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SOME MAXIMAL GRADUATION CLASSES AND THEIR 
RIEMANNIAN PROPERTIES 

IULIAN POPOVICI, R A D U IORDANESCU AND A D R I A N A T U R T O I 

(Received October 17, 1969) 

I. INTRODUCTION 

We study the notion of maximal graduation (the graduation with one-dimensional 
summants) [18]. We use as auxiliary notion the generalized Clifford algebras intro­
duced b y Y a m a z a k i [26]. The construction method of simple maximal graduations 
which we shall develop points out the following aspects: 

A. The generalization of classical theory of spinors replacing the spinors with 2V 

components [4], [20] by spinors with a finite arbitrary number of components. 
B . The generalization of 6-dimensional unification of Dirac matrices made by 

A. Popovic i [12], [13]. 
C. The generalization of well known Pauli relations. 
D. The connection among the associative, Lie and Jordan case. 
E. The writing, for the structure of considered algebras, in a convenient way for 

several applications. 

The obtained results get a geometrical content using the Vranceanu's method [24] 
of association to a real algebra a space with affine constant connexion. We can prove, 
e.g., that the autoparallel curves associated to simple Jordan real forms of type A 
are obtained in two steps: first we construct the geodesies associated to group alge­
bras, then we apply them certain linear transformation groups which generalize 
Poincare's group. 

We shall expose in detail this fact in the case of the existence of metrics. 

II. GENERALIZED CLIFFORD ALGEBRAS 

Let Kn be the algebra of all n X n —matrices over a field K and let Vn be an 
w-dimensional vector space. 

If we fix a basis in Vn, Kn is identified with algebra of linear operators on Vn. 
Let K(p) be a field which contains a primitive ptn root cop of unity. If p is odd 

and K(p) has the characteristic ^ 2, then K(p) is also K(2p) and we write: K(p) = 
= K(2p). 

Let Zp be a cyclic group of period p and let ZJJbe the direct sum of n copies of Zp. 
If we take a system of generators Q19 . . . , Qn of Z*, their elements have the form: 

a = Za*e*> P = £PiQi,"-.-
, i , '•• •""... .. 

where a$, /?<, . . . are the quotient classes modulo p. r 

Let {ejaezj De a basis of VPn over K{p). We denote e$ == eQt(i =- 1, 2, .-. . , n ) . 
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Proposition 1. There exists a unique associative algebra structure o* VPn with unity 
CQ which verifies the following conditions: 

(1) e\ = ea, e^i = co^e^ (i,j = 1, . . . , n\ i < j) 

(2) 6. = efte?. . .e«* (<xeZ%). 

The structure of this algebra is given by: 

(3) eaeff 

Definition 1. The algebra defined by (I) and (2) is called generalized Clifford algebra 
and we denote it by A*. The algebra A* (which is denoted by Ap) is called generalized 
Pauli algebra. 

For the algebra APi (3) becomes: 

(3') eaefi = cop^e^. 

The classical Clifford algebras [4], [20] are of the form ^ 4 2 - Y a m a z a k * n a s shown 
[6] that At J is simple and central for n even and has a -p-dimensional center for n odd. 

This fact was given expjicitely by I. Popov ic i and C. Gheorghe [14], [15] 
and later by A. O. Morris [10] in the following manner: 

Theorem 1. The algebra Ap is isomorphic to K(p)p. The algebra A*v over K(2p) 
is isomorphic to K(2p)*>. The algebra A*v+X over K(2p) is isomorphic to a direct sum 
°fP copies o* K(2p)pp. 

Proof. Let {va}mz9 be a basis of Vp over K(p). For the linear operators 

(4) *i : va -> co* va, fz'.va-+ va_x 

(1) holds for n = 2. Then the maps et -> *i(i = 1, 2) define an homomorphism 
q> : Ap -> K(p)p which is an isomorphism because Ap is simple. On the other hand, 
a straightforward calculus shows that A*v over K(2p) is isomorphic to the tensorial 
product of v copies of AP. The first two assertions of theorem are proved. 

Now, the center of A*v+X has a basis {wa}aezp for which 

(5) w\ == wa; wawi> = 0 (a -?-- 6), ]T wa = e0. 

aeZp 

Hie relations (5) give homomorphisms %pa : A*v+1 -> A*v+1 by 

y>a : x ~> wax. 
On the other hand there exists a non-trivial homomorphism ip : A*v -> A*v+1. Then 
the relations (5) give the following split in direct sum 

(5') A*>+* ~ ®Vaf(A*% 

all summants being isomorphic to Ap>. 

