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ON GENERAL ALGEBRAS

Jikf KARASER, BrNO
_Received: July 12, 1966

The paper concerns general algebras, i.e. sets with a system of gene-
ralized operations. Some fundamental properties of homomorphisms of
general algebras, of congruence relations on them and of factor-algebras
are studied. As special cases of general algebras are obtained partial
algebras, algebras (see [1]) and r-systems which are a generalization of
sets with relations.

1. General algebras

Definition. Let 4 be a non-void set, K a set. A mapping

a = (a%)xeK

of the set K into the set 4 is called a sequence of type K in A or shortly
a K-sequence in A. The family of all K-sequences @ in 4 is denoted by 4£.
In the case of K being finite (card K = k) we identify the K-sequences.
in 4 with the ordered k-tuples (a4, a;, ..., a;_,) of elements of 4. A map-
ping f of the family AX of all K-sequences in 4 into the family 24 of
all subsets of the set 4 is called an operation of type K on A (a K-operation
on A). Such an operation f ascribes to each sequence @ = (a,),cx & sub-

set
fla) =fla, | x e K)
of the set 4. In the case of finite type we write
f(a) =f(a07 ,a/]" ey ak_l).

Definition. Let I be a set, (f,).es a family of operations f, on 4, (K,),e;
the system of corresponding types. Then the ordered pair (4, (f).e;) .
18 called a general algebra of type (K ).e,. Two general algebras (4, (f,).e1)
(B, (9,).er) of the same type (K,),c; are called similar.

Definition. Let (4, (f).c1), (B, (9,).cs) be similar general algebras.
Let @ be a mapping of A onto B fulfilling the condition ,

olfla, | xe K)] < g,(¢a,) | x€K,)

for all ¢ € I and for all K -sequences (@,), <k, in 4. Then ¢ is called a weak:
homomorphism (respectively, a homomorphism). A one-to-one homomor-
phism is called an isomorphism. If there exists a (weak) homomorphism
(respectively, an isomorphism) of a general algebra (4, (f,).;) onto -



158

a general algebra (B, (¢,).c1) then we say (B, (9,).c1) 18 & (weakly) homo-
morphic image (respectively, an isomorphic image) of (4, (f).er)-

Remark. The mapping inverse to an isomorphism is again an isomor-

hism. A one-one weak homomorphism such that its inverse mapping

18 also & weak homomorphism is an isomorphism.

L1 Let (4, (f)eer), (B, (9)ier), (C, (h)iex) be similar general algebras,
@ a mapping of A onto B, y a mapping of B onto C.

(1) If the mappmgs ¢ and y are (weak) homomorphisms, then their
composite ¢°y*) is also a (weak) homomorphism.

(2) If the mappings ¢ and @°y are homomorphisms, then the mapping y
8 also a homomorphism.

Definition. Let (4, (f),c1) be a general algebra, A a decomposition of 4.
. For arbitrary te 1 deﬁne an operation f, on 4 as follows:
f(a, |xeK)={z|zed, there emists a K, -sequence (a,)yex. m A such
that a, €a, a,ndf (a, | e K)n z # 0}.
Then the general algebra (4, (7.).c;) is called a factor-algebra on (A4,
(f)een)-¥*)

Remark. A general algebra and its arbitrary factor-algebra are
clearly similar.

Definition. Let 4 be a set, 4 a decomposition of 4, A a decomposition
of A. For each @ed put 9@ U a Then the decomposition

{p@) |4} of A'is denoted by 4 ‘l‘>aZ. The mapping y of 4 onto
4 > 4 is called natural,

1.2. Let (4, (f).e1) be a general algebra, A a decomposition of A, A
a decomposltlon of 4, y the natural mapping of Aonto 4 1> 4. Then y is
an %somor;msm of the factor-algebra (4, (]')Le 1) onto the factor-algebra
(A- DA (fz.b)tEI)

Proof. The mapping y is a one-one mapping of A onto 4 4 4. The-
refore it is sufficient to show that y is-a homomorphism. Le ¢ € I, let
(@.)xe k. be & K -sequence in 4.

I. Let 7 € Y{f.@, | x € K))]. Then there exists zef(@,|xeK) such
that (z) = §. Consequently there exists a K -sequence (4,), g, in Asuch
thata, eu,,forueK and f(a, | xeK)nasr,EO Letwef(a,,t zeK)n z.
_ Bince z €7,(@, | » € K,), there exists a K,-sequence (@x)wex in 4 such that
: a,,ea for xe K, and z n f(a, | xeK) # 0. But § 2 , therefore also
n fla, | xeK) = 0. Since a, €a, S (@, ) for x € K,, it is evidently

g€’ (p@,) |z K).

*) @°yp is defined in the following way: (¢° y) () = w(lp(x))’ where xz € 4.
: ") [6], the construction of the hull of a subset in a decomposition.
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I1. Conversely, let § € F>(y(@) | » € K.). Next, let ze J(3, | x € K,)
be such. that 1,0(;) = ¢. There exists a K -sequence (a,),¢ r, in 4 such that
a, € yp@,) for xe K, and 4§ N f(a, | x€ K,) # 0. But then there exists
an element 7 e 7 such that also z N f,(a, | » € K,) # 0. Let (@,).ex, be
the K -sequence in 4 for which a, € g, for all x € K,. Indeed, then z €
ef(d,|xeK). Since also Z ez, we have z n 7,(@, | xcK,) # 0 and
conéeql_lently z € f(@ | » € K), for a, € a,xe K) Hence
geylf.(@,|xeK))

Definition. Let (4, (f).cz) be a general algebra, @ an equivalence
relation on 4. @ is called a congruence relation on A if and only if for
each tel and for arbitrary K -sequences (a,).ck: (b,)xer in 4 with
the property ,0b, for x € K, there exists to each z ef(a, | x € K)
such y € f,(b, | x € K,) and to each y' €f(b, | x€ K) such 2’ € f(a, | x €
€ K) that 2@y, 'Oy’.

1.3. Let (4, (f)ie1), (B, (9,). 1) be similar general algebras, ¢ a mapping
of A onto B. Define an equivalence relation @ on A as follows: a@b if and
only if p(a) = @(b). Further define a mapping w of the set A|@ onto the
set B by w(z) = p(x), where x € x.

(1) Let @ be a weak homomorphism. Then w is a one-one weak homo-
morphism of (4]0, (f,).e1) onto (B, (g,)e1). )

(2) Let @ be a homomorphism. Then O is a congruence relation on A
and < is an isomorphism of (Ao, (1) 1) onto (B, (g e1)- ‘

Proof. The mapping w is clearly one-one. Let ¢ € I, let (@,)rex: be &
K -sequence in 4/6.

