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QUADRATIC PHASES OF D I F F E R E N T I A L 
EQUATIONS y" = q{t)y 

E. BARVINEK, BRNO 

(Received March 4, 1971) 

1. INTRODUCTION 

The phases form a significant pillar of the transformation theory of O. BORTJTVRA, 
see [1]. This theory deals with the differential equations 

(q) y" = q(t)y, 

where q(t) are real continuous functions on open intervals ]a, b[ of the real axis R. 
Sometimes we call q the carr ier . Any ordered pair of linearly independent solutions 
of (q) on domain Dom q = ]a, b[ of q is called a basis of (q). 

A phase oc(t) of (q) is every continous function in ]a, b[ fulfilling everywhere, 
except the roots of the denominator, the relation 

<» «••»>-•§• 
where (y, z) is an arbitrary basis of (q). 

It is known that for every basis (y, z) of (q) the phases exist in the whole interval 
]a, b[ and if oc(t) is one of them, then all are oc(t) + viz, where v ranges over the set 
of all integers Z. Moreover, all the phases a of (q) satisfy in ]a, b[ the differential 
equation 

i—hq) -{oc,t}-ocf* = q(t), 

where {a, £}==—-1—7J —-— (—I is the Schwarz ' derivative. Note that by 

so lu t ions of differential equations we always mean the l a rges t so lu t ions . It 
is an important fact that every solution a of (—1, q) exists in ]a, b[ and is a phase 
of a suitable basis (y, z) of (g). 

The phases arose from the transformation of a basis (y, z) of (q) to the polar form 

<2> y = ±r sin oc, z = -j-r cos a, r > 0. 

The important position of phases in the classical theory [1] issues from their 
existence in the whole interval ]a, b[ for any equation (q) and from their object 
meaning <1>, <2>. 

For two given equations (i = 1, 2) 

(Qi) yi=qi(h)yi, 

where Dom q\ = ]ai, b([, it is a matter of t r a n s f o r m a t i o n s of the form 
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of solutions y2 of (q2) to solutions y\ of (q\). I t appears tha t in a suitable subinterval 
of ]a2, b2[ the function y satisfies the equation 

(<1i><12) — {y, t} + qi(y) y'2 = q2(t) 

and on the contrary every solution y of (qt, q2) in some interval transforms solutions 
2/2 of (q2) to solutions yx of (qt) according to the formula <3>. Generally only parts 
of y2 are transformed to parts of yl9 i.e. y transforms only y2jdomy to yijimy. 

If the equation (qx, q2) has a solution y which maps ]a2, b2[ onto ]ax, bx[, then each 
such y is called a comple te so lu t ion of (qx, q2) or a comple te t r a n s f o r m a t i o n 
of (q2) to (qi). Then by the formula <3> an arbitrary solution y2 of (q2) in ]a2, b2[ is 
transformed to the solution yx of (qx) in ]ax, bx[. Evidently the complete transforma­
tions have the main significance in comparison with the others. 

For three given equations (i == 1, 2, 3) 

(ft) • y'l = qi(h)yt 

where Dom qi = ]a$, 6<[, the solutions ytj of the equations (qi, qj) (i, j = 1, 2, 3) 
have the following arithmetic: 

1° if yij is a solution of (qi, qj), then the inverse function y -̂1 is a solution of (qj, qi), 
2° if yij is a solution of (qi, q}-) and y^ is a solution of (qj, qjc) (i, j , k = 1, 2, 3), 

then the composed function y# o y^ (if it exists in some open interval) is a solution 
of (qt, qk). 

Let us remind how the character, see [1], of an equation (q) can be univocally 
determined by means of the phases of the equation (q). The equation (q) is called 
nonosc i l l a to ry of the type m ^ 1 if it has solutions with m roots but has no 
solution with (m + 1) roots. Just then every phase a of (q) maps the interval ]a, b[ ~ 
= Dom q onto an interval of the length d(a) e](m— \)7t, mrc], where for all a, 
there is d(a) < miz or for all a there is d(a) = mn. According to that the equation (q) 
is called either genera l or special . 

If just one of the ends of ]a, b[ is an accumulation point of roots of any solution 
of (q), then (q) is called one-sided osci l la tory . Just then every phase a of (q) 
maps the interval ]a, b[ onto an interval of the form either ]—oo, c[ or ]c, +oo[. 

If both ends of ]a, b[ are accumulation points of roots of any solution of (q), then 
(q) is called b o t h-s idedosc i l l a to ry . Just then every phase a of (q) maps the interval 
]a, b[ on R = ]—oo, +oo[. 

By the c h a r a c t e r of an equation (q) there is meant any one of the possibilities: 

1° (q) is general and of the type m _ 1 in ]a, b[, 
2° (q) is special and of the type m ^ 1 in ]a, b[, 
3° (q) is one-sided oscillatory, 
4° (q) is both-sided oscillatory. 

There exist countably many characters of differential equations (q). Each (q) 
has a quite definite character which can be determined univocally by means of its 
phases. 

Let us have two equations (qt),i = 1,2. The phases oa of (qt) are called s imi lar 
if their ranges are identical, i.e. Im ocx = Im oc2. 
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There holds, see [1]: 
1° iff (ai) and (q2) have the same character, there exist similar phases oc\ of (qi), 
2° iff the phases oc{ of (qi) are similar, the transformation y = ocJloc2 is a complete 

one of (q2) to (qi). 
Consequently (ai) and (q2) have the same character if and only if there exist com­

plete solutions of the equation (qi, q2). 
From these important theorems of the theory of transformations of O. BORtjVKA 

the significance of the phases for the whole theory is evident. Note that for arbitrary 
values t0 e ]a, b[, a0 e R, 0 4= a 0 e R, a 0 e R there exists uniquely the phase a of (q) 
fulfilling the initial conditions oc(t0) = ao, oc'(t0) = OC'Q, oc"(t0) = a 0 . Consequently 
it is shown that for the equation (q\, q2) the existence and uniqueness of initial value 
problem hold. 