Bern ark* Theorem 1 is a natural generalization of the well known results about 
the classical Clifford algebras. The proof of this theorem is also a natural generaliza­
tion of the classical case, replacing -—-lby a primitive root wp. 
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A. O. Morris gave [11] the structure of A * in the case when K(p) is not K(2p) 
iycop $K(p)). We do not insist about this case because it is not necessary for the 
theory of maximal graduations which we shall develop. 

Relations (1) and (2) give [26]: 

(6) (Е*«е.)Р = 1 ^ о , (ЪеК(р)). 

R e m a r k . The algebras A% are not particular cases of formal theory of Clifford 
algebras [2], [4], It is necessary a generalization based on the replacing of quadratic 
forms by multilinear forms; this fact is indicated by (6). 

I I I . ASSOCIATIVE S I M P L E MAXIMALE GRADUATIONS 

We consider three types of finite dimensional algebras over a field K, namely: 
associative, Lie and Jordan algebras. 

Definition 2. Let A be an algebra over K, F an abelian group, B a basis of A and 
0 : r X _T -> K a function. 

The triplet *S = {T, B, 0} is an maximal JH -graduation (or maximal graduation) 
of A if exists a bijection F -> B(oc -> ea) such that 

(7) eaefi=0(oc,P)ex+IJ, (a, j8eT). 

If A is simple or semi-simple, *& will be named simple or semi-simple respectively. 
We remark that (3) define a maximal .^-graduation for the generalized Clifford 

algebra A%. By theorem 1 this maximal graduation is simple for n even and semi-
simple for n odd. 

We agree that maximal graduation (3) to be defined over algebra K(2ppv) if 
n = 2v and K(p) = K(2p). 

Definition 3. The maximal graduation <S' = {F, B',0'} of A (where B' = {e'a}aer) 
is isomorphic to & if0 = 0\ i.e. if ea-> e'a is an isomorphism of A. 

For instance, the operators (4) and the operators: 

fl : va -> co-pJa

 r

2 : va -» va+i (a e Zp) 

define, by proposition 1 and theorem 1, two isomorphic maximal graduations of 
type (3') of KQ^. 

Let <J? be the set of all maximal .T-graduations of A. Every system of scalars 
1caeK(ka 7̂  0) defines an operator N :*J( ->*Jf 10 

(T) ^=haea, ( a e f ) 

If ha = h for every a e f , w e write N(&) = Ic^. 
Let <Jl' be the set of all maximal F-graduations of A (F, J " isomorphic). Every 

isomorphism h : F' -> F defines an operator H : ^M —> «•#' so: 

(T) e; = «%) ( « n 

Clearly <S' = NoH(<&) implies <$' = HoN'(&) where N' has the same form as N. 
Now we introduce an equivalence relation in the set of maximal graduations of A. 
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Definition 4. Two maximal graduations *§ and <&' of A are equivalent (@ ^ ^ ' ) 
if exists an operator N of type (7') and an operator H of type (7") such that the maximal 
graduations NoH(@) and *S' are isomorphic. If the coefficients ka of (7") belong to 
a subset K' of K we say that & and ^ ' are K'-equivalent. Wre consider two cases: 
a) Kf = e = {+1 , —1}, if K is an arbitrary field, b) K' = R (real field) if K = C 
(complex field). 

We notice that the maximal graduation (3) is independent of cov up to a transforma­
tion (7"). We shall characterize the set of maximal graduations of an algebra A 
using the above equivalence relation. 

If A has unity e, then e0 and e are collinear. By the transformation (7') we may 
choose e = e0, that is 

(8) 0(<x, 0) = 0(0, a) = 1, (a e T). 

In the following we always suppose that (8) holds. 
This fact implies k0 = 1 in (7'). 
The algebra A is associative if 

(9) 0(a, ft) 0(oc + ft y) = 9(P, y) 0(oc, fi + y), (a, fi, y e F). 

Let @i = {Ti, Bi, &i} be a maximal graduation of an associative algebra Ai over 
K(i ==1,2). We define 0 : A X A -> K as follows 

0((ai ,a2) ,( i31 , i82))=0(ai , i81)0(a2 , i82) , • (a«, fteA). 

Then the algebra 4̂X (g) A2 has the maximal graduation <&\®<&2= {A X A , 
# i % B2, 0} which we call tensorial product of ^Sx with ^ 2 . 