I. Let ¢ be a weak homomorphism, ye w[f(a,|xe K,)]. Let
z € { (@, | # € K,) be such that w(z) = y. Then there exists a K -sequence
(@,)«er in A such that a,€d, for x€ K, and f(a, |x€K,)n z # 0.
Letzef(a, | x € K,) n z.Clearly ¢(x) = y, therefore y € ¢[ f(a, | » €K,)}
c ¢g(9la,) | xe K,) = g,(w(@,) | € K,) and (1) holds. ’

II. To prove (2) 1t suffices to show g,(w(d,) | » € K,) cw([f(a,|x€K)]}.
Let y eg,(w(@,) | #€ K,). Let (a,)ex, be such a K,-sequence In A4 that
a,cd, for all xeK,. Then g (w(@,)|xeK,) =g/ (pla,)|x €K, =
= g[fla, | x € K)]. Therefore there exists ze 4 such that @)=y
and vef(a,|x€K). Let z€ A]/O be such that zez. Since zez n
nfla.l=xeK), we have zef(d, |»ecK), consequently w(z)=
=yeowlf(a,|xecK)] »

Definition. Let 4 be a set, 4 a decomposition of 4. Let ae 4,3 e 4
be such that ¢ € @. The mapping of 4 onto 4 whose value at @ is g is
called canonical. ' '

Definition. Let A be & set, 4, B decompositions of 4 such that
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A = B.*) Let e 4, b e B be such that @ = b. The mapping of 4 onto
B whose value at @ is b is called canonical.

1.4. Let (A, (f)).e1) be a general algebra, © an equivalence relation on A,
@ the canonical mapping of A onto A|O. Then @ is a weak homomorphism
of the general algebra (A, (f).ei) onto the factor-algebra (A|O, (f).er).
@ 18 @ homomorphism of the general algebra (A, (f).c1) onto the factor-al-
gebra (A0, (F).er) if and only if O is a congruence relation on 4.

Proof. Let (a,),cx, be a K -sequence in 4, (@,),.x, the K -sequence in
A/O such that a,ead , for all xe K. '

I If zeg[f(a,|xeK)], then there exists z€f(a,|»ec K) such
that @(z) = x. Therefrom z n f(a, | x € K) # 0, consequently ze
ef(d,|xcK)=Ff/(¢p,) | xcK) and ¢ is a weak homomorphism.

IL. (a) Let @ be a congruence relation on 4. By the preceding, ¢ is
a weak homomorphism and it suffices to show f(¢(a,) |xcK,) <
c ¢[f(a,| %€ K))]. Let z € f,(¢p(a,) | x € K,). Then there exists a K,-se-
quence (@,),ex. in 4 such that a, € g(a,) forallz e K, and z n f,(a, | x €
€ K,) # 0. Since a,0a, for all x € K, and O is a congruence relation,
there exists to each z’'€f,(a,|xc K,)) such z€ef(a,|» € K,) that
20z Let #' €z n f(a’, | € K). Then zez n f(a, | x€ K,) and there-
fore @(z) =z € ¢[f(a, | %€ K,)]. Consequently ¢ is a homomorphism.

(b) Let @ be a homomorphism. For , y € 4 we have 2@y if and only
if p(z) = @(y), for g is the canonical mapping of 4 onto 4/@. Therefore
6 1s a congruence relation on 4 according to 1.3.

1.5. Let (4, (f).c1) be a general algebra whose all operations are of
finite type. Then the family C(A) of all congruence relations on A is a com-
plete lattice (with respect to the inclusion of relations) and for M < C(4)
we have supgqy) M = supyqy M, where E(A) s the family of all equiva-
lence relations on A. ;

Proof. The family E(4) of all equivalence relations on 4 is a complete
lattice (see [2], p. 146). Let M < C(4) and denote @ = supy, M.
We shall prove that @ € C(4). If M = 0, then O equals the least equiva-
lence relation on 4, which is a congruence refation on 4. Let M +# 0.
For z, y € A we have x@y if and only if there exist a natural number m,

elements =1, ¢, ..., t, =y € 4 and elements @, ..., D, e M
such that t,@t;, ..., £, Dyt (see[2]). Let cel, card K, = k. Let
(@9, @y, ..y B—y), (b, by, ..., by—y) be such K -sequences in 4 that
a,0b,for1=0,1, ..., k— 1. Since, a,0b,, there exist a natural number
my, elements @y =19, tY, ..., ' =bye 4 and BV, ..., "W e M

1 . .
~ such that (Q @91}, .., gmo—Dpmaime) Pyrther since @Y is a congruence
relation and.a, = (@O, a,@¥a; (i =1, ..., k—1), there exists

*) 4 < B denotes that the decomposition 4 is a refinement of the decomposition
B. (See[5].)
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to each @ € f(ay, @y, ..., a;-,) such P e £,(tP, ay, ..., a;—1) and to each
2,V €f (1], @y, ..., ) such @' €f(ay, ay, ..., a~,) that 2dVzY,
o' PPy, Analogically, there exists to each z® € f,(t), ay, ..., a,—y)
such z9 e f(I}, ay, ..., @) and to each z,®ef(t?, ay, ..., a,,)
such » P ef,(tP, @, ..., @) that zPPPPx?, 2Py ete.
Therefore there exists to eacllx zeflag, @y, ..., 4~) such 2™ e f(b,,
a,, ..., @,—) and to each 2™ e fiby, ay, ..., @) such 2’ € f(a,,
@y, ..v, G—y) that 26020, 'Oz, Therefrom we obtain after & steps
that there exists to each z €f(ay, ay, ..., ;) such y €f,(b,, by, ...,
b,—1) and to each y' €f,(by, by, ..., b—) such &’ €f(ag, @y, ..., ;)
that 20y, ©'Oy’. Consequently O e C(4), so that @ = supg,) M. To
show the existence of the infimum denote by N the family of all ¥ € C'(4)
" such that ¥ < @ for all ® € M. According to the preceding part of the
Proof there exists sup C(A)N' Evidently inf o) M = 8UPe(4) N.

2. Partial algebras

Definition. Let (4, (f,).cz) be a general algebra. This general algebra
is called a partial algebra if and only if

card f(a, | x € K,) <1

for all ¢ eI and for all K -sequences (@,),eg. in 4.

Definition. Let (4, (f,).cr) be a partial algebra, 4 a decomposition
of A. If there exists for each ¢ € I and for each K,-sequence (d,)c k. in
A an element @ € 4 such that for all K -sequences (a,),cx in A for which
a,ea, (xec K) we have f,(a, | x€ K,) < a, then 4 is called a generating
decomposition of A.*) : ,

2.1. Let (4, (f.).<1) be a partial algebra, A a decomposition of A. Then
the following statements are equivalent:

(4) 4 is a generating decomposition of A.

(B) The factor-algebra (A4, (f,).c1) 1s @ partial algebra.

Proof. I. Let 4 be a generating decomposition. Let ¢ € I, let (d,),cx.
be a K -sequence in 4. Then there exists to the K -sequence (d,)exg.
an element @ € 4 such that we have f,(a, | x e K) < a for all K -sequen-
ces (a,),ex, fulfilling the condition (@) @, € a,(x € K,). If we have
f.(a,) » € K,) = 0 for all such K -sequences, then also ,(@, | x € K,) = 0.
But if there exists a K -sequence (@,)xex, fulfilling the condition (a)
such that f,(a, | x € K,) # 0, then clearly f,(d, | x € K,) = {a)}. Therefore

the factor-algebra (4, (7,).cs) is a partial algebra.