Besides the mentioned classical phases there was introduced another sort of 
phases, see [5], [6], [7]. Analogically to <2> a basis (y. z> of (q) was transformed to 
the form 

<4> y = ±r sh ft, z = ±r eh#, r > 0, 

so that in suitable intervals the function #, called hyperbolic phase, fulfilled the 
relation 

<5> th 0 = y~. 
z 

The analogy of hyperbolic and trigonometric functions made possible get some 
formulae analogous to that of the classical theory. 

Hyperbolic phases # of (q) represent transformations of the equation (q) to the 
equation 

(i) y" = y-

An equation (q) can be completely transformed to (1) if and only if (q) is general 
and of the type 1. Note that in this case (q) can be also transformed to the equation 

(—1) y" = —y, 

restricted to any open interval of length less than n. 

2. MECHANISM OF D E F I N I T I O N OF P H A S E S 

Let (a, b) denote any one of the intervals [a, b], [a, b[, ]a, b], ]a, b[ c R for —oo ^ 
<5 a < b ^ +oo, i.e. [a, b] closed, ]a, b[ open etc. 

Let us fix an arbitrary equation 

(Q) Y" = Q(t) Y 

with Q real and continuous in Dom Q = (A, B) and let us fix some of its bases (Y, Z). 
For an arbitrary equation (q) with q real and continuous in Dom q = (a, b) and 

for any one of its bases (y, z) let us define a function 0 in some interval s (o, b) 
by the requirement of continuity and by the relation 

Y(6) y 
<б> 

Z( ) z 
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everywhere in that interval except the roots of the denominator. 
2.1. Lemma. 2/ 0 exists in some interval cr (a, b), then there holds in that interval 

Y(0) , Z(0) 
<7> y - ± T4=~ ,Z = ± fГ' f w r 

where W and w, resp., are the Wronskians of the basis <Y, Z) or (y, z), resp. Moreover, 
0 fulfils the differential equation (Q, q) in that interval. 

On the contrary, every solution 0 of the equation (Q, q) in some interval c (a, b) 
fulfils there the relation (6), e.g. for the basis (y, z) of (q) given by (7). 

Proof. I. Let 0 exist for some basis (y, z) in some interval. Then there exists 
a continuous function k fulfilling 

<8> " y==kYi(0), z = kZ(0) 

y z 
as k = -yT-QT- = "nTT^r- *s continuously defined by these relations because Y(0), 

Z(0) do not vanish simultaneously. 
Differentiating the relation <6> we get 

w I 1 
<9> © ' = " = , v.y or k=±-W k1

 л / W i / w 
f w 

so that there holds <7>. As it is evident that 0 has a continuous derivative of the 
3rd order we get by the differentiation of <7> the equation 

<10> ]/--£- /-/WJ" + Q{&) &1 = *® or (Q,a). 

II. On the contrary, every solution 0 of the equation (Q, q) in some interval 
fulfils there <6> for the basis (y, z) defined by <7>. 

2.2. Remark. The function 0 fulfilling the equation (Q, q) in some interval c= (a, b) 
represents there a transformation of (q) to (Q). If we wished to express the function k 
occurring in <8> otherwise than by means of <9>, namely in the terms of (y, z) 
only (which we are able to do for < Y, Z) = <sin t, cos t) and for < Y, Z) = <sh t, 
eh t> where k = ±]lV2 + z2 or k = ±]/z2 — y2), we should have to know some cor­
responding q u a d r a t i c r e l a t i ons for the basis <Y, Z). 

2.3. Definition. If for some basis <H, z) of (q) the relation <6> together with the re­
quirement of continuity determine a function 0 in the whole interval ]a, b[, then we 
call 0 a Q-phase (with regard to the basis < Y, Z)) of the basis (y, z) of (q). 

Then, by a Q-phase of (q) any Q-phase of a suitable basis (y, z) of (q) is meant. 
For the choice of a convenient sort of phases a requirement of u n i v e r s a l i t y 

evidently plays the main role, e.g. that the equation (Q) in ]A, B[ may be both-sided 
oscillatory so that all the characters can be represented by suitable restrictions of (Q). 

Another requirement, that of s impl i c i ty of the function Q, is not irrelevant, 
e.g. such .that some quadratic relations may exist among the solutions of (Q). 
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O. BORtlVKA proves in [2] that for a linear system 

<11> y' = My, 

where M is a square n X n matrix of continuous functions in some interval ]A, B[, 
there exists a q u a d r a t i c r e l a t i on %yNz = const, for any two solutions y, z of <11> 
(y, z being n X 1 matrices of functions with the first continuous derivative in ]A, B[, 
N being some convenient constant symmetric matrix, ty denoting the transported 
matrix) if and only if there holds 

<12> *MN + NM = 0. 

This applied to the equation (Q) in ]A, B[, interpreted as the system 

[r]'-R!][rV 
we get that for N = [ny], i, j = 1,2, there holds <12> if and only if Q is a constant, 
nu = rtii = 0, nn = —Qn12. 

We can see that just for Q = const, there holds the quadratic relation 

<14> — QYZ + Y'Z' = const. 

for any two solutions Y, Z of (Q). 
Among all equations (Q) with Q = const, it suffices to choose three representatives 

for Q = — 1 , Q =s 0, Q = I o n the real axis R. The corresponding equations (Q) have 
then the characters: both-sided oscillatory, special and of the type 1, general and 
of the type 1, respectively. 

Note that all the characters can be realized with Q = —1 by suitable restrictions 
of the domain. 

Between the solutions Y, Z of (Q) and their first derivatives we get the quadratic 
<elations 

rl4*> YZ + J'Z' = const, for Q =» — 1 , 

<14**> 1'Z' » const, for Q == 0, 

<14***> —YZ + Y'Z' -= const, for Q = 1, 

which give specially the classical formulae sin2 t + cos2 t = 1, ch2 t — sh2 t = 1. 
From the point of view of simplicity we have to choose any one of the carriers 

Q = — 1 , Q = 0, Q = 1. From the point of view of universality we get to the unique 
carrier Q = — 1 , since any other universal carrier Q misses the simplicity and any 
other simple carrier Q misses the universality. , 

Accordingly as Q = — 1 , 0, 1 we call Q-phases e l l ipt ic , pa rabo l ic , hyperbo l i c . 
The classical phases are elliptic phases with regard to the basis <sin t, cos t}. Further 
we shall deal with parabolic phases f only with regard to the basis (t, 1> so that 
they fulfil for any basis (if, z) of (q) the relation 

<i5> : - - • £ , 

and we call them paraphases of (q). Finally we shall deal with hyperbolic phases & 
only with regard to the basis <sh t, ch t} so that they fulfil for any basis (y, z} of (q) 
the relation <5> and we call them hyperphases of (q). 
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2.4. Remark. Note that the requirement of continuity is a part of definition o-
paraphases <15>. By this they differ from the so-called semiphases of (q), whicff 

y 
are quotients ™ of linearly independent solutions of (q) in ]a, b| = Dom q without 

z 
regard to the continuity. See [4]. 