Inductively one can define the tensorial product of a finite number of maximal 
graduations. We denote by @W the tensorial power v of ^ . 

Let stfp be the maximal graduation (3') of Av or K(p)v. It is easily proved that: 

Proposition 2. T&e maximal graduation (3) O/ generalized Clifford algebra A2
p

v(n = 
= 2v) over K(2p) is equivalent to &/[

p
v\ 

As we know, every finite abelian group Gn with n elements has a representation 
of the form: 

(10) Gn ™ ZQl X Zq2 X . . . X Zqr (qt. q2 qr = n) 

where 

(10') qt = pf* (pi — primes, i = 1, 2, . . . , r) 

The numbers r and qi are invariants for 6rTO. 
By theorem 1, the algebra K(n)n has the following maximal On X ^-graduation 

(11) @n = J3/fc ® J2/fc ® . . . ® .fl/*. 

Two maximal graduations (11) are equivalent iff their graduation groups are 
isomorphic. 

Let K be an algebraic closed field whose characteristic is not a divisor of n. Then 
K = K(n) and the maximal graduation @n of Kn has a sense. 

Theorem 2. Let & be a maximal graduation of Kn. If the field K is algebraic 
closed and its characteristic is not a divisor of 2n, then @ is a maximal Gn X Gn-gradua-
tion equivalent to a maximal graduation ^n given by (11). 
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Proof. Let <S = {T, B, 0} where B = {e«}«er and 

(12) r = zQlx zq2x . . . x zq9. 

T&y ehoosing one generator o4 of Zq§ (i = 1, 2, . . . , s), the elements of T are 

a = =Za .ft> /? = E/5ift' ••• 

where a*, /?*, . . . are quotient classes modulo >̂. We denote e$ = eei. The algebra Kn 

being simple, we have (9(a, P) ^ 0 for all a, /? e F". Then we take (up to a transforma­
tion (7')): 

(1') e f = e0; e,e< = (ofte^ = offctfj (t\ j == 1, 2, . . . , s, i # j) 

the form of© being obtained by generalization of (3). 
Let r = A X F2, where all the elements of FV have the period p and those of r2 

have the period #, p and # being relatively prime. Then (V) implies <S = <S\ (g) <32, 
<Si being maximal /^-graduations. Thus, we may suppose in (12) qi = pm* (^-prime) 
and q\ ^ q2 ^ . . . ^ #$. Using the fact that <S is simple we prove that q% = q2 and 
Ul2,(T 1 ) = l -

We can also (by a convenient transformation (7")) obtain 

An = A2s = jLtu = fi2i = 1 (f > 2) and hence <S ~siqi (g) ^ ' . 

We prove by induction that ^ is of the form (11). The detailed proof is given in 
[17]. 

By theorem 2 two maximal graduations of Kn are equivalent iff their groups are 
isomorphic. The graduation group defines uniquely (up to an equivalence) the corres­
ponding maximal graduation. 

Remark . I t is known that any simple associative algebra over K (algebraic 
closed) has the form Kn. The theorem 2 gives all simple associative maximal gradua­
tions over an algebraic closed field of characteristic zero. Under the same hypo­
theses one can construct all semi-simple associative maximal graduations 

In [6] it is determined simple associative maximal graduations over the quaternion 
field Q. An algebra over Q is, by definition, a quaternion extension of a real algebra. 
Therefore the matrix algebras Qn define the class of all simple associative algebras 
over Q. In the definition of a maximal graduation <S = {T, B, 0} over Q it is supposed 
that 0 commutes with the elements of B. In the definition of N given by (7') it is 
supposed that kx commute by 0 and also by the elements of B. These additional 
hypotheses make natural the notions of maximal graduations and equivalence. 

We establish the existence of the maximal graduations (3') of Qp for any primitive 
root of the unity cop e Q. For p > 2 these graduations are in 1 — 1 correspondence, 
up to an equivalence, with the complex projective line P and we write sip(z); si2(z) 
does not depend on z. We obtain the following result: 

Theorem 3. Any maximal graduation <S of Qn is a maximal Gn X Gn-graduation. 
If Gn is of the form (11), then 

(12') <S ~ si€l{z) ® siq%(z) ® . . . ® siqr(z) (z e P). 
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Therefore, the group uniquely determine the maximal graduation iff all its elements 
has the period 2. Otherewise, to every abelian group 0n X 0n corresponds a set 
of simple associative maximal graduations which is in 1 — 1 correspondence with 
the complex projective line. 

