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MATRIX REPRESENTATION OF HOMOMORPHIC
MAPPINGS OF FINITE BOOLEON ALGEBRAS

Ivan CHAJDA

(Received February 18, 1972)

Sometimes it is advantageous to investigate some of the properties of Boolean
algebras on models. A suitable model for the investigation of homomorphic mappings
is just the B-modul defined in [1]. For this reason in this paper I do not deal with an
abstract Boolean algebra but with its isomorphic representation—the B-modul.

1.

Definition 1. Let there be given a set M = {0, 1}. Let us call each element of the
Cartesian power M™ the m-dimensional B-vector (or briefly vector) over M and denote
it by symbol @ = (a1, a2, ..., an) where a;€ M for ¢ = 1,2, ..., m. Elements a; are
called coordinates of the B-vector. We shall call the set My, of all m-dimensional
B-vectores the m-dimensional B-modul over M. The B-vector @ = (ay, ..., an) is equal
to B-vector b = (b1, ..., b) just when a; = b; for all <. By the sum of vectors a, b we
call vector ¢ = (¢, ..., tm) Where ¢; = a; + b;, for the coordinates holding: 0 + 0 =
=0,141=1,0-+1=1+ 0= 1. By the product of vectors a, b we shal call vector
d = (dy,...,dn), where d; = a;b;, for the coordinates holding 0.0 =0, 0.1 =
=1.0=0, 1.1=1. The vector j = (1,1, ...,1) is called a unit vector, vector
0=(0,0,...,0) a zero vector. Vector a is called complement of vector a, if it holds
a—l—a:.j,a.a=0.

It is easy to show (see [1]) that each Boolean algebra having 2™ elements is iso-
morphic with m-dimensional B-modul M,,. In the modul M,, we define a further
operation:

Definition 2. The operation of multiplying of a vector ae M, by element
&€ € M is given by the rule:

: o whene =0

E.a=a.e=
{awhene=1.

Properties of this multiplication are derived in [1]. Now it is possible to introduce
in M, & concept of a linear combination: ) )

A vector ¢ € My, is a linear combination of the vectors aj € Mm,j =1,..., 8 iff
there exist ¢; € M such that

c=&a1 + &0, + ... + &0z = _lejaj.
s J:
Vectors e = (1,0, ...,0), ¢2 = (0,1,0,...,0), ..., &™ = (0, ..., 0, 1) are called
base vectors of the B-modul My . Obviously it holds:

m
a=(a,az, > %m) G=Za¢e(‘), where a;€ M.

=1
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In [1] it is furthermore proved that base e(1), e2) . . etm) in My, is unique.
Definition 3. A matrix
11 Q12 ... A1y

A1 A2 ... Q)
4= "| whereaj ;e M

.......

will be called Boolean matriz (or simply B-matriz) of type m/n.

The B-matrix 0, whose all elements are 0 will be called the zero-B-mairix, the
B-matrix, whose all elements are 1 vill be called the unit-B-matriz, denoted by J.
A matrix 4 is equal to a matrix B, if and only if they are of the same type and for
all 7, j it holds a5 = bys, where by € M are elements of matrix B. The sum of matrices
A, B of the same type m/n is a matrix C of type m/n, whose elements satisfy ¢y =
= ay; + by, the product of matrices 4, B is a matrix D of type m/n whose elements
satisfy d¢; = aybyy, for the addition and multiplication of elements a;;, bi; holding the
same rules as for coordinates of the B-vectores in definition 1.

Definition 4. By a B-matriz decomposition of the matrix A of type m/n we shall
call all B-matrices 4,, A,, ..., 4y, for which it holds:

1. 4,, 4,, ..., Ay are of the same type m/n; A, &= A, for r = s.

2. Bach 4; (j =1, ..., k) has at most one unity in each its column.

3. If the r-th column of 4 is non-zero then the r-th column of each A4; is non-zero.

4.4, + A, + ... + 4 = A.