Certainly, elliptic, parabolic and hyperbolic phases can be called q u a d r a t i c 
phases with regard to the exclusiveness of the existence of quadratic relations 
among soluticns of (Q) for Q — —1 , 0, 1. 

3. APPLICATION OF PRINCIPAL SOLUTIONS 

Let (q) be an equation with q real and continuous in Dom q = (a, 6), nonoseil-
latory at a or 6, respectively, see [3]. A solution u or v, resp. is called p r inc ipa l 
at a or 6, resp. if u =f= 0 or v #= 0, resp. in some deleted neighbourhood 0*- or 0b , 
resp., and for t G 0*+ or t e 0b , resp., there holds 

t b 

f <k f ds 

<16> - +oo or ——• = + o o . resp. 
J **2(*) J v*(s) 
a t 

Everywhere in further the letter u or v, resp., denotes the principal solution at a 
or 6, resp. 

The principal solution u or v, resp., is also characterized by the fact that for any 
u v 

linearly independent solution z there holds lim — = 0 or lim — = 0, resp. 
t~+a+ % .~*6" z 

In comparison with [3] we shall call an equation (q) in (a, b) d i scon juga te i 
each of its solutions has at most one zero in ]a, b[. Specially (q) in [a, b] having a solu 
tion y 4= 0 in ]a, b[ such that y(a) = y(b) = 0 is disconjugate according to our defini­
tion, whereas according to [3] it is not. Only in this case both definitions differ. 
If (q) is not disconjugate, we call it con juga te so that exactly a conjugate equation 
(q) has a fundamental central dispersion <p(t) defined in some non-trivial interval. 

3.1. Generalized separation theorem. Let (q) in (a, b) be a disconjugate equation 
for which z 4= 0 in ]a, b[ is a principal solution simultaneously at a and b. Then every 
solution y linearly independent on z has exactly one zero in ]a, b[. 

y 
Proof. The function —is strictly monotonic in ]a, 6[ and maps this interval onto 

R so that it has exactly one zero in ]a, b[. 
3.2. Lemma. For an equation (q) in (a, b] the principal solution at b isjhat one which 

has zero at the point b. Similarly for an equation (q) in [a, b) the principal solution at a 
is that one which has zero at the point a. 

Proof. Let the solution y of (q) have zero b. For any linearly independent solution z 

( z\f h 
— I --.- —, where k 4= 0 is 
y) y2 

b 
z ?(t\ r t\o 

a constant. Hence lim — = ±00. For t e 01- we have ±00 = —iL 4- I jfc 
w - V y(t) T J y2(s) • 

t 
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I) 

Hence I —-- ---- -t-oo so tha t u is a principal solution at b. Similarly for the second 
J y2($) 
t 

par t . 
Let (q) be a conjugate equation in (a, b) which is nonoscillatory a t the point a. 

Let R denote the set of all t e (a, b) such t ha t <p~x(t) e (a, b) exists. P u t r = inf E. 
In [1] 0 . B O R L J V K A calls a solution y of (q) with the zero r a l e f t f u n d a m e n t a l 
s o l u t i o n . Similarly a r i g h t f u n d a m e n t a l s o l u t i o n z of a conjugate equation 
in (a, b) which is nonoscillatory a t the point b is a solution having the zero s ----- sup S 
where S is the set of all t e (a, b) such tha t q>(t) e (a, b). 

3.3. Theorem. For a conjugate equation (q) the left fundanental solution is identical 
(until the linear dependence) with the principal solution at the point a. Similarly the 
right fundamental solution is identical (until the linear dependence) with the principal 
solution at the point b. 

Proof . Let y be the left fundamental solution of (q) and u be the principal solution 
of (q) a t the point a. If y, u are linearly independent, then u has a zero in ]a, r[ u 
u ]r, b[ since the equation (q) would be otherwise disconjugate. If u has a zero in 
]r, b[, then u also has a zero in ]a, r[ according to the significance of r =-. inf R. Then 
according to 3.1. and 3.2, y has a zero in ]a, r[, which contradicts the definition of r. 
Thus y, u are linearly dependent . For the second par t the proof is analogous. 

3.4. Remark. The priority of the concept of principal solutions with respect to 
tha t of left or right fundamental solutions consists in their existence for (q) nonoscil­
la tory a t a or b, resp., regardless of the fact (q) being conjugate or disconjugate. 

3.5. Lemma. The phases of the basis <j/, z) acquire the values viz, v e Z exactly in 
the zeros of y, whereas they acquire the values (v + 1/2) n, v e Z exactly in the zeros 
of z. 

3.6. Lemma. For an equation (q) in (a, b) let z be an arbitrary solution linearly 
independent on the principal solution u or v. respectively. 

For the phases oc of the basis (u, z) there holds oc(a+) ==. lim oc(t) -— vn, v e Z, whereas 
for the phases oc of the basis (v, z> there holds oc(b ) = lim oc(t) ~~ vn. v e Z. 

t-->b-
For the phases a of the basis (z, u) there holds oc(a+) --= lim oc(t) = (v + ^2) n, v e Z, 

t~*a> 
whereas for the phases oc of the basis (z, v) there holds oc(fr) = lim a(t) — (v + 1/2) 7u, 

t->b-
veZ. 

u v 
The proof follows from the fact that lim —- = 0, lim = 0. 

t~>a+ z t-*b- z 

3.7. Theorem. A nonoscillatory equation (q) in (a, b) is general or special according 
to the fact whether u, v are linearly independent or dependent. 