*) [5].
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I1. Let 4 fail to be a generating decomposition. Consequently, let
there exist to ¢ € I and to a K,-sequence (d,).. k. no element @ € 4 such
that f(a, | x € K) < d for all K -sequences (@,).ex, fulfilling the condi-
tion (a). Then there exist elements @', @” € 4 and K -sequences (a.),e ki,
(a7)e g fulfilling the condition (a) such that f(a, | x e K,) < @', f(ax|
|x€ K,) < a". But then f(d,|x€K,) 2{d’,a"}, so that the factor-
algebra (4, (f).er) cannot be a partial algebra.

Definition. Let (4, (f),er). be a partial algebra, @ an equivalence
relation on 4. O is called a weak congruence relation on A if and only if
for arbitrary c¢€l and for arbitrary K -sequences (a,)reri, (Dy)yere
in 4 with the property a,0b, for x € K, either at least one of the sets
fla, | xeK), f(b,|x €K) is void or (if f(a,| =€ K) = {a}, fi(b,|
| x € K,) = {b}) a®b.

Remark. Every congruence relation on a partial algebra is a weak
eongruence relation.

2.2. Let (4, (f).c1) be a partial algebra, @ an equivalence relation on A.
Then the following statements are equivalent:

(A) O is a weak congruence relation on A.

(B) A[O s a generating decomposition of A.

Proof. I. Let @ be a weak congruence relation. Let ¢ € I, let (@,).ek

_ be a K -sequence in 4/6. If we have f(a, | x € K,) = 0 for all K -sequ-
‘ences (@,)xe k. in 4 such that a, € @,(x € K,), it suffices to choose arbitra-
rily a€ 4/0 and f(a,|xe K,) < a for all such K -sequences. Cons-
equently, let there exist a K -sequence (@,),ck. in 4 such that a, €4,
for all x € K, and f,(a, | x € K,) = {a}. Let @€ 4/® be such that e ea.
Let (@,),c . be an arbitrary K -sequence in 4 such that o', € @, for all
% € K,. Then a,0aq, for all x € K, and therefore either f(a, | x € K,) = 0
or fi(a, | x€ K,) = {a'} and a@a’, for O is a weak congruence relation.
hence we have in both cases f,(a, | x € K,) < a.

II. Let 4/ be a generating decomposition. Let ¢ € I, let (a,),ek:»
(b,)xek: be two K -sequences in 4 such that a,0b, for all x € K,. There
exists a K,-sequence (G,)yer: in 4/0 such that a,, b,€d, for x € K,. -
But then there exists an element ¢ € 4/@ for which f,(a, | x€ K)) < @,
fib, | x€ K,) < G hold. Therefrom it follows that either at least one
of the sets f,(a,|xeK)), f.(b,| x€ K, is void or (in the case that
fia | ne E)=1a}, f(bs| ncK) = (b}) ab. - o

2.3. Let (4, (f).cr) be a partial algebra, (B, (9,).e1) @ general clgebra
similar with (4, (f).c1), @ @ homomorphism of (4, (f).e1) onto (B, (9).e1)-
Then (B, (9.)e1) is also a partial algebra.

" 24. Let (4, (f).e/) be a partial algebra, A a generating decomposition
‘of 4, da generating decomposition of A~, v the natzgal mapprg of 4
“onto 4 > A. Then the factor-algebras (4, (f).e1), (A 1> A, (F7)ier) are
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partial algebras and y is an isomorphism of , ( ff),e 1) onto (Z e 4,
(f ¢ )tEI)

Proof. The factor-algebra ( A, (Fler) is a partial algebra by 2.1.
The mapping v is an 1somorphlsm by 1.2. According to 2.3 the factor-

algebra (4 = 4, (f7).es) is also a partial algebra.

2.5. Let (4, ( f )ie1), (B, (9.)er) be similar partial algebras, ¢ a mappmg
of A onto B. Let © be the equivalence relation on A and w the mapping
of A|© onto B defined in 1.3.

(1) Let ¢ be a weak homomorphism. Then @ is a weak congruence relation
on A, (4]0, ()e1) ts a partial algebra and o is a one-one weak homo-
morphzsm of (A/@ (7)cer) onto (B, (g,).er).

(2) Let @ be a homomorphism. Then O is a congruence relation on A
and w s an isomorphism of (A4/0, (f).e7) onto (B, (9.).ex).

Proof. We shall show only that @ is a weak congruence relation in
the case (1). Let (@, )xex:s (b,)xe & be K -sequences in 4 such that a,&b,
for all x € K,. Then ¢(a,) = @(b,) for all x € K, and since ¢ is a weak
homomorphism, we have ¢[fl(a,|x e K)] < g(¢p(a,) | »x € K)) =
=g.(pb,) | xe K) = ¢[f(b, | x€ K)]. If g(pla,)|xeK)=0, we
have f/(a, |xe K) =f/(b,|x€ K)=0.1If g(p(a,) | x € K,) = {c}, then
either at least one of the sets f(a,|x¢e K), f(b,| % € K,) is void or
- (if fla, | xe K)) ={a}, f(b,| k€ K) = {b}) p(a) = qo(b), le a@b, The
remaining part of the theorem follows from 1.3, 2.2 and 2

2.8. Let (4, (f,)ie1) be a partial algebra. Then the farmly 0 4) of all
weak congruence relations on A is a complete lattice (with respect to the
inclusion of relations) and for M < C,(A4) we have infc )M = inf 5\ M.

Proof. Let M < C,(4) and denote © = infE(A)M. We shall prove
that @ eCy(4). If M =0, then @ equals the greatest equivalence
relation on 4 which is a weak congruence relation on 4. Let M 0,
For z,y € A we have 2@y if and only if z @y for all ®e M (see [2]).
Let LEI let (¢,)xer:, (b,)xex, be K -sequences in 4 such that a,@b,
for all x € K,. Since a,0b,(x € K,), we have a,®b,(x € K,) for all de M.
Therefore elther at least one of the sets f a, |xeK ), fib, | % € K))
is void or (if f{a, | xe K,) = {a},f,(b,, |xe K)={b}) aPbforall De M.
ie. a@b. Consequently @ € C (4) and @ = infe 4 M. To show the
existence of the supremum denote by N the famlly of all ¥eC,(4)
such that ¥ = @ for all @ € M. According to the preceding part of the
proof there exists infc,4)N. Evidently supc, .y M = info . N.