IV. S I M P L E SPECIAL MAXIMAL GRADUATION 

To every associative algebra A over K (with characteristic -5-= 2) corresponds one 
Lie algebra A& and one Jordan algebra A j [8], [9] (called special algebras) using 
the following multiplication lows 

(13) 

[a, b] = ab — ba 

1 (a, ЬєA), 
a • b = ~— (ab + Ьa) 

where juxtaposition denotes the multiplication in A. 

Definition 5. Let <§ = {T, B, 0},B = {ea}aep, be a maximal graduation of A .The 
relations 

(13') 
[««.*,] = [©(«, |8)—0(0, a)R + , 

«« • e,. = 4-[0(*> č) + o(č, a)R+íl, 2 

define a maximal graduation ^i, of AL and a maximal graduation <& j of Aj respectively. 

We call ^t, and *$j special maximal graduations. @L or <&j are called simple when 
At or A j are simple. 

In the following we construct all special maximal graduations of Lie and Jordan 
simple real forms of type A: precisely, the Lie algebras will be supposed simple up 
to an one-dimensional center. We consider separately the type A\ and An. 

The Jordan simple real forms of type Aj are Bnj(n > 1) and (Bn <g) Q)j (n > 0) 
[9] and the Lie simple real forms of the same type are, up to an one-dimensional 
center, BnL(n > 1) and (Bn ® Q)t (n > 0) [8]. 

R e m a r k . The unities 1, i, j , h of real quaternion algebra Q define a maximal 
.^-graduation 9i\ if we take 

(14) e0 == 1, e(i,0) -= », e(0,i) = j , e ( M ) = k. 

0$ may be extended to algebra C2 and we have stf2 <~^ £8, but this is not an R-equi­
valence. 

Theorem 4. Any simple maximal special Jordan graduation of type Ai is equivalent 
to s^i) (v ^ 1) or to (*$/2

v] 0 88)j(v j=S 0). Any simple maximal special Lie graduation 
(up to an one-dimensional center) of type A\ is equivalent to s#2

v\ (v &> 1) or to (s/^ ® 
® ^ ) i ( ^ 0 ) . 

Proof. Let ^ = {T, B, &} be a maximal graduation of Bn or Bn ® Q, where 
B =5 {eja f / i and F is given by (12). The complex extension of & is simple and, by 
(7') we obtain a maximal graduation of the form (1'), (2'). 
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Moreover, cot = —1 because ^ is real. 
By theorem 2 it follows the R-equivalence 

(15) <g ~ sfl*\ ® J W ® &[c] 

where ^ is the following maximal Zf-graduation: 

(14/) «fi, o) = —e?o. i) = co, e(lt 0)ei0t D + e(0} 1)e(i(0) = 0, 
e(i.i) = ea, o)e(o, i) 

The automorphism of Z\\ 

(16) (1,0) -> (1,1), (0,1) -> (0,1) 

and the automorphism of Z\: 

(1,0, 0,0) -> (1,0, 1,1); (0,1, 0,0) -> (0,1, 1,1) 
(16') 

(0,0, 1,0) ~> (1,1, 1,0); (0,0, 0,1) -> (1,1, 0,1) 

define two operators (7") which show that the pairs 3& $ and sii ® 0$ ,3$ % 3S contain 
e-equivalent maximal graduations. So, the theorem 4 is a consequence of (15). 

Thus, the problem of finding special maximal graduations of type A\ is completely 
solved. 

As we know, Lie and Jordan simple real forms of type A\\ are not special algebras 
as in the case A\. That impose the extension of the notion of special maximal gradua­
tion. On the other hand, we shall introduce the notion of normed maximal gradua­
tion which we shall use later on. 

Definition 6. Let *& = {F, B, 0} be a maximal graduation of an associative algebra 
A over the complex field C. If 0 (oc, /?) + 0(ft, oc) e E for all oc, ft e F, then *3j is a 
maximal graduation of a real form of Aj. If 0(oc, /?) — 0(j3, oc) e E for all oc, /? e F1, 
then @L is a maximal graduation of a real form of Aj,. We call <&j and <&L special 
maximal graduations. 

It is clearly for K = C that the notion given by definition 5 is a particular case. 
This fact justify the preserving of the name. 

Definition 7. Let @ = {r, B, 0} be a maximal graduation of an associative algebra 
A over K with unity. We say that @ is normed if 

(17) 0(oc, p) G(P, oc) = I, (oc, fi e T). 