Proof . If u, v are linearly independent , then for the phase a of the basis (u, v) 
there holds a(a+) = pit, a ( b ) — (v + 1/2) n for some p, v e Z and thus the length 
of Im oc is not of the form mn. m e Z s o t ha t (q) is general. 

If u, v are linearly dependent, then for an arbi t rary solution z which is linearly 
independent on u, the phase a of the basis (u, z) fulfils oc(a+) = pm, oc(b~) = vn for 
suitable p, v e Z so t ha t the length of Im a is a multiple of n and thus (q) is special. 

3.8. Remark. Recall tha t an equation (q) in (a, b) is of the type 1, i.e. each of i ts 
solutions has a t most one zero in (a, b) if and only if i t is disconjugate except the case 
of special disconjugate equation (q) in [a, b] (when there are solutions with zeros a, b). 
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3.9. Lemma. An equation (q) in (a, b) is disconjugate if and only if there exists a solu­
tion z # 0 in ]a, b[9 e.g. u, v. 

Proof. If a solution z =4= 0 in ]a, b[ exists, then every solution y of (q) has in ]a, b[ 
at most one zero according to the separation theorem. Thus (q) is disconjugate. 

If (q) is disconjugate, then in ]a, b[ the principal solutions u, v have no zero according 
to 3.2 and 3.1. 

3.10. Lemma. An equation is general and disconjugate in (a, b) if and only if there 
exist linearly independent solutions y, z both having no zero in ]a, b[. 

Proof. If (q) is general and disconjugate, then linearly independent solutions u, v 
have no zero in ]a, b[ according to 3.9. If (q) is special and disconjugate, then every 
solution y linearly independent on u, v has one zero according to 3.1. in ]a, b[ and 
thus there do not exist linearly independent solutions y, z having no zero in ]a, b[. 

4. PARAPHASES 

In this paragraph we shall deal with parabolic phases of differential equation (q) 
in (a, b) with regard to the basis (t, 1>, i.e. with so-called paraphases. 

4.1. Lemma. Paraphases of a basis (y, z} of (q) exist in ]a, b[ if and only if z 4= 0 
in ]a, b[. 

y 
Proof. Iff z 4= 0 in ]a, b[, then £ = — is continuous in ]a, b[. 

z 
4.2. Corollary. Paraphases of an equation (q) in (a, b) exist if and only if (q) is 

disconjugate. 
4.3. Theorem. Let (q) in (a, b) be disconjugate and general. Let u, v be principa I 

solutions fulfilling the inequalities u > 0, v > 0 in ]a,b[. Then all the bases (y, z> of 
y 

(q), for which £ = — is a paraphase, are given by the formula 
z 

MM = [atj] \ , det [atj] 4= 0, a2la22 ^ 0, 

where a2X, a22 are not simultaneously zero. 
Proof. For z = a2\U + a22v, where a2la22 ^ 0 and a2X, a22 are not simultaneously 

zero, there is evidently z =)= 0 in ]a, b[. On the contrary if, e.g., z = a2Xu + a22v > 0 
z u 

in ]a, b[, then for t -» a+ we get 0 < — = a2i— + «22 -+ 2̂2 = 0 and similarly 
v v 

a>i\ ^ 0 so that #21̂ 22 =̂  0 and a2\9 a22 are not simultaneously zero. 
4.4. Theorem. Let (q) in (a, b) be disconjugate and special. Then all the bases (y, z} 

y 
of (q), for which £ = — is a paraphase, have z as the common principal Solution and y 

z 
as an arbitrary linearly independent solution. 

Proof. Follows from 3.1. 
4.5. Theorem. Let (q) in (a, b) be disconjugate and special. Then every paraphase £ 

is strictly monotonic and maps ]a,b[ onto R. 
y 

Proof. For an arbitrary paraphase £ — — we have, according to 4.4, lim £ = 
2 t-*a+ 

= —00 sgn £', lim £ = +00 sgn £'. 
t~>b~ 
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4.6. Theorem. Let (q) in (a, b) be disconjugate and general. Let k 4= I be arbitrary 
values in R = [—oo, +00], one of them, at least, being finite. Then there exist 001 (i.e. 
a oneparametric continuum) paraphases £ of (q) fulfilling £(a+) = Urn £(£) =-= k, £(&~) = 

t-»-a+ 

= lim C(t) = I 
t->b-

Proof. According to 4.3. any paraphase is of the form £ = — — , where 
#21^ + &22# 

&21 ^ 0, a22 ^ 0 can be supposed without loss of generality, of course a21, a22 

being not simultaneously zero. 

I. If a21 > 0, a22 > 0, then £(a+) = — , £(&-) = — so that f o r H l e R w e 
^22 ^21 

have an = la21, a12 = ka22. Since it is the matter of homography it is possible to 
eliminate one of the parameters a2i > 0, a22 > 0 and thus to each pair i + l e R 
there are 00* paraphases £ with the boundary values £(a+) = k, £(b~) = I. 

II. For a2i = 0, a22 = 1 we have £ = an f- a12, where an 4= 0, a i2 are arbitrary 
v 

numbers. Then £(a+) = a12, £(6~) = ±00 according to the fact if an ^ 0. Hence for 
the pair k = a12, I = +00 there exist 00l paraphases £ having boundary values 
£(a+) -= keR, £(6~) = ±00, the parameter being an ^ 0 according to the fact if 
I — +00. 

v 
III. For a21 == 0, a22 = 0 we have £ = an + a i2 — , whereas 4= 0, an are arbitrary 

u 
numbers. Then £(a+) = +00 according to the fact if a12 jg 0, £(b~) = a^. Hence for 
the pair k=+oo, I = an e R there exist oo1 of paraphases £ with boundary values 
£(a+) = +oo, £(b~) = I e R, the parameter being aJ2 5S 0 according to the fact if 
k = +00. 