1010]
Example: B-matrix decomposition of 4 = |0 0 1 1] is just the following one:
‘ 0011
1010 1000 1000 1010 1000
A=}]0001]4+100111+10001}4+]0000}J4+]0010)+
0000 0000 0010 0001 0001
1000
+loooo
0011

Let the B-modul M,, be given, i.e. the Boolean algebra with 2m elements and
B-modul My, i.e. the Boolean algebra with 27 elements. If m < n, the homomorphic
mapping of M, into M, can be considered, if m = n, also the homomorphic mapping
My, onto My, can be considered. By the homomorphic mapping of M, onto M, the
zero vector from M, is always mapped onto the zero vector of B-modul My, however,
for the mapping info this fact need not hold. For this reason we shall here consider
only those homomorphisms which image the zero vector onto zero vector.

Definition 5. Let the B-matrix 4 of the type m/n be given, whose rows are B-vectors
a1,z ...,0m €My. Let €M, ¢ = (fi,f2, .., fm), fi€ M. Then the matriz A
represents a mapping o of modul My, into My, defined as follows:

m
(@) = p €My, where y = Zlfdato
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It is obvious that « is really the mapping of M, into M, because each vector
@ € My, has only one image in My, furthermore it is evident that «(o) = 0. The
image of an arbitrary vector ¢ € M, may be determined in the following way:
behind matrix 4 we write vertically vector @ and add as vectors those rows
matrix 4, in which the verticaly written vecto r has unities. This sum is an image
of vector ¢ in modul My,

Example 1.
1010
A=]0100
0100
B-matrix A4 represents mapping o of modul M; into M4. Let ¢ = (1 1 0), then
1010 1
0100 1] thusp=(10104+@0100)=(110).
0100 0

For homomorphic mappings the following theorem is holding:

Theorem 1. A mapping «, represented by B-matrix 4 of the type m/n is a homo-
morphic mapping of My, into My, fulfilling «(o) = o, iff the matrix A has in each
column at most one unity.

Proof: Let us denote by ay, ..., an € M, rows of the matrix 4. Then obviously
base vector e() € M, is imaged onto a,, vector e onto a, ..., e is imaged onto
Am -
1. Let the matrix a have in each column at most one unity. Then it holds aja; = o
for ¢ &= j. From the definition 5 it follows

ale® + e) = ag + a5 = alel9) + a(e)
and furthermore, from the properties of base vectors:
o(e® . e) = af0) = 0 = a; . a; = afe®) . afeD).
Also it is immediately obvious

0 .e)) = =0=20. (1)
ac(olC(. o) ) a(ﬁﬁ’)): =1, ;gm;} = afe . ef) = ¢ ale)

consequently « is really a homomorphic mapping of 9, into M-

2. Let & be a homomorphic mapping of My, into My, «(o) = o, and let 4 have at
least two unities in the i-th column, let they are in the k-th and s-th row. Then:
“(e(k)) = (ak,l: coey Qg1 1) A igly + s a’k,n)

a(e(a)) = (a’s,l; ey aa,i—ly 1’ as,¢+1» oy aa.n)
consequently a(e®) . a(e®) == o, because it has the i-th coordinate equal to 1, but

it holds a(e®) . e(®)) = a(0) = o, which is a contradiction.
The following theorems are clear:

-Al- If A4 is the B-matrix of the tm m[n and if it has in each column and each
row just one unity, then A represents the isomorphic mapping of M,, onto My, .
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-A2- If A is the B-matrix of the type m/n, m < n and if it has in each column at
most one and in each row just one unity, then the set of images of all vectors from
M, i.e. a(M;,), forms the B-modul M, C M, which is isomorphic with Wy, .

Furthermore, we shall prove the following theorem:

Theorem 2. If « is a homomorphic mapping of My into My, where afo) = o,
then there exists just one B-matrix 4 of type m/n representing this mapping.

Proof: In [1] it is proved that the modul M, has just one base, namely
{eW), @), ..., etm}. Each vector from M;, may thus be expressed in the only way as
a linear combination of base vectors:

peMy => ¢ = the(i).
=1

Since « is the homomorphic mapping, it holds:

(@) = .; fi . ale®).

Let us denote «(e)) = a;, then a; are univocally determined rows of a B-matrix 4.

Theorems 2 and 1 secure representation of all homomorphic mappings of My,
into My, fulfilling a(o) = o, by the set of all B-matrices of the type m/n having in
each column at most one unity.