Remark . It is easily proved for K = C that function © of a normed maximal 
graduation G is unimodular. Then maximal graduations f / and ^dp" = — 1 ) 
are special in the sens of definition 6. We shall give explicitly the connection between 
these two notions in the case A .= Cn. 

We denote by Sp = I p I (Ip — unity matrix of order p). 
V " -Ml-2? I 

The relations 

(18) SPX*Sp = X, SpX*Sp = —X, (XeCp), 

where X* is the adjoint of X, define a real form J(n, p) of Gnj and a real form L(n, p) 
of CnL respectively. We say that they are real forms of type An [8], [9]. If we wish 
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to obtain all real forms of type -An which are not isomorphic, we take p = 0, 1, 2, . . . 
[n/2]. J(n, p) is simple and L(n, p) too, if we omite its one-dimensional center. There­
fore, we have L(n, p) & L'(n, p) x B where L'(n, p) is simple. On the other hand, 
any involution iz of indices 1, 2, . . . , n define an antiinvolution X -> X* of Cn by 

(19) (K+)? = (K+)-^> , (a,b = 1,2,...,n) 

where (X+)g is the element of matrix K+ on a-line and 6-row. 
The relations 

(18') X — X+ = 0, Z + K+ = 0, (XeCn), 

define a real form J(n, n) of Cnj and a real form L(n, &) of CUL respectively. 
We have [18]: 

Proposition 3 . 1 / the involution n has n-2p invariant indices, then J(n, p) & J(n, n) 
and L(n, p) &t L(n, ri). Thus J(n, TC) & J(n, iz') or L(n, n) & L(n, n') iff the involu­
tions K and n' are equivalent (if they have the same number of invariant indices). We 
also have L(n, n) & L'(n, n) X R where L'(n, n) is simple. 

Proposition 4. Let ^ be a maximal graduation of Cn. If ^Sj is special of type A\\, 
then <& = N(^S') where *&' is normed and N is a real operator (!'). If &L is special of 
type An, then <& = N(@') where *&' is normed and N is an imaginary operator (7'). 

Proof. We consider only Jordan case, the proof of Lie case being analogous. 
Let & = {F, B, 0), where B = {E^^p. We can do a real trnasformation (7') so 
that 0 becomes unimodular. On the other hand, by proposition 3 we can suppose 

Then the relations 

EaEfi = <9(a, 0) Ea+p and K+K+ = ©--(a, j8) E++p 

imply (17). 
Therefore, the determination of special maximal graduations of type .An can be 

made by determining of complex simple normed maximal graduations, up to an 
Inequivalence. 

The study of simple normed maximal graduations can be made for the more 
general field. We shall give the canonical forms of these graduations up to an e-
equivalence. We show then that in the case of complex field, the study of R-equi-
valence is reduced to the study of e-equi valence. 

V. SIMPLE NORMED MAXIMAL GRADUATIONS 
-»» 

First of all we give two general properties of normed maximal graduations over 
arbitrary fields [17]. 

Proposition 5. The function 0 of a normed maximal T-graduation verifies the follo­
wing two conditions: 

(20) <9(a, —a) ^ ea (ea = e_a = ± 1, a e T) 

(20') 9(-*,~l3)~=eaepea+p0(K,P) ( a j e f ) 
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Theorem 5. The basis {Ea} of a normed maximal I^graduation of Kn verifies the 
following relation of Pauli's type: 

(21) £ £ , « ( # - « ) ? = « , 
aeT 

under the hypothesis that the characteristic of K is not a divisor of n. 
It results immediately that the matrices E0 have the nulltrace for a # 0 . 
Now we construct two normed maximal graduations of K(2p)p which are obtained 

from (3') by a transformation N given by (7'). 
We designe by 

(22) Ea = Tcaea, (c*eZ2
p), 

where ea are given by (1) and (2) with n = 2. 
If p is odd, we take : 

(P + Da,^ 
(23) , CÜv 

If p is even we associate to every oce Zp the supplementary component <%3 given 
by : ai + oc2 + a3 = 0. Let be ocs, oc8 e ot8, 0 < oc8 < p, (s = 1, 2, 3). Here we define 
the coefficients lca of (22) by 

2 a',a'e + a'3
2 

(23) K = col>1 

where s, t = 1, 2, 3 and to\p = wp. 
We designe by : 

^°P = N(^P)={ZI,B,0}. 
We have 

(P + l)(a251--all52) 

(24) (oc, ß) = 
(Op 2 (jp o d d ) 

S (a,Tt—a't0'.) V 
a>2p (i> even) 

For p even we designe .ja/i = N'(j/°), where the operator N' is given by 

(22') Fa = co%Ex, (oceZ*). 