4.7. Theorem. Let (q) in (a, b) be disconjugate so that paraphases exist. Then all 
the (real) homographies 

b\\C\ + bi2 <П> C: 2 
b2l£l 

which transform the paraphase £1 to £2 with the boundary values £*(a+) = ki 4= l4-
= £i(b~~), i = 1, 2, are aî ew 61/ the formulae 

/ l Q \ /. ^ 2 ~ ~ ^ 2 J. I *-« ^ / . 
<18> bn = —-j j—021 + 1 rb22, 

ki — li ki — h 

h hh(l2 ~k2) kxl2 — k2lx 

ol2 = — - 621 -) - — 622, 
ki — l\ ki — li 

tv&ere 62i, 622 are arbitrary parameters fulfilling the condition 

<19> (622 + *i62i) (b22 + W21) > 0. 

The determinant of the matrix [by] is then 

<20> I btj I = j^TT (bz2 + hlbll) (622 + W21). 

71 



Ъц í >o. 
Ъц |<o. 
Ъц l<o. 
bц | > 0 . 

P r o o f . Any two semiphases £1, £2 of (q), see remark 2.4., are connected together 
with the formula <17>. If both semiphases £1, £2 are continuous in ]a, 6[, then 
d(a+) = fa !§* h = £s(b~) according to the fact whether £$ is strictly increasing or 
decreasing, mapping the interval ]a, 6[ onto a suitable interval ]n,Si[. Then <17) 
maps ]n, Bi[ onto ]r2, s2[ by means of one of both branches of the corresponding 
hyperbola, namely by the increasing or decreasing one according to the fact wheather 

Without regard to the sign of the determinant j 6^ | there hold the equations 

/ o l v 7 bnfa + bl2 bnh + 612 
V*l> fa = ~r j—--=--- , h = ~r~l—7T~ » 

62iki + 622 62Jli + 622 

being fa = n, h = >H or kf = 5$, l^ = r̂  according to that if f$ is increasing or decreas­
ing. From <21> we get <18>. 

There are four possibilities. 

I. If ki <h,fa<h, then <17> is realized by an increasing branch and | 
I I . If fa <h?fa > l2, then <17> is realized by a decreasing branch and | 

I I I . If fa > h, fa < l2, then <17> is realized by a decreasing branch and | 

IV. If ki > h > fa > Z2, then <17> is realized by an increasing branch and | 

Considering these possibilities together with <20> we get the condition <19>, which 
eliminates the homographies transforming the numbers k\, h to k2, l2 according to 
<21> in such a way tha t the point (k\, k2) lies on one branch whereas the point (h, l2) 
lies on the other branch of the hyperbola. 

4.8. Lemma. Let us have equations (qi) in (ai,bi), i = 1. 2. 3. Let us consider 
equations (qitqj) in open intervals ]aj, bj\ X ]«£, 6 [̂ only. 

If yij is a complete solution of (qi, qj), then yjy1 is a complete solution of (qj, qi). 
If yii or yw> resP-, *'$ a complete solution of (qt, qj) or (qj, qk), resp., then the composed 

function yij * yjk is a complete solution of (qi, qk). 
Proof . We denote as usually the domain of a func t i on / by D o m / and the range 

of / as Im jf. There is Dom ytj ° yjk = y^ 1 (Im yjk n Dom y#) = y^ 1 (Im yjk) = 
= Dom yjk = ]ak, bk[, Im yfj ° yjk = y^(Im yjk n Dom ytj) = y^(Dom yy) = 
= Im ytj =• ] a*, bi[ so that y^ ° yjk is a complete solution of (qi, qk). There is 
Dom yj]1 = i m y^ = ]a$, 6*[, Im y^ 1 = Dom y# = ]a-j, bj[ so tha t y^1 is a complete 
solution of (qj, qi). 

4.9. Definition. Let the equation (qi) in (at, bf), i = 1, 2, be disconjugate. Let Ci be 
a paraphase of (qt). The paraphase s £lf £2 are called similar if Im £1 = Im £2. 

4.10. Corollary. Disconjugate equations (qi) in (at, 6$), i = 1. 2 admit similar para­
phases if and only if they are both general or both special. 

P r o o f follows from 4.5 and 4.6. 
4.11. Theorem. Let (qi) in (at, bi). i = 1, 2 be disconjugate equations both general or 

both special. Let y be some transformation of (qi) to (g2), i.e. a solution of the equation 
(q2y qi). Let Ci be some paraphase of (qi). Then y is a complete transformation if and 
only if y — Ci1^ where £1, £2 are similar. 

Proof . I. Let £1, £2 be similar. Pu t y = £2
1£i- Then y is a solution of (q2, qi) 

since £< is a solution of (0, qi). There is Dom y = ^ ( I m £1 n I m £2) = Dom £1 = 
= ]a J? 6X[, Im y = f ^ f l m £1 n Im £2) -= Dom £2 = ]a2, 62[ so tha t y is a complete 
solution of (q2, qi). 

I I . Let y be a complete solution of (q2, q\), £2 be an arbi trary paraphase of (#.)• 
Pu t £1 = £2 7 . Then f, is a solution of the equation (0, q^). Since Dom £1 = 
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= y~1(Im y n Dom £2) == y--(Im y) = Dom y = ]a i ? &-.[, £ t is a paraphase of (qx). 
Since I m d = £2(Im y n Dom £2) = £2(Dom £2) = Im £2, £A is similar to £2. 

4.12. Remark. For two disconjugate and special equations (g t), (q2) all paraphases 
£1, £2 are similar and they are complete solutions of (0, qt), (0, q2), respectively, 
see 4.5. According to 4.8. all complete solutions y of (q\, q2) are of the form y = £f 1£ 2 , 
which follows from 4 .H. , too. 

4.13. Theorem. Let the equations (qi) in (ai, bi), i = 1, 2, be disconjugate and either 
both general or both special. Among the (classical) phases at and oc2, resp., corresponding 
to paraphase £1 and £2, resp., of (qx) and (q2), resp., there exist pairs of similar phases 
oci, oc2 if and only if £1? £2 are similar. 

Proo f . I. Let £ l 9 £2 be similar. For oa we have tg on = £t • Since Im £-. = tg (Im a*) 
and Im a i , Im a2 are intervals of length less t han n, there exists v eZ such tha t 
a2, at + viz are similar. 