2.7. Let (A4, (f).c1) be a partial algebra whose all opemtwns are of finite
type. Then the family C(4) of all congruence relations on A is a complete
lattice (with respect to the inclusion of relations) and for M < C(4) we
have supg M = supz M and in the case that M == 0 also info )M =
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Proof. C(4) is a complete lattice and supq M = sup, M by 1.5.
Let 0 « M < ((4) and denote © = inf, ,,M. We shall prove that
. Oel(4). Let tel, let (a,) ek, (by)xer be K -sequences in 4 such that

a,0b, for all x€ K,. Since a,0b, (x € K)), we have a,Pb, (x € K,)
~for all @ e M. Therefore either f,(a,|xe K,)=f(b, |xe K) =0 or

(ff(a, | xe K) ={a},f(b, | x€ K) ={b}) a®b for all D € M, i.e. aOb.

Consequently in both cases @ € C(4) and @ = inf M.

3. Algebras.

Definition. Let (4, (f,).es) be a partial algebra. This partial algebra
i8 called an algebra if and only if

cardf,(a, |x€ K,) =1
for all ¢ I and for all K,-sequences (a,),cx. in 4. (See [1].)

Remark. On the study of algebras every weak congruence relation
is a congruence relation and every weak homomorphism is a homo-
morphism. .

3.1. Let (4, (f)ie1) be an algebra, A a decomposition of A. Then the
Jfollowing statements are equivalent:

-(4) A is a generating decomposition of A.

(B) The factor-algebra (4, (f).c1) is an algebra.

Proof. 1. Let 4 be a generating decomposition. Let ¢e I. Then
there exists to an arbitrary K -sequence (d,),cx in 4 an element @ € 4
such that f,(a, | x € K,) < a for all K -sequences (a,)xe g in 4 fulfilling

- the condition a, € @, (x € K,). But then obviously (4, | x € K) = {a}.
Therefore the factor-algebra (4, (f).cr) is an algebra. )

II. Let the factor-algebra (4, (f,).e1) be an algebra. Then (4, (f,).er)
is also a partial algebra and 4 is a generating decomposition by 2.1.

3.2. Let (4, (f).e1) be an algebra, © an equivalence relation on A. Then
Jollowing statements are equivalent:

(4) O is a congruence relation on A.

(B) A|O is a generating decomposition of A.

3.3. Let (4, f)e1) be an algebra, A a generating decomposition of A, A
a generating decomposition of A, v the natural mapping of 4 onto 4 1> 4.
Then the factor-algebras (4, (f).e1), (A > A, (I )e1)-are algebras and y
1s an tsomorphism of (A, (f).e;) onto (A > 4, (F7).c1).

3.4. Let (4, (f).en), (B, (9,).c1) be similar algebras, ¢ a homomorphism
of (4, (f).e1) onto (B, (9.).e1). Let @ be the equivalence relation on A and w
the mapping of A|@ onio B defined in 1.3. Then O is a congruence relation
on A, the factor-algebra 4]0, (7 Jeeq) 18 an algebra and o is an isomorphism
of (A/@’ (fl)‘el) O%to (B’ (gl)lEI)-
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8.5, Let (4, (f)er), (B, (g)er) be similar algebras, @ an equivalence
relation on A. If (B, (9.)e1) s an isomorphic image of the factor-algebra
(4]0, (f)e1), then (B, (9,)ic1) is @ homomorphic tmage of (4, (fee).

Proof. Since (B, (g,)cr) is an isomorphic image of (4/6, (f)e1),
(4/0, (f).c1) is a partial algebra according to 2.3. By 2.1, 4/0 is a gener-
ating decomposition and consequently @ is a congruence relation accord-
ing to 3.2. But from 1.4 it follows that the canonical mapping of 4 onto
A4/0 is a homomorphism of (4, (f).er) onto (4/6, ().er). The homo-
morphism of (4, (f).e1) onto (B, (g,).s) is obtained according to 1.1
by the composition of this homomorphism of (4, (f,).c7) onto (4/0, (f)ier) -
and the isomorphism of (4/6, (7)) onto (B, (g,).er).

3.6. Let (4, (f.)ic1) be an algebra. Then the family C(A) of all congruence
relations on A is a complete lattice (with respect to the inclusion of velations)
and for M < C(4) we have infy M = infy M. If all operations of
the algebra (A, (f,).c1) are of finite type, we have also sup 4 M = sup g, M.

Remark. If card I =1, card K = 2, we get from the preceding the
well known theorems on the isomorphism of groupoids. (See [5].)

4. r-systems

Definition. Let (4, (f,).c1) be a partial algebra, e an arbitrary element
in 4. Let the following conditions be fulfilled for arbitrary ¢ € I and for
an arbitrary K, -sequence (a,),eg in A:

@) fla, | xeK)=0 or f(a,| xe K)={e};
(b)fa,| xe K) =0, if a, = e for some xec K,.

Then this partial algebra is called an r-system, the element e its marked
element.

Definition. Let (4, (f).cr), (B, (g,).c1) be similar r-systems, ¢ a (weak)
homomorphism of (4, (f).e1) onto (B, (g,).c1), e, the marked element in -
(4, (f)ie1), e the marked element in (B, (g).c1). If @(e,) = e, ¢[4d —
—{e }] = B —{ey}, we say ¢ is a (weak) r-homomorphism. A one-one
r-homomorphism is called an r-isomorphism.

4.1. Let (A, (f)ie 1), (B,(9,)c1) be stmilar r-systems, g an r-homomorphism
of (4, (f).e1) onto (B, (9,).e1). Then f(a, | € K)) = X 1s equivalent with
g(pla,) | € K)) = ¢[X] for arbitrary « € I and for an arbitrary K, -sequ-
ence (a,),ck n A.

4.2, Let (4, (f)ieD), (B, (9)ien), (C, (R ).c1) be similar r-systems, @ a map-
ping of A onto B, y a mapping of B onto C.

(1) If the mappings @ and y are weak r-homomorphisms, then also
their composite @°y is a weak r-homomorphism. :
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(2) If any two of the mappings @, y, @°y are r-homomorphisms, then
the third mapping is also an r-homomorphism.

Proof. I. If ¢ and y are (weak) r-homomorphisms, ¢°y is a (weak)
homomorphism according to 1.1. If we denote by e, e,, e, the marked
elements of the r-systems (4, (f)ic1), (B;(9)ien); (C, (h)ic1), then we
- have (°y)(e,) = pleg) =eq, (p°p)[4 — {e,}] = y[B — {ep}] =
= 0 —{e¢}. Thereby it is shown that ¢°y is a (weak) -homomorphism.

IL. If ¢, @°yp are r-homomorphisms, y is a homomorphism according
to 1.1. If we admitted that p(es) # eg or y[B—{e;}] 3= C —{e;}, we
should obtain either (@°y)(e,) = w(e;) #ec or (¢°y)[4d—{eJl=
= y[B—{ep}] # C — ¢y, and that is a contradiction in both cases.
Therefore y is an r-homomorphism.

III. Let v, ¢°y be r-homomorphisms. Let te I, let (a,).ex. be a
K,-sequence in 4. By 4.1, f(a,|»€ K)=X is equivalent with
h((9°y) (a,) | € K,) = (¢p°yp) [X], for ¢°y is an r-homomorphism. By
the same theorem, A,((¢°y)(a,)|x € K,) = (¢°y)[X] is equivalent
with g,(¢(a,) | x € K|) = ¢[X], so that ¢ is a homomorphism. If we
admit that g@(e,) # ez or ¢[d —{e,}] # B—{ey}, we obtain either
(p°y) (e4) # ec or (¢°y)[4 —{e,}] # C —{es}, and that is again
a contradiction in both cases. Therefore ¢ is even an r-homomorphism.