Propostion 6. The maximal graduations s^p and stf\ of K(2p)p are normed. The 
constants ea defined by (20) are 

(25) ea = l fors^% 

(25') ea = \ l
 a i /or st\, respectively. 

Suppose t ha t in formulas (10), (10') of definition of abelian group Qn we have : 

(26) px = p2 = . . . = p8 = 2; jPi ^ 2 for i > s, 

and t ha t the sequence qx, q2, . . . , q8 contains t different terms q\ > q'2 > ... > q\. 
If Sj terms are equal to q$, we can write 

(26') qx = . . . = q8x = q[ > q8i+1 = . . . = qii+9z = ft > . . . 

. . . > &_*t+i = . . . = g* = q\ (sx + . . . + st = s) 

The invariant £ of the group Qn is zero iff n is odd. 
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We associate to every integer j = 0, 1, . . . , t the following normed maximal 
GnXGn — graduation of K(2p)p: 

(27) 9\ 
where 

sЃq\® ... ®*<Г<g>^L® ... ®Sí\r 

- ß if i = st ~\- . . . + fy-1 + 1 
otherwise. 

For instance, if Gn = Z\ X Z\ X Z$, then t = 2 and maximal graduations (27), 
(27') are: 

Maximal graduations <Sn and ^ ' are ^-equivalent iff j = j ' . 

Theorem 6. Let K be an algebraic closed field whose characteristic is not divisor of 
2n. Then any normed maximal graduation of Kn is ^-equivalent to a <S\. Two normed 
maximal graduations of Gn are R-equivalent iff they are e-equivalent. 

For the proof of this theorem we take in consideration the fact that any normed 
maximal graduation of Kn is, by theorem 2 of the form N(Sn), where <Sn is given 
by (11) and N is an operator (7'), then (20) and (20') give a special form to ka, which 
reveals the equivalence between N(Sn) and <Sn. 

The theorem 6 determine all simple normed maximal graduations over an alge­
braic closed field with characteristic zero. 

By proposition 4 and theorem 6, it results that simple special maximal graduations 
of type An can be find among the maximal graduations of the form <SnJ and 
g ^ (i2 =- —l) . We show that all those graduations are of type An. For that we 
u se the notion of unitary maximal graduation. 

Definition 8. Let <S be a normed maximal Gn X Gn-graduation of Gn with basis 
{Ea}. We say that S is unitary of the first hind if 

(28) El = eaE„a (aeGnxGn), 

where ea are defined by (20). We say that <S is unitary of the second hind if there exists 
an involution 7t of the indices 1, 2, . . . , n such that 

(28') E* = E„ ...'' 

where the map X -> X+ is the antiinvolution of Cn given by (19). 
The first kind of graduation coincide with the second if Gn = Z\ , ea = 1 and n 

is identity involution. 
It is easily proved that the set of all unitary maximal graduations of the first 

kind of Gn isomorphic to a given unitary maximal graduation of the first kind, is 
the unitary complex projective group PUn in n — I independent variables. 

In the case of unitary maximal graduations of the second kind, we consider the 
Lie group S£ (n, n) associated to the algebra L(nt 7c), defined by 

(29) SflT+ = elnt [e = ± 1 , S e 0L(n, Gfr 
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If the number q of invariant indices by n is zero we have both s = - t 1. Otherwise 
6 = 1. The group j£?(n, n) is connex if q 4= 0 and has two connex components if 
<z = o . 

Let c be the center of J^(n, n) (which coincides with the multiplicative group of 
unimodular complex numbers) and J§?'(n, n) = JSf (n, n.)/c. 

If TC is identity involution, then £P'(n, n) coincides with PUn. 
Proposition 7. Let & be an unitary maximal Gn X Gn-graduation of the second hind 

°f On constructed by using the involution n and let n — 2p be the number of invariant 
indices by n. Then the set of unitary maximal graduations of the second hind isomorphic 
to rS and which correspond to the same involution n is given by the group££'(n, n); the set 
of all unitary maximal graduations of the second hind isomorphic to 3? is a manifold V 
given by 1. 3. 5 . . . (2p — 1) Cn

p disjoint copies of J5?'(n, n). If n is not identity invo­
lution and n > 2, then V is not a Lie group. 