I I . If Im oc\ = I m a2 , then £$ = tg a* gives Im £1 = Im £2 • 
4.14. Corollary. For two disconjugate equations (qi), i = 1, 2, of the same cha­

racter in ]ai, bi[ resp. all the complete transformations y e (eIi, q2) are given by the 
formula aj~1a2 where a i , a2 range over all pairs of similar (classical) phases of (qx), (q2) 
resp., but they are also given by the formula y = £j"1£2 where £1, £2 range over all the 
pairs of similar paraphases of (q\), (q2), resp. 

To the end of this paragraph we generalize to semiphases some results concerning 
the paraphases . 

4.15. Lemma. Let (q) in (a, b) be disconjugate. Then the boundary values £(a+) = k, 
£(b-) = I of an arbitrary semiphase £ of (q) in ]a, b[ consisting of (i) increasing (ii) 
decreasing branches, resp., fulfil the conditions 

(22> (i) —00 = k < I — + 00 or —00 < I 5j k < + 0 0 , 

(ii) —00 ^ I < k < + 00 or —00 < k g I < + 0 0 , resp., 

according to that if Im £ is an interval or a union of two (disjoint and non bounded) 
intervals ivhere in <22> in any case at least one of the signs of equality falls off for 
a general equation whereas for a special one all signs of equality take place in any case. 

Proof . Any semiphase £ of (q) is of the form £ = tg a where a is some (classical) 
phase of (q) in ]a, b[. Denote by a(a+) = c, a(b~) = el, £(a f) = k, C(b~) = I the 
boundary values of a and £. P u t r = c, s = d or r = d, s = c according to tha t if a 
increases or decreases, i.e. if c < d or d < c, the phase a mapping ]a, b[ onto ]r, s[ 
of the length 0 < s — r < 71 or s — r = n in case of (q) being general or special. 

Then the function tg maps ]r, s[ onto the interval ]tg r+, tg s~[ or onto the union 
of two disjoint intervals ]—00, tg s~[ u ]tg r+, + c o [ according to t ha t if in ]r, s[ 
a number of the form (v + 1/2) n, v e Z does not lie or lies. According to that , for 
a general equation (q), there is ]tg r+, tg s~[ c R (a proper subset) or tg s~ < tg r+, 
whereas for a special one there is ]tg r+, tg s~~[ = R or tg 5- = tg r+. 

According to tha t if a increases or decreases we have k = £(a+) = lim £(£) = 
t-*a+

 A 

= lim tg oc(t) = lim tg#e = tg c±, 1 = £(6~) = lim £(«) = lim tg oc(t) = lim tg a S 
t-»-a+ a->c± t->b~ t->b_ oc-*-d~ 

= tgd+, and thus k = tg r+ or k = tg s~ simultaneously with I = tg s~ or I = tg r+. 
Hence the assertion. 

4.16. Remark. The conditions <22> (i) and (ii), resp., define the a d m i s s i b l e 
boundary values k, I for semiphases £ of a disconjugate equation (q) in (a, b) consisting 
of (i) increasing or (ii) decreasing branches. 
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4.17. Theorem. Let (q) in (a, b) be disconjugate. Then for arbitrary admissible boundary 
values k, I for the semiphases f of (q) consisting of (i) increasing or (ii) decreasing 
branches there exists the unique interval ]r, s[(mod n) of the length < n such that (i) 
tg r + = k, tg «" = I or (ii) tg r+ = I, tg s~ = k. Put in case (i) c = r, d = s and in 
case (ii) c = s, d = r. / / a ranges over all the (i) increasing or (ii) decreasing (classical) 
phases of (q) with the boundary values a(a+) = c, a(b~) = d, then f = tg a ranges over 
all the semiphases of (q) consisting of (i) increasing or (ii) decreasing branches with the 
boundary values f (a+) = k, f (b~) = /. 

P roof . The theorem is formulated separately for the semiphases f consisting of 
increasing branches and the decreasing ones. We shall prove it for semiphases f 
consisting of decreasing branches. Be k, I admissible boundary values for f. Then Im f 
is an interval or a union of two (disjoint and non bounded) intervals according to 
tha t I < k or k < I. For the appointment of the interval ]r, s\ we have the conditions 
0 < s — r < 7t, tg r+ = I, tg s~ = k. The existence and uniqueness of the interval 
]r, s[ (mo&Ti) is evident from the behaviour of the function tg. 

For the semiphases f consisting of decreasing branches the corresponding phases 
are decreasing, too, and thus for the boundary values of the phases there is a(a+) = 
= c = s, ot(b~) = d = r. 

I t is knowrn tha t there exist phases a with boundary values c, d. Then f = tg a 
have the boundary values k, I. 

Passing on to the semiphases f = tg a the influence of translations mod n for 
boundary values of phases a is eliminated so tha t all semiphases f with the boundary 
values k, I are obtained as soon as a ranges over all the phases with the boundary 
values c, d. 

5. HYPERPHASES. 

Let <?/, z) be a basis of the equation (q) in an interval (a, b). We shall deal 
with the hyperbolic phases of <t/, z) with respect to the basis <sh t, ch t), i.e. 
with continuous functions # in ]a, b[ fulfilling <5>. Since th # is bounded, i t must 

%i z 
be z 4= 0 in la, b[. That is why there exists a function k = ---—— = —-—— continuous 

sh v ch § 
and having no zero in ]a,b[. Then the relations y = k sh #, z = ch # give z2 — y2 = 
= k2 > 0 in ]a, b[ and it is the mat te r of expression of the basis <?/, z) in the form 
y — ±^*sh^ , z = i r c h t ? , where r > 0 and # are continuous functions in ]a, b[. 

5.1. Lemma. For a basis <?/, z) of an equation (q) in (a, b) hyperphases d exist if and 
only if there holds \y\ < \z\ in ]a, b[. 