4.3. Let (4, (f) e1) be an r-system. Then every decomposition A of A
18 generating.

_ Definition. Let (4, (f):e1) be an r-system with the marked element e,
4 a-decomposition of 4. If {e} € 4, then the decomposition 4 is called
an 7-decomposition of A. -

4.4. Let (A4, (f)ier) be an r-system with the marked element e, A an
r-decomposition of A. Then the factor-algebra (4,(f)er) is an r-system
“whose marked element s {e}.

Proof. 4 is a generating decomposition aceording to 4.3, so that
the factor-algebra (4, (f).c;)_is a partial algebra by 2.1. Let ce I, let

(@,)xex be a K -sequence in 4. If f(a, | x € K,) = 0 for all K,-sequences
(@,)xek in A such that a,ed,(xe K,), then also f(d,|xeK,) = 0.
If f(a,| 2x€ K, # O for a K-sequence (a,)xcx in 4 such that a,€ad,
(x € K,), we have f(a, | x€ K,) = {¢} for all such K -sequences, so that

“1.(a,) x € K) ={{e}}. Further consider the case that &, = {e} for some

»' € K,. Let (@,)xex: be a K -sequence in 4 such that a, € a, for all
€ K,.Since @, = {e}, we have necessarily a,, = eand f/(a, | x € K) = 0.
Consequently also 7,(d, | x€ K,) = 0 and the factor-algebra (4, (7).c1)
. i8 an r-gystem with the marked element {e}. e

4.5. Let (4, (f)e1) be an r-system, A an r-decomposition of A, 4 an
r-decomposition of A, v the natural mapping of A onto 4t A. Then the
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Jactor-algebras (4, (f).e;), (A1 A, (F7)ier) are r-systems and y is an
r-isomorphism of (4, (f)er) onto (A > 4, (F)se1).

Proof. By 4.4, (4, (f).c1) is an r-system with the marked element
{{e}}, where e is the marked element in (4, (f)ie1)- (4= A, (F7)ier) 18
a partial algebra by 2.4. We shall show that it is an r-system with the
marked element {¢}. Let 1€ I, let (b,)xex: be a K -sequence in 4 - 4.
For.an arbitrary K,-sequence (a,).cx. in A such that a,ebd, for all
x € K, we have f,(a, | x € K)) = {¢}. Since {{¢}} € 4, we have {¢}e 4 > 4
by the definition of the decomposition 4 - 4. From the preceding it
follows f~(b, | » € K,) < {{e}}. Further assume that b,, = {e} for some
#' € K,. Again let (a,)xcx. be a K -sequence in 4 such that a, € b, for
all x € K,. Since b,- = {e}, we have necessarily a,, = eand f(a, | x € K)=
= 0. Therefore also /”(b,, | € K,) = 0 and the partial algebra (4 - 4,
(f7)ie1) is an r-system with the marked element {}. By 1.2, the mapping y
is an isomorphism. It remains to show that it is also an 7-homomorphism.
It was already shown that {{e}} is the marked element of the r-system
(4, (f).e1) and {¢} the marked element of the r-system (4 1> 4, (77 )ier).
Clearly y({{e}}) = {¢}. Since v is a one-one mapping, we have y[4d —
—{{{e}}}] = 4 A—{{e}} and y is an r-isomorphism.

Definition. Let (4, (f,).c;) be an r-system with the marked element e,
O an equivalence relation (respectively, a congruence relation) on 4.
If @ non O efor all a € 4 — {e}, then O is called an r-equivalence relation
(respectively, an r-congruence relation) on A.

4.6. Let (4, (f).e1) be an r-system, © an equivalence relation on A.
Then the equivalence relation O is an r-equivalence relation if and only
if A/@ s an r-decomposition of A.

4.7. Let (A, (f)ie1); (B, (9.):c1) be similar r-systems, ¢ a mapping of 4
onto B. Let © be the equivalence relation on 4 and w the mapping of A|@
onto B defined in 1.3.

(1) Let @ be a weak r-homomorphism. Then © i3 an r-equivalence relation
on 4, (4]0, (f.)e1) 13 an r-system and w 18 a one-one weak homomorphism
of (4/0, (f)ie1) onto (B, (g)er1)- )

(2) Let ¢ be an r-homomorphism. Then @ is an r-congruence relation
on A and  ts an r-isomorphism of (4]0, (f).c1) onto (B, (g,).e1).

4.8. Let (A, (f).e1) be an r-system, @ an r-equivalence relation on A,
@ the canonical mapping of A onto A|®. Then ¢ 13 a weak r-homomorphism
of (4, (f)er) onto (4]0, (F)e1). @ 18 an r-homomorphism of (A, (f)er)
onto (4]0, (1).c1) if and only if @ an r-congruence relation on A.

Proof. I. By 1.4, ¢ is a weak homomorphism of (4, (f)).es) onto -
(4/0, (f).e1). Since O is an r-equivalence relation on 4, we have p(e) =
={e}, ¢(a) #{e} for a #e, 80 that ¢ is a weak r-homomorphism. -

-
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I1. (a) Let © be an r-conguence relation. Theng is a homomorphism
of (4, (fi)er) onto (4/0, (f)er) by 1.4. But by the preceding, @ is even
an 7-homomorphism.

(b) If @ is an r-homomorphism of (A4, (f).er) onto (4/O, (f).er).
then @ is an r-congruence relation by 4.7.

Definition. Let A4 be an ordered set, X < A. If there exists an element
a € Asuchthat X ={x |z e 4, z < a}, then X is called a principal ideal
of the ordered set 4.

4.9. Let (4, (f).e1) be an r-system. Then the family E (A) of all r-equi-
valence relations on A 1is a principal ideal of the complete lattice E(A).
If all operations of the r-system (A, (f).e1) are of finite type, then also the
Jamaly C, (4) of all r-congruence relations on A is a principal ideal of
E(A4). (See [3].)

Proof. I. Let e be the marked element in (4, (f,).e;). Define an equi-
valencerelation 5 on 4 asfollows:e Z eanda Z bifand onlyifa, be 4 —
—{e}. Clearly 5 e E,(4) and for arbitrary & < &£ we have @ € E,(4).
Consequently E,(4) is a principal ideal of E(4).