There are just (:

n — k columns with just one unity. If we consider also the so called degenerated
Boolean algebra (see [4]) having only one element, namely O, then we can formulate
the theorem:

)m"—" B-matrices of the type m/n, having k zero-columns and

Theorem 3. There exist just s = (m + 1)» homomorphic mappings of a Boolean
algebra with 2™ elements into a Boolean algebra with 27 elements, fulfilling «(0) = O.

Corollary: There exist just » = (m + 1) endomorphisms of a Boolean algebra
with 2m elements, which image O onto O.

2.

Mappings and all the more homomorphisms, can under certain assumptions be
composed. Since this composition is associative, there must exist an associative
operations among B-matrices of a certain type corresponding to this composition.

Let My, My, Mp be B-moduls, let the B-matrix 4, of the type m/n represents a
mapping «; of the B-modul M,, into My, let a matrix 4, of the type n/p represents
a mapping a, of M, into M, and let us denote by az the composed mapping a3 =
= otz00; of the modul My, into My . Then the operation © corresponding to the compo-
sition of mappings is feasible only among matrices of the types m/n, n/p, the resulting
matrix is of the type m/p.

Let the matrix A4; has elements d;,, let rows of the matrix 4, be p-dimensional

B-vectores ki, k2, ..., kn and let us denote the rows of the resulting matrix 45 by
fi, f2, ..., fm, which are again p-dimensional B-vectors. Let the modul M, has base
{eW, ..., em}, modul M, has base {e¥), .., eM}. Then: ap(el)) = ki, as(e®) = ¢,
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where ¢; = (di1, ..., din). The composed mapping «3 = a,a; then images vectors e
onto the rows of the resulting matrix 4;, thus:

n n n .
fi = oa(e®) = a(as(e®)) = atz(cs) = aa( 2, 156) = Y. Ststa(el?) = D, Susks
8=1 8=1 8=1

n

and thus f; = 21 0isks is the formula for the determination of rows of the resulting
8§=2

B-matrix As. Symbolically we write 43 = 4; O A4,.

Example 2.
001
Lot 010
010 000
4=1900 42 = g?g A=diod=1g99
100 101

The operation ¢ is a partial associative operation on the set of all B-matrices.
This operations is everywhere defined on the set of all square B-matrices of the type
m[m. The set of all square matrices of the type m/m forms an algebra U with four
operations, denoted by symbols -+, ., o, T, where -, . are addition and multiplica-
tion, defined in definition 3. With respect to this operations, U forms a distributive
lattice. With respect to operation o, 2 is a semigroup. The operation T is a unary
operation of the transposition of B-matrices in a way usual in the matrix-calcul.

Further we consider the set of all square B-matrices of the type m/m, having in
each row and in each column just one unity. These matrices represent isomorphisms
My onto My, the composition of two isomorphisms is again an isomorphism,
consequently the set of these matrices, let us denote it by ;, is closed with respect
to the operation . 2, is a subsemigroup of the semigroup A, but A, is even a group.
The inverse element to a matrix A € U is the transposed matrix A7 € A;, unity of
this group is the so called identical matrix I, representing the identical isomorphism
(having unities just in the diagonal). The matrices of the algebra U, are called
B-regular.

In the algebra A it is possible to cancellate by B-regular elements. The matrix J
is agressive with respect to operation o for B-regular matrices. For matrices, which
are not B-regular, there holds only the following inequality (in the sense of the lattice
ordering):

Bed J=JoB=B.

For the right multiplication by the element J even this inequality does not hold.
Also the relation 4 © AT = AT o A4 holds only for B-regular matrices.

Let us denote by U, the set of all B-matrices of the type m/m, having in each
column at least one unity. With respect to the addition, 2, is closed. Matrices from
A, represent all semihomomorphic mappings of My, into My, fulfilling:

afo) =0  afj) =J.
Again, it is clear that U, is a subsemigroup of the semigroup A and the group A, is
a subsemigroup of A,. With respect to the operation T, however, 2, is no more closed.
It is possible to construct further subalgebras of A and to investigate by means
of this metod the properties of mappings of Boolean algebras. The aim of this paper
was, however, only to show some advantages of matrix representation in the investiga-
tion of homomorphisms in finite Boolean algebras.
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