We note that the unitary maximal graduations of the second kind define, by (28') 
and proposition 3, special maximal graduations of type An. This fact is connected 
with the existence of canonical forms (27), (27') of the simple normed maximal gradua­
tions, according to the following result: 

Theorem 7. Let Gn be an abelian group with n elements. Let t be the invariant of Gn 

, given by (26), (26'). Then any normed maximal graduation @n (j = 0, 1, . . . ,£) is 
unitary both of the first and second hind, up to an isomorphism. If j = 0 then the corres­
ponding involution 71 has the form: n : a-^ —a(a eGn). If j •=£• 0, then n has not 
invariant indices. 

The proof is based on the fact that the operators/1 and/ 2 defined by (4) are invari­
ant by antiinvolutions X -> X+ for which n : a —> —a or n : a —> —a — 1, (a e Zp). 

From proposition 4 and theorem 6 follows: 
Theorem 8. Any Jordan or Lie special maximal graduation of type An is a maximal 

Gn X Gn-graduation which is equivalent to a @nJ or to an i^nL (i2 = —1) (j == 0, 
. . . , t), respectively. The corresponding real forms are: 

a) J(n, y ) , L(n, ~ ) for n odd, 

*>) J(n, y ) , L(n, ~ ) for n even and j ^ 0, 

c) J(n, p), L(n, p) for n even and j = 0, 

where n — 2p is the number of the elements of period 2 (zero, too) of Gn. 
Therefore the graduation group Gn x Gn uniquely determines the Lie or Jordan 

special maximal graduation iff n is odd (case a). For n even (cases b) and c)) to every 
abelian group Gn X Gn correspond t + 1 such graduations, t being the invariant 
of Gn given by (26'). The only Lie or Jordan unitary real forms of type A which 
admit special maximal graduations correspond to n = 2m and their special gradua­
tions are uniquely determined. 

Suppose now n — 2m and let v (p) be the number of Lie or Jordan maximal gradu­
ations corresponding to the case c) for given p and n. We remark that: 

p = 2m~1 — 2s"1, 

where, s is the minimum number of generators of G^m. A straightforward calculus 
gives: 
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V(2m-1 _ 1) в i , „(2«-i — 2) = ľ-^.1 

j»(2»»-i—4) = 

31c2 m = 61 
3k2 + 1 m = 61 + 1 
3k2 + 21 m = 61 + 2 
3k2 + 31 + 1 m = 61 + 3 
31 2 + 41 + 1 ra = 61 + 4 
31 2 + 51 + 2 m = 61 + 5 

The calculus of *>(#) for an arbitrary # is difficult. Similar considerations may be 
made also in the case b). 

VI. E X I S T E N C E AND CONSTRUCTION OF METRICS 

In this section we give some geometrical results which are obtained by association 
to any real algebra a space with affine connexion [24]. This fact gives a geometrical 
aspect to certain algebraic results. 

Clearly there exists duality between Jordan real forms and Lie real forms of , 
type A as follows: 

Rnj *± Bni, 

(-»» ® Q)J 5± (-»» ® Q)L 

J(n,p)+±L(n,p). 

Let A -i± A' be two such dual algebras and let {tf£}, {e'%} be two their dual bases. 
If A and A' are of type .<4i, then e# = 4-
If A and A' are of type An, then e* = ie'h (i2 = —1). 
Let F^fc, F^| be the structure constants in the choosen basis. 

Proposition 8. JT^ and r$ being the components of tivo affine constant connexions 
and r^i the curvature tensor, we have 

1 T^i TVV (—for the fype ^i) 
(+for the type An) 

Therefore, the curvature tensor associated to a Jordan real form of type A may 
be calculated by means of the connexion associated to dual Lie real form. 

We apply this result in the case of Jordan simple special maximal graduations 
of type A. * 

Theorem 9. The only Jordan special maximal graduations of type A which have 
metrics are 

the corresponding metrics being, up to a constant factor: 

ds2 = e-2*(da;2 — dy2 — dz 2 — dt2) 
ds2 = e~2*(dx2 + dy2 + dz 2 — d*2) 

v J 1 ) ds2 = e~2*(dx2 + d^2 — dz 2 — dt2) 

ds2 = e-2*(<te2 + AV2 + dz2 + dt2) 

The detailed proof may be found in [19]. 
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We remark the fact that the uniqueness of metrics is valid though the systems of 
linear operators associated to curvature tensors are complete reducible systems, as 
follows from proposition 8. 