II. Denote @ = supg,,C,(4). By 1.5, we have @ e C(4). We shall
show that even @ € (,(4). Let a € 4, a@e. Therefore there exist a natural
number m, elements @ =1,,¢,, ...,t, =ec A and elements @, ...
covy D, €0,(4) such that $,Dit,, ..., 1,,D,t, (see [2]). But since
?,,...,P, are r-congruence relations, we have e=t, =1¢, =
= ... =1, =1t =.a, 80 that @EO, (A) and @ = supc,(A)C,(A). Let
DPecEA),D < O. Let e € I, card K, = k. If (a,, ay, ..., a4—), (b,
by, ..., b—,) are K -sequences in 4 such that a;®b, for 1 = 0,1, ...
...,k —1, then we have also ¢,0b, for 1 =0,1, ...,k — 1, so that
there exists to each z €f(ay, @,, ..., a,—) such yef(by, by, ..., bpy)
and to each y' ef(by, by, ..., b—) such z' €flaqy, ay, ..., a3—) that
20y, z'Oy’. Thence we have either f(aq, ay, . .., a,—) = fi(by, by, - ..
b)) =00rflag, ay, ..., @) =f(by, by, ..., by) ={e}, 80 that
there exists to each x €f(ay, @y, ..., a,—,) such y € f(by, by, ..., bp—y)
and to each y' ef(by, by, -..,b—) such z’ € f(ay, ay, ..., a,—,) that
z@y, ¥’ y’. Consequently @ e C(4) and from the first part of the proof
we have @ e C,(4). Therefore C,(4) is a principal ideal of E(4).

5. Derived r-systems.

Everywhere in this paragraph we suppose that all operations on
r-systems are of finite type. The greatest element in the family C,(4)
of all »-congruence relations on 4 will be denoted by 6.

- b.1. Let (A,(f).e1) be an r-system, @ an equivalence relation on A.
- Then the following statements are equivalent:
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(4) O is an r-congruence relation on A.

(B)O < 0,.

Definition. Let (4, (f,).cs) he an r-system, 4 an r-decomposition of 4.
Let 4 be such an r-decomposition of 4 that 4 = A/@7. Then the
r-decomposition 4' = 4 > 4 is called derived from the r-decompositi-
on 4, the r-system (4, (f/).c1) derived from the r-system (A, (f)ier)-
(See [3].) .

_ B.2) Let (A, (f)er) be an r-system, A, B _r-decompositions of A. Let
A £ B and let y be the canonical mapping of A onto B. Then the following
statements are equivalent:

(A) g is an r-homomorphism of (4, (74).er) onto (B, (75).es)-
(B)B < 4.

Proof. Let ;i,.l? be the decompositions of A for which we have
A =4 4, B= B A. Further let © be the equivalence relation
on 4 such that B'= E/Q. We have 4 = 4/07. Let ¢ be the canonical
mapping of 4 onto B, p the natural mapping of B onto B. Then the
following statements are equivalent:

(B)B < 4'.

(©)B < 4.

(D) O c O7.

(E) O is an r-congruence relation on 4. -

(F) @ is an 7-homomorphism of (4, (74).¢;) onto (B, (F).e1).

(A) x is an r-homomorphism of (4, (f4).e7) onto (B, (7B).ce1).

In fact, (B) is equivalent with (C) (see [3], Theorem 2.5) and (C)
is equivalent with (D) (see [3], Theorem 2.3). (D) is equivalent with (E)
by 5.1, (E) is equivalent with (F) by 4.8. Since y = ¢°y and according
to 4.5 y is an r-isomorphism, (F) is equivalent with (A) by 4.2.

5.3. Let (A4, (f)er) be an r-system, A an r-decomposition of A, Then

A" = 4"
_ Proof. From the definition of the derived r-decomposition it follows
A" £ 4". Let @ be the canonical mapping of 4 onto 4’, v the canonical
mapping of 4’ onto A4”. Since 4’ = 4’, A" < A", the mapping ¢ is
an r-homomorphism of (4, (f).c;) onto (4’, (7/).c7) and the mapping y an
r-homomorphism of (4’, (f,).c1) onto (4", (f.).e1) according to 5.2. Conse-
quently ¢°y is an 7-homomorphism of (4, (7).e;) onto (4", (F;).er) by 4.2.
But by 5.2, we have 4" < A’. Therefore 4" = A’ ,

5.4. Let (A, (f.).e1) be an r-system, A, B r-decompositions of A. Then
the following statements are equivalent:

(4) 4 =B
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(B) There exists an r-decomposition C of A such that A < C < A4,

(C}‘AVPéA’,AVF§ B'*).

Proof. I. Let (A) hold true. Then it suffices to put C = 4’ = B’
and we have 4 £ C £ 4, B £ C £ B’. Therefore (B) holds true.

IL. Let (B) hold true. Since A< C < 4, B < C £ B’, we havealso
AVB<C’SA,AVESC’§P’, so that (0) holdstrue '

III. Let (C) hold true. Clearly AV B is an r-decomposition of 4.

Denote C =4 V B. From (C) it Tollows 4 s C <4, B <C < B
Further denote by ¢ the canonical mappmg of 4 onto C, by v the
canonical mapping of C onto A’. Then ¢°y is the canonical ma ping
ofA onto 4'. By 5.2, ¢ is an 7-homomorphism of (4, (F)er) onto (C, (f')ier.
¢°y an r-homomorphlsm of (4, (f)er) onto (4', (f!)e1), for C < 4,
A' £ A'. By 4.2, yis an r-homomorphism of (C, (7').cs) onto (A' (F/)eer)-
We have 4’ < €’ again by 5.2. Similarly we should show that B’ < .
Let x bé the canonical mapping of 4’ onto C". Then °y is the canonical

mapping of C' onto C’. By 5.2, °y is an r-homomorphism of ©, ()er)
onto (C' (F*')er), for C’ < C". Consequently y is an r-homomorphjsm of
(A’ (F).e1) onto (', (F ),el) according to 4.2. By 5.2, we have (' < 4".
Sxmﬂarly we should show that C’ < B”". Since 4’0 < 4, B <
<0 sB',wehave /' =0 =B’ by 5.3 and (A) holds true.

b.b. Let (A (f)eer) be an r-system, A, B r-decompositions of A. Let
4 < B. Then the following statements are equivalent:

(A) AI o BI *

(B)B < 4'.

Proof. (A) is equivalent with (C) from 5.4. Therefore we show that (C)
from b.4 is equivalent with (B). =

I. Let (C) from 5.4 hold true. Then AV B < 4 implies B < 4,
so that (B) holds true. L -

IL Let (B) hold true. Since A< A, B<A,wehaved Vv B-< 4.
Further since 4 £ B < B’, we have i V B § B, so0 that (C) from 5.4
holds true. - E

5.6. Let (A, (f)er) be an r-system, A, B r-decompositions of A. Let
A' < B. Then (4 V By =B".

Proof. 'V B is evidently an r-decomposition of -4. Since B <
sA'VB=<B V B=RB, we have (4' V B)’ = B’ by 5.5. _

5.7. Let (4, (f)e1) be an r-system, M the least decomposition of A, A

an r-decomposition of A, P an r-decomposition of A such that PsM.
Let a, 7 be such r—eguwalmoe relations on A that A = A, Aln = P.

*) A v B denotes the least decomposition suchthat A £ dv B, Bs Ay B
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Let an = ma. Then the canonical mapping ¢ of the r-system (4, (Fier)
onto the r-system (A V P, (f')er) ts an r-homos morphism.