Proof . I. If y = i r s h # , z = ± r ch #, r > 0 and # being continuous in ]a, b[, 
then — = t h #, z2 — y2 = r2 > 0 and thus | v | < | z \ in ]a, b[. 

z y 
I I . If | «/ j < ! 3 | in ]a, b[, then | z | > 0 and the equation —- = th $ has a unique 

• and continuous solution $(t) in ]a, b[. 
5.2. Lemma. An equation (q) in (a, b) has a basis <w, z) fulfilling | ^ | < | z | in ]a, b[ 

if and only if (q) is disconjugate and general. 
Proof . I. Let (q) be disconjugate and general. W7e can suppose tha t the principal 

solutions u, v in ]a, b[ fulfil u > 0, v > 0. Pu t y = u — v, z = u + v. Then there 
holds | y | = ±(w —• t?) < i* + a = | z \ in ]a,b[, the solutions t/, z being linearly 
independent. 
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II . Let (y, z) be a basis of (q) fulfilling \y \ < \z\'m]a,b[. Then (q) is disconjugate 

in (a, 6) since z # 0 in ]a, b[. Moreover. •-- is strictly monotonic in ]a, 6[ and since 

— < 1. the solution z is linearly independent on u (and on v, too) because there 

z 

holds lim * =j= +oo and lim —- 4= +oo. According to 3.10. (q) is disconjugate and 

general since z, u are linearly independent solutions without zero in ]a, b[. 
5.3. Corollary. Hyperphases exist exactly for disconjugate and general equations (q). 
5.4. Remark. If (q) in (a, 6) has a solution z =j= 0 in ]a, 6[, which is not a principal 

one at the point a, then z, u are linearly independent so that (q) is disconjugate and 
general according to 3.9. and 3.10. On the contrary, for an equation (q) in (a, 6). 
which is disconjugate and general, the principal solution v at the point 6 has no zero 
in ]a, b[ and is not a principle one at the point a. 

5.5. Theorem. In (a, b) let (q) be disconjugate and general. Let the principle solutions 
u, v fulfil u > 0, v > 0 in ]a,b[. Then all the bases <?/, z) of (q), for which there is 
| y | < | z J in ]a, 6[. are given by the formula 

[i}- [:::][:] 
where [ay] ranges over all the matrices fulfilling one of the conditions 

<24> - 1 < -

<25> — 1 = 

P r o o f . I n ]a,b[ the condition | y \ < | z | is equiva lent to the condition 
I # i i ^ + #i2# | < | a21u + a22v | where [ay] is a real matr ix with the determinant ^ 0. 

In ]a, b[ p u t £ = — s o t h a t the semiphase £, which is also a paraphase, is positive. 

W(u, v) 
By differentiation we get £' = —'— where W(^, v) is the Wronskian of the 

basis (u, v). 
If the curves given by the functions u, v did not intersect each other in ]a, b[ it 

would be always u < v or u > v, which is a contradiction. Hence there exists some 
t0e]a, b[ such t h a t u(t0) = v(t0). Then it is W(u, v) = u(t0) v'(t0) — u'(t0) v(t0) == 
= u(t0)[v'(t0) — u'(t0)] < 0 according to the properties of principal solutions, see [3]. 

Hence £' > 0 and thus £ increases in ]a, b[ from zero to + o o . We are to find all 
non-singular real matrices [ay] such t h a t | h(£) | < 1 for £ e ]0, oof where h(£) = 

#Ll£ + #12 
#2lC + #22-

The condition | h(£) | < 1 makes a 2 i 4= 0 necessary so t h a t we have a hyperbo la 
a?? a~\ i  

i th the asymptotes £ = and h = — . Th J r a 2 2 (hi 
decreasing branches according to t h a t det [ay] ^ 0. 

#12 #11 

#22 #21 
Ś 1, a 2 ia 2 2 > 0, 

#11 #12 

#21 #22 
g 1, a2\a22 > 0. 

a^o #11  
with the asymptotes £ = and h = . The hyperbola has increasing or 

a 2 i # 2 i 
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For £ -> +oo it can be | h(£) | < I only if an 

a2\ 
% I, which really takes place if (i) 

an = 1 and det [ay] > 0, or if (ii) —- = —1 and det [ay] < 0 or if (iii) 
a2\ a2y 

\a»] < i. 
\a2\ j 

Since | &(£) | < 1 is to be for all £ e ]0, oo[, we have to complete the cases (i), (ii), 

| h(0) | < 1. Hence the theorem. (iii) by the conditions < 0, 
a2i a22 

5.6. Remark. The case of det [ay] < 0 follows from tha t of det [ay] > 0, and vice 
versa, by the substitution of the numbers a n , ai2 by the numbers — a u . —aX2. 

5.7. Theorem. In (a, b) let (q) be general and disconjugate. Let c 4= d be arbitrary 
values in R = [—oo, + o o ] . Then there exists a one-parametric continuum (briefly GO1) 
of hyperphases & of (q) fulfilling lim #(£) = c and lim §(t) = d. 

t-*a+ t->b-

Proof . A hyperphase $ of a basis (y, z} of (q) exists iff | y | < | z \ in ]a, b[. Since 
y den. den. 

£ — *- is strictly monotonic in ]a, b[ ,the limits £(a+) = lim £(t) and £(6~) = lim £(t) 
z t->«-+ t-*b-

exist and lie in the interval [—1, 1]. Since the function t h t increases in R from —1 
to + 1 , the existence of all hyperphases # with the boundary values &(a+) = c 4= d = 

~ y 
= d(b~) in R is equivalent to the existence of all paraphases £ = — .i.e. continuous 

z 
semiphases, with the property ] y \ < | z | in ]a, b[ and the boundary values £(a+) = 
= k 4= I = £(b~) laying in [—I, 1], the values th c = k and th d = I being arbi trarily 
given. 

Take the principal solutions u, v of (q) both positive in ]a, b[ so tha t their Wronskian 
W(u, v) is negative. Then every admissible basis <H, z), i.e. fulfilling | y \ < | z \ in 
]a, b[, is given by <23>, <24>, <25>. For det [ay] ^ 0 we have W(y, z) ^ 0 so that 
£ — -—and thus & increases or decreases. 

For an arbi trary non-singular ma tr ix [ay] and the basis given by <23> the semi-
phase £ = - - fulfils £(a+) = • — , £(6 ) = — . The quo t ients in <24> and <25> 

z a22 a2\ 
thus mean the boundary values of £. Hence $ increases or decreases according to 
tha t if det [ay] Jg 0. 

