that T c Kx n X2. 

Let K e 9ti U 9t2. According to the construction of joins in the lattice &(E) there 
exist Tf e 9?i U 9*2 for i = 1, ..., n such that T1 = X1,Tn = X and 5P« n ? V ^ 0 
f o r i = 1, .. . ,?*—-1. I t holds 0 = Vn-4(7r)nT z> V n ^i(jr) n 3P _ F n (ZTxn 
nTx)nT = V n ZJ,t n 5P. Since T is dense in 3: and V n Z ^ e 3:, it holds V n 
n Z ^ = 0 . Suppose that V n Z f̂c = 0 , where Jc < n, Tk e 9t*, s = 1,2. Let J" = 
= TknTk+1. it is Z } f c n f = U (ZxnX)nT = \J (Zx n X) n T' = 
= Z^+ 1 n T\ where r e { l , 2}, T^+i e 9tf. Hence 0 = F n ^ n ^ 2 F n ZTk n 
O f = V n Z^fc+I n T'. Since 5P' is dense in 3:, it holds V n Z^t+1 = 0 .It can be 
concluded that V n Zx = 0 , where X e 91*. 

Therefore V n .A2(^p) = ^ and the proof is accomplished. 

3.7. Lemma: Let E be a set, Ze3&(E) and 9ie^(E). Let every element of 91 be 
dense in Z. Then every element of 91 is dense in Z&. 

Proof: We shall use the transfinite induction. Suppose that every element of 91 
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is dense in UR for every ordinal f < /?. If fi is limit, every element of 91 is evidently 
dense in 3:^. Let ft be isolated. The system of all finite intersections of elements of 
XfJT1 U ^(IgT 1 , SR) forms a basis of 2&. Let 7 be such an intersection. We shall 
show that Y ?- 0 implies Y nT ^ 0 for every T e 9*. Thereby the proof will be 
accomplished. 

Itis r = - T F n 0 -4(wi), where JTe3^1ai.d.4(w<)6Sl(a^'1,») fort==l, ...,7*. 
i = i 

There exist Mi e a9l such that A(m) e S I ^ R " 1 , % Mi) for i = 1, ..., w. Suppose that 
T G 91 exists with 7 n i = 0 . There exist K* e X^1 with X* n T == A(m) n T 

for every i= 1, ..., w. I t i s 0 = YnT= Wn f\ A(TH) n T = (W n f) Xt) n 
i = i i = i 

n . 4 ( a , » ) n T . Since Wn fi X i e l S " 1 , it follows from 3.6. that F n f ] I ( n 
i = l i=-l 

n—* n 

n Ai2(^n) = 0 . Suppose that f f n Q ^ O fl .42(rc«) = 0 • Then 0 = Wn 
* = i i^ft—fc+i 

n fl --»(».)nni,n!T=(irn n --»(«.)n" fl xt)n-4(»-~*)n T- 3-6. 
i = n — * + l i '=l i=n—fc+1 i = l 

n—k—1 n n 

implies W n f| X* n f| A2(m) = 0 . We can conclude that W n f\ A2(m) = 0 • 
i = l i^n—h i-zi 

Since .A(;r«) £ A2(m) for every i, it holds Y = 0 . 
Let m be a cardinal number. A topology X is called m-resolvable if it contains m 

pairwise disjoint dense sets. A 2-resolvable topology is called briefly resolvable. 
The concept of resolvable topologies was introduced by Hewitt ([3]). He proved 
that every metrizible topology devoid of isolated points is resolvable. 

3.8. Lemma: There exists an m-resolvable completely Hausdorff topology for any 
cardinal number m. 

Proof: Let I be a set, card I = m. Let Q be the set of all rational numbers and © 
the usual topology of Q. Put E = J][ Qt, X = Y\ ®* > where Qt = Q and Se- = © 

for every iel. Evidently X is completely Hausdorff. Since © is resolvable, there 
exist sets At, Bt = Qt — At dense in ©| for every i e I. Let 23 = {Y[ Xt/Xt = At 

iel 

or Xt = Bi}. Every element of 23 is dense in £ and elements of 23 are pairwise dis­
joint. Since card 23 -= 2m, the topology X is 2m-resolvable and therefore it is m-
resolvable. 

3.9. Theorem: For every lattice L there exists a set E and an embedding ip : L -+3%(E) 
such that y>x is a completely Hausdorff topology for every xe L. 