Proof. Denote by e the marked element in (A, (f).e7). By 4.4, {e} is
the marked element in (4, (7).e;) and (A \V P, (F)es). Let vels
card K, =k, let (@, Gy, . . ., @3—) be a K -sequence in 4. Let f,(dg, @y, - - -

., @) ={{e}}. Then there exists a K -sequence (aq,@a,, .- -»%-1)
in 4 such that a;ea; fori =0, 1, Jk—1a df(ao, Aps ooy W) =
= {e}. But since d; = ¢(a;), we have a € @(@) fort=0,1,...,k—1,
52 that F(@(@), @(@y).-, - -, 9(@)) = {{e}} = ol{{e}}]. Let 7:(p(@o),
¢lay), ..., (p(a‘_l)) = {{e}}. Then there exists a K -sequence (ao, @y, - . -

.+, @4—) in A such that a, e p(@;) for1=0,1, ..., k—1and f,(a9,a,, - . -

, t—) = {e}. Let (o, py, - .., Pr—1) bE such a K,-Bequence in P that
aiefai for i =0,1,...,k—1. We have p; < ¢(@,), a; S @(a,) for
t=0,1,...,k—1. We shall show that 7 P; N a; # 0. In_fact, denote
by B such an r- equivalence relation on 4 that A|p= AV P.Since
am = ma, an is also an r-equivalence relatlon (see [2], p. 175) and
an =a \V n=f. Let b,eq;. Since a;, b; € p(@,), we have a,8b;.
Consequently there exists ¢;e€ 4 such that a;mc;, cab;. But then
¢;€p; N @;. Let P be the r-decomposition of M such that 13—_= P M.
Further let @ be such an r-equivalence relation on M that P = M|@M,
Since P < M’, we have O¥ < O3 (see [3]). Therefore by 5.1 O is an
r-congruence relation on 4. Define an r-equivalence relation @4 on 4
as follows: @b if and only if {a} O¥{b}. Since the r-systems (4, (f.)ie1)
and (M, (fM).er) are r-isomorphic and O™ is an r-congruence relation
on M, ©4 is even an r-congruence relation on A. Considering that

, ¢; € p; we have {a;} ©M{c.} and therefore also a;04c; for ¢ = 0, 1,

k — 1. Sincef,(ay, ay, ..., @) = {€}, we havef(co, s .- 01:—1)""
== {e}, so that f (a,, &, . .., a,c_l) = {{e}}. Since (4, (f).c;) is an r-system,
it is thereby shown that ¢ is a homomorphism. Finally, since ¢ is the
canonical mapping of the r-system (4, (f)ier) onto the r-system (4 V P,
(F)er), we have g(fe}) ={e}, p[d —{{e}}] =4 V P —{{e}} and ¢ s
even an 7-homomorphism.

5.8. Let (4, (f.).e1) be an r-system, M the least decomposition on A, . A4
an r-decomposition on A, P an r-decomposition on A such that P < M.
Let o, 7 be such r-equwalence relations on A that A = Aja, P = Aln.

Let o = ma. Then P < A'. }

Proof. By 5.7, the canonical mapping @ of the r-system (Z (F)ier)
onto the r-system (A V P, (f')ier) is an r-homomorphlsm By 5.2,
we have 4 V P < 4. Therefore P<AVP < 4.
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6. Simple r-systems.

Definition. An r-system (4, (f).e1) is called simple, if there exists
8 unique r-congruence relation on 4. (See [4].)

6.1. An r-system (4, (f,).er) 18 simple if and only if the following condit-
ton (b) s fulfilled: To arbitrary elements x, ye A, x #+y there exist

- wel, K, -sequences (a,)ueris (D.):cr. and an index xy€ K, such that
Ayy = T, bun =Y, a, = b, fOT x€ Klo_{"o}’ fto(a’x | % € Ktn) #ft,,(bx |
txe K,). ‘

Proof. I. Let the condition (b) fail to be fulfilled. Then there exist
elements z, y € 4,z +# ysuchthat wehavef(a, | xe K,) = f|(b, | x € K))
for all ¢ € I, for all », € K, and for all K -sequences (@,).e &> (by)xe g With
the property a., = , b,, = ¥, a, = b,(x € K, — {x,}). Define an r-equi-
valence relation @ on A4 as follows: a@b if and only if ¢ =b or a = =,
b=y ora=y, b==2 0 is clearly an r-congruence relation on 4
different from the least one, so that (4, (f,).e;) 18 not simple.

II. Let the condition (b) be fulfilled. If we admit that (4, (f).cr)
is not simple, then there exists an r-congruence relation @ on 4 which
is not the least one. Consequently we have 2@y for some z,y € 4,  # y.
Let cel, x, € K,, let (a,)uek:, (b,)xck: be such K -sequences in 4 that
ay, =, b, =y, a,=0b, for xe K, —{x,). Further let (@,)xcx. be
such a K -sequence in 4/@ that a, €d, for all x € K,. Clearly b, € a,
for all x € K,. By 4.8, the canonical mapping of (4, (f).e1) onto (4/6,
(f)ie1) i8 an r~homomorphism and therefore we have f,(a, | x€ K,) = 0
if and only if f (4, | *€ K,) =0 and f,(d, | € K)) =0 if and only if
Jib, | xe K) = 0, which is a contradiction with (b).

6.2, Let (A, (f)er) be an r-system whose all operations are of finite
type, O an r-congruence relation on A. Then the factor-algebra (40, (f.).er)
18 simple if and only if @ = O, (see Paragraph 5).

Proof. 1. Let (4/0, (f).ex) be a simple factor-algebra. By 5.1, we
have & < ©,. Let @ be an arbitrary r-congruence relation on 4.
Admit that there exist elements z,ye A such that z®y, znon Oy.
Let z,5€ A]@ be such that €z, y e . Let ce I, %y K,, let (@,)cer:,
(8, )xek: be K -sequences in 4/0 such that d,, = 7, b,, = 7, 4, = b, for
%€ K, — {x%,}, let (@,)uer:, (b,)xer be K, -sequences in 4 such that
O, = %, by, =y, a, = b, €a, for x e K, — {%,}. Finally let (c,)xex: be
a K -sequence in 4/® such that z ec,,, a, €c, for x e K, — {x,}. The
following statements are clearly equivalent:

tA)7 (@, |x€K)=0;
(B)f(a, | xeK,) =0;
(C) f2(c | xe K)) = 0;
D) flb, | xeK)=0;

(E)f(,|xeK)=0.
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In fact, the canonical mapping of (4, (f,).er) onto (4/0, (f)es) is an
r-homomorphism (see 4.8), so that (A) holds if and only if (B) holds.
Similarly we should show the equivalence of (B) and (C), (C) and (D),
(D) and (E). Therefore (A) is equivalent with (E), which contradicts
to the condition (b) of 6.1. Consequently @ < © holds for all 7-congruence
relations on 4 and hence @ = 0,.