If the values £(a+) = k =j= I = £(6~) are arbitrarily given in [—1, 1], then £ 
increases or decreases in ]a, b[ according to tha t if k ^ I. Then the corresponding 

matrices [ay] are determined by the conditions = I, —— = k. We can see 
a2i a22 

tha t the set of all these matrices depends on two parame ters a2i, a22 having the same 
sign. 

Since it is a mat te r of nomographics, one of these parameters can be cancelled and 
y 

thus we have always oo1 semiphases £ = — with the given boundary values £(a+) — k 

and £(6") = I, k 4= I. 
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5.8. Corollary. For every general and disconjugate equation (q) in ]a, b[ there exist 
oo1 increasing and oo1 decreasing hyperphases $ with the boundary values ±00. That 
equation is of the same character as Y" = Y in R and teh mentioned hyperphases # 
represent all the complete transformations of (I) to (q). For each # the set of all solutions y 
of (q) in ]a, b[ corresponds to the set of all solutions Y of (1) in R by the formula y = 

Y(#) 
= V=r'See[5]9[«\9[7]. 

5.9. Remark. For a general and disconjugate equation (q) in (a, 6) there exist 
continuous semiphases £$, i = 1, 2, in ]a, b[ fulfilling | Ci I < 1 a nd thus there exist 
hyperphases §i determined by the continuity and the relations th §i = Ci • For the 
boundary values $i(a+) = c$ 4= di = #i(6~) and Ci(a+) = h 4= ^ == Ĉ (6~) we have 
^ = th a, k = thdi9\ki\^l,\li\=l. 

For \ kt \ = I, I h I = 1 the hyperphases #$ have the boundary values ±00. 

In these four cases all the transformations <17) are £2 = ± -— — where 62i, 622 
621C1 + 622 

fulfil only the condition b\2 — b\x > 0. Put 62i = ±r0 sh $0, b22 = ±r0 ch #0- Then 

th §2 = Ci = ± T ^ V ^ Q = ± t h (0! + #0). Hence #2 = ±(#x ± 02), #0 being a 
1 + Ci th #0 

(real) parameter. See [5], [6], [7]. 
By the formula #2 = ±(#1 + #0) ^ r e are given 6Olh one-paramatric systems of 

hyperphases with the boundary values ±oo. As a consequence we can see that there 
exist general and disconjugate equations (q) in a finite interval ]a, 6[ such that for 
any one of its hyperphases & with the boundary values ±00 the limits lim#'(l), 

t-̂ a-1-

lim $'(t) do not exist. 
i->b-

5.10. Remark. For i = 1, 2 let (qi) be a general and disconjugate equation in 
(at ,bi). Let #$ be a hyperphase of (qi), y a transformation of (gi) to (g2), i.e. a solution 
of (gi, g2). Then y is a complete transformation, iff y = ^J"1^ /Or similar #1 a^o1 #2 , 
i.e. fulfilling Im# i = I m $ 2 . 

Moreover, there exist all types of phases, i.e. the classical ones a<, the parabolical 
ones f $ and the hyperbolical ones #<. 1/ tg a$ = & — th$i, then £1 a ^ £2 <we similar 
iff §1 and $2 are similar and this is equivalent to the existence of suitable pairs of similar 
phases oc\ and oc2. Each of the complete transformations y e (q%, q2) is expressable as 
y = ar1a2 = £7-1C2-#r%. 

6. UNIVERSAL PHASES. 

In this final paragraph we will deal with the concept of "un ive r sa l Q-phases". 
6.1. Definition. An equation (Q) in an interval ]A, B[ will be called universal if for 

every equation (q) in ]a, b[ and for each (largest) solution oc of (Q, q) there holds Dom a = 
= ]a, 6[. The solutions oc are called universal Q-phases. 

6.2. Lemma. Let (Q) in ]A, B[ be a universal equation. Let (qt) in ]ai, bt[,for i = 1, 2, 
6e arbitrary equations. Then 
(i) for every pair (i = 1, 2) of similar solutions on of (Q, qi), i.e. such that Im a! = 

= Im a2, the function y = aj**a2 is a complete solution of (qi, q2), 
(ii) for each complete solution y of (^i,q2) and arbitrary solution ocx of (Q,qx) the 

function oc2 = ociy is a solution of (Q, q2), which is similar to a i . 
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6.3. Lemma. If for each equation (q) in ]a, b[ a n d for each solution a of (Q, q) thera 
holds Dom a™1 a = ]a, b[, then (Q) is a universal equation. 

6.4. Corollary. If y =-= a f ^ is not a complete solution of (gi, q2) for some solutions 
<*i of (Q, qi), i -= 1,2, then (Q) cannot be a universal equation. 

6.5. Lemma. Let (Q) in ]A, 2?[ be a universal equation. Then 
(i) for every (q) in ]a, b[ and each solution a of ((?, <1) it is Im a j = ]a, 6[, in other 

verbs for every (q) and each solution /? of (g, Q) it is Im /? = |a, 6[. 
(ii) For every solution 0 of (Q, Q) it is Dom 0 = I m 0 =, ]A, J5[. in other verbs all 

the dispersions 0 of (Q, Q) are complete solutions of (Q, Q). 
6.6. Theorem. Let (Q) in ]A, B\ be such that each solution 0 of (Q,Q) is complete. 

Then (Q) is a universal equation. 
P r o o f . This theorem goes a little more profoundly to the properties of classical 

phases, namely in the fact. that each solution 0 of (Q, Q) is complete iff the values of 
each phase A of (Q) range over the whole real line R. 

On the other hand, for each phase A of (Q), (Q) being arbitrary, and for each 
phase a of another arbitrary (q) in ]a, b[ the domain of A ~ la is ]a, b[ iff I m a <= I m A. 
Under the supposition of the theorem 6.6. it is Im A — R and thus each solution of 
(Q, q) exists in ]a, b\. I.E. (Q) is universal. 

Since the values of each phase A of (Q) range over the whole real line R iff the 
equation (Q) is both-sided oscillatory, we have 

6.7. Corollary. (Q) is a universal equation iff it is both-sided oscillatory. 
Now it is clear t h a t the carrier —-1 is the unique one with both required properties, 

t h a t of simplicity and t h a t of universality. 
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