Proof: Let L be a lattice. According to 2.1 and 2.4. L can be embedded in the 
lattice of all partition topologies on some set F. According to 3.8. there exists a 
card F-resolvable completely Hausdorff topology X. Let E be the underlying set of X. 
There exists a partition 91 on E every element of which is dense in X and card 91 = 
card F. From 3.L it follows that L can be embedded m0%(E). Let (p = (p(X, 9t) : 
:£P$i(E) -+3#(E) be the mapping from 3.4. According to 3.5. <p is a homomorphism. 
3.7. implies that every element of 91 is dense in X&. I t follows from 3.2. that q> is 
injective. Since (p@%,(E) c [X%) c [X), every topology from (p£P&(E) is completely 
Hausdorff. The proof is ready. 
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Since the topology of the rationals numbers is O-dimensional, every topology 
^px is totally disconnected. Even in the same way as the previous theorem we can 
prove the following one. 

3.10. Theorem: Let ^ be a class of topologies with the properties: l°% e *& n 3S(F), 
%'e&(F),% c %' =>%'e<g 
2° ^ contains an m-resolvable topology for any cardinal number m. 

Then for any lattice L there exists a set E and an embedding ^p : L -+3$(E) such that 
yL c <<g. 

Analogously as in 3.8. we can show that <$ fulfils 2° whenever it is closed under 
products and contains a resolvable topology. 

A question arises whether any lattice can be represented by topologies more 
special than completely Hausdorff. We shall show that for metrizible topologies it is 
not true. 

3.11. Lemma: Let Ebea set and & a sublattice of3S(E). Let A c E with E—A e % 
for every %eJ£. Then a mapping ^pA: ££ ->88(A), ^pA% = %|A is the relative topology 
for every % e L, is a homomorphism. 

Proof: Evidently ipA is isotone. Hence ipA%\V y>A%2 ^ ipA(%iV%2) holds for 
every %t, %2 e «2f\ Let I-., %2 e & and X e ^pA(%1 V %2). There exist Vie%l, Wte %2 

for i e / such that X= \J (Vt n Wt) n A. HenceX = \J [(Vt n A) n (Wt n A) e 
e^pA%1V^pA%2.

 ieI >e/ 

It holds y)A(Zi n %2) < yA%! n yA%2. Let %x, %2 e £?, X e yA%x n \p/ti. There 
exists Ve%! and We%2 with X=VnA = WnA. I t is (E — A) U Ve%i 
and (E — A)\J W e%2. Since (E — A)U V = (E — A)U (V n A) = (E — A)\J 
U (W n A) = (E — A)u W', it holds X e \pA(%i n %2). 

Let m be an infinite cardinal number. A topology % on a set E is called m-generated 
if it has the following property: Xe%iffXnAe %jA for every A c E with card A < 
< m (see Herrlich [2]). 

3.12. Theorem: Let m be an infinite cardinal number and L be a simple lattice 
with the least element a. Let there exist a set E and an embedding y : L-^3S(E) such 
that ^pa is an m-generated Hausdorff topology. Then card L < 22", where rt -= 22,u. 

Proof: In the case card L = 1 the theorem holds. Let card L > 1. Then there 
exists b e L with a <b. Thus ya cz ^pb. There exists X c E with X e ^pb and X $ \pa. 
Since ^pa is m-generated, there exists B c E with card B < m such that X n B£ 
$ ya/B. It is card (B — X) <m and Clwb(B — X) g Clwa(B — X). Let C = Clva(B— 
— X). Since ya is Hausdorff, every filter on E has at most one limit point in ^pa. 
It implies card C c 22"1 = n. Since E — Ce fa c ^px for every x e l , it follows 
from 3.11. that fC • ipL -^3S(C), ^pc% = I / C for every X e tpL, is a homomorphism. 
Since Clvf,(B — X) g C, it holds ^ c ^ # WcWa- Since L is simple, the mapping 
^pc^p is injective. Therefore card L < card 3&(C). Pospisil proved in [8] that card 
3$(C) = 2lCar whenever C is infinite. We have obtained that card L < 22", 

3.13. Corollary: There exists a lattice L for which no set E exists such that there 
exists an embedding ^p : L -^3#(E) having the property that ^px is a metrizible topology 
for every xeL. 

Proof: Evidently any metrizible topology is Xo-generated. The result follows 
from 3.12. and from the existence of simple lattices of an arbitrary cardinality 
(e.g. the lattice of partitions is always simple). 

There is a problem whether for any lattice L there exists a set E and an embedding 
^p : L ->3$(E) such that ^px is a (completely) regular Xi-topology. 
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