II. Let ® = O,. By 5.1, O is an r-congruence relation on 4. If we
admit that (4/6, (f,).e;) isnot simple, then there exist elements z, j € 4/0
such that for arbitrary ¢el, %, € K, and for arbitrary K -sequences
@ )neres (Byuek: in A)O (Gp, =, by, =9, d,=0, for all ke K, — °
— {xo}) we have f,(a, | x € K,) = [,(by | € K.). Define an r-equivalence
relation @ on A4 as follows: a®b if and only if a@b or acz, bej or
acy, bez. D is clearly an r-congruence relation on 4, but we have
@ ¢ O, which is a contradiction.

6.3. Let (4, (f).er) be an r-system whose all operations are of finite
type, © an r-congruence relation on A. Then the simple factor-algebra
(4, 1)ie1) on (A4, (f)ier) 18 an r-homomorphic image of the factor-algebra
(4/0, (f9)ie). a

Proof. By 6. 2, we hawe @ < @, so that 4/@ < A. Denute by ¢
(respectively, v, x) the canonical mapping of 4 onto 4/@ (respectively,
of A/O onto 4, of 4 onto 4. Clearly y = ¢°y. ¢ and y are r-homomor-
phisms by 4. 8. Consequently ¢ is also an r-homomorphism by 4.2.

6.4. Let (A, (f)ier) be an r-system whose all operations are of finite type.
Then there exists a unique sumple r-system (except for r-isomorphisms)
which s similar to (4, (f)e1) and which 1s its r-homomorphic image.

Proof. Let (4, (f)ez) be the simple factor-algebra on (4, (f)er)-
and let (B, (g,)er) be a simple r-system which is similar to (4, (f).e1)
and which is its 7-homomorphic image. Denote by ¢ the corresponding
r-homomorphism. Define an r-equivalence relation @ on 4 as follows:
a6b if and only if ¢(a) = ¢(b). By 4.7, @ is an r-congruence relation on 4
and (B, (9,).e1) is an r-isomorphic image of the factor-algebra (4/©, (78).e1)-
Since (B, (g,)ie1) i8 simple, (4/O, (78).c,) is clearly also simple. Therefore
0 = 0, and (B, (9,)er) i8 an r-isomorphic image of (4, (f).c1)-

Definition. Let (4, (f)).c;) be an r-system whose all operations are of
finite type, (B, (9,).ex) a simple r-system which is similar to (4, (f)ier)
and which is its r-homomorphic image. Let g be the corresponding
r-homomorphism and let ¢ be & mapping defined on B as follows: g(b) =
= card ¢~1[b]. Then the ordered pair [(B, (9,)e1), 0] i8 called an A-cha-
racteristic of the r-system (4, (f)ie1)-

‘Remark. Let (B, (9,).e1) be a simple 7-system whose all operations are ‘
of finite type, ¢ & mapping assigning to each b € B a cardinal number

s =
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o(b) =z 1. Then there exists a unique 7-system (4, (f)ier) (except for
r-isomorphisms) such that [(B, (g,)ier); ] is its A-characteristic.

6.5. Let (A, (f)i1), (B, (g)eer) be similar r-systems whose all operations
are of finite type. Let [(C, (h)ie1), 0], [(D, (k)ies), o] be their h-characte-
ristics. Then (B, (g).ex) s an r-homomorphic image of (4, (f).;) if and
only if the following condition (c) vs fulfilled: There exists an r-isomorphism
@ of (C, (h).e1) onto (D, (k).er) such that o(c) = o(p(c)) holds for all
ce(.

Proof. Denote by y the 7-homomorphism of ( 4,(f,).e7) onto (C, (k,).e1)
and by 7 the r-homomorphism of (B, (g,).e;) onto (D, (k,).er) and define
an r-equivalence relation X on 4 and an r-equivalence relation 7'on B
as follows: aXa' if and only if () = x(a'); bT'b' if and only if 7(b) =(b’).

I. Let (B, (g,)e1) be an r-homomorphic image of (4, (f,).e;). Denote
by v the corresponding 7-homomorphism of (4, (f,).er) onto (B, (g,).e1)-
The mapping y°v of (4, (f)ier) onto (D, (k,).c;) 18 an r-homomorphism
by 4.2. Define an r-equivalence relation ¥ on 4 as follows: a¥a’ if and
only if (y°7) () = (y°7) (@'). By 4.7, X, ¥ are r-congruencerelationson 4,
T'is an r-congruence relation on B. By the same theorem, (4/X, (7¥).e1)
is an r-isomorphic image of (C, (h)icr) and (4/¥, (F¥)iex), (BIT, (G ):er)
are r-isomorphic images of (D, (k).c1). (A/X, (fX)icr), (A[¥, (F¥).er) and
(BIT (§,).e1) are clearly simple, for (C, (h,).c1) and (D, (k,).c1) are simple.
Therefore we have X =¥ = 0,, T = Oy by 6.2. With regard to that
we may define a mapping ¢ of C onto D as follows: g(c) = (¢°7) (a),
where @ is an arbitrary element such that a € y~[c]. Since 3°p = %°,
@ is an r-homomorphism of (C, (k,).c1) onto (D, (k,).er) (according to 4.2)
which is clearly one-one. But since y maps each class of the decomposi-
tion A/¥ onto a class of the decomposition B/T, we have g(c) =
= c(s;rd x~Y[c] = card (p°7)[g(c)] = card v ¢(c)] = o(p(c)) for each
ceC.

II. Let the condition (c) be fulfilled. Let ce C and let @, € 4/X be such
that y(a) = ¢ for a € d,, b, € B/T be such that 7(b) = d for b € b,. Since
o(c) = o(gp(c)), there exists a mapping @, of d, onto b, for each ceC.
Define a mapping y of 4 onto B as follows: y(a) = ¢,(a) for aea,.
We have clearly y°@ = %°7 and therefore p is an 7-homomorphism of
(A, (f)ier) onto (B, (g,).es) by 4.2, for y°p is an r-homomorphism of
(A, (f).exr) onto (D, (k).er) by the same theorem.

6.6. Let (4, (f)ex), (B, (9.)ie1) be similar r-systems whose all operations
are of fimite type. Let [(C, (h).er), @] be an h-characteristic of (4, (f.)ier)-
Then the following statements are equivalent:

(4) (4, (f)iex) s simple.

(B) (B, (g,)ie1) 18 an r-homomorphic tmage of (4, (f) .e1) implies that
(B, (9.)c1) 18 an r-isomorphic tmage of (A, (f)eer)-

(C) o(c) =1 for all ceC.

e
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Proof. We shall show only the equivalence of (A) and (B), for (A) is
equivalent with (C) by the definition. Let ¢ be an r-homomorphism of
(4, (f)er) onto (B, (g,).cr). Define an r-equivalence relation & on 4 as
follows: a@qa’ if and only if g(a) = @(a’). O is an r-congruence relation
on 4 by 4.7. But (4, (f,).e1) i simple if and only if @ is the least »-con-
gruence relation on 4 and this holds if and only if ¢ is one-one.
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