Therefore the metrics (31) give the possiblity of generalization of the Teleman's 
theorem [21], 

We mention that in the case of this theorem the metric is a definitive one and the 
system of operators associated to curvature tensor is irreducible. 

Let V4, V4, V4, V4 be the Riemannian spaces associated to metrics (31). These 
spaces cover the full class of non-isotropic Wagner 4-dimensional spaces withp = — 1 . 

A. T u r t o i has proved that the simple Jordan algebras of type D cover the full 
class of non-isotropic Wagner spaces with p = — 1 . 

G. V r a n c e a n u [24] has established the following result: 
The metric 

(32) (is2 - e-^K&x*)2 + . . . + (da»)2] 

has negative plane curvatures. For n = 4 and n = 6 the generalized curvature of 
these metric is zero. 

R e m a r k . The spaces V4, V4 and V ^correspond to the case of nondefinite metric 
(32). The space V4 has negative plane curvatures, while the spaces V4 and V4' have 
not this property. The spaces V4, V4 and V4' have the generalized curvature zero, 
too. 

We give a simple method for the construction of geodesies of the spaces V4, 
V;, V;- and V;". 

Let T be the translation group in x, y, z, t; 
let 0 be the rotation group in y, z, t; 
let 0' be the proper transformation group which leaves invariant the quadratic 

form: y2 + z2 — t2; 
let 0" be the proper transformation group which leaves invariant the quadratic 

form: y2 — z2 — t2; 
let S be the rotation group in y, z; 
let S' be the rotation group in z, t. 

Now we conBider the following curves: 

ťл =ř" 
(У = 

^ l n c h I 

= z = 0 

Cг 
\y = 

= ln sh t 

= z = 0 

Cъ ={-
[У = 

= ln (—s 

= z = 0 

anđ the lines 

Dг =f-
[y = 

= t 

= z = 0 

Ѕee fig. 1 and 2. 

shř) 

12/ = 

c4 

(x = ln cos 
• \z = t = 0 

Cs 
(y = t = Є* 

[z = 0 

c6 

(y = t = Є" 

[z = 0 

D, .{У = f 

\x = z = 0 
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We consider the following families of curves: 

^"i — the set of all parallel lines with Ox 
^2 = OT(C1,C2,Cs,D1,D2) 
J^3 = OT(C4) 
&4 = 0'T(Cx,C2,Cz,Dl,D2) 
JF5 = 0'T(C4) 
&r6 = 0"T(Cl9C2,C39Dl,D2) 
&n = OmT(C4) 
^s=-ST(C5,C6,D3) 
&9 = S'T(C5,C6,Ds) 

Theorem 22. The geodesies of the spaces V4, V4, V\ and V4 are: tFx Kj3F2, !F\ \j 
U ^ U ^ U ^ s ^ i U ^ U ^ U ^ and J s u ^ 3 respectively. 

The proof of this theorem is based on the fact that O is the stability group for 
V4 and V4, 0' is the stability group for V4 and 0" is the stability group for V4. 
This remark reduces the construction of geodesies to the case of local euclidian 
spaces associated to complex number algebra, dual number algebra and parabolic 
number algebra [16]. 

The projection of an arbitrary curve of ^ \ , . . . , &*$ on the hyperplane x = 0 is 
a line. Hence V4, . . . , V4 are subprojective spaces of order 2. 

Through 2 points of V4 passes always only one geodesic. 
Through 2 points P and Q of V"4 passes one geodesic iff the euclidian distance 

between the projection of P and Q on hyperplane x = 0 is less than n. 
F . A m a t o [1] has obtained the auto-parallel curves of the connexion associated 

to the quaternion algebra ommiting the fact that these curves are the geodesies 
o f V : . 

As for the godesics of V4, the families 3^4 and «̂ "5 have dual properties. The hy­
perplane x = 0 is split in two regions by the isotropic cone: 

y2 + z2 — t2 = 0 

Any geodesic of 3F4 which passes through origine is of temporal type (is found into 
this cone). The goedesics of ^ 5 are of spatial type and the geodesies of ^% are of 
inotropic type. We designe by P one point of V4(P e V4). 

If the projection of OP on x = 0 is a temporal or isotropic vector, then through O 
and P passes always only one geodesic. If this projection is a spatial vector, then 
through O and P passes only one geodesic iff the pseudoeuclidian length of this pro­
jection is less than 7c. 

Similar considerations may be also made for V4. 
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