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ON G E N E R A L A L G E B R A S 

Jiftf KAKASEK, BRNO 

Received: July 12, 1966 

The paper concerns general algebras, i.e. sets with a system of gene^ 
ralized operations. Some fundamental properties of homomorphisms of 
general algebras, of congruence relations on them and of factor-algebras 
are studied. As special cases of general algebras are obtained partial 
algebras, algebras (see [1]) and r-systems which are a generalization of 
sets with relations. 

1. General algebras 

Definition. Let A be a non-void set, K a set. A mapping 

of the set K into the set A is called a sequence of type K in A or shortly 
a K-sequence in A. The family of all K-sequences a in A is denoted by AK. 
In the case of K being finite (card K = k) we identify the K-sequence& 
in A with the ordered ^-tuples (a0, a 3 , . . . , a^J of elements of A. A map­
ping / of the family AK of all K-sequences in A into the family 2A of 
all subsets of the set A is called an operation of type KonA(s, K-operation 
on A). Such an operation/ascribes to each sequence a = (ax)x€K& sub­
set 

f(a)=f(ax\xeK) 

of the set A. In the case of finite type we write 

f(a)=f(a0,au...9ak-1). 

Definition. Let / be a set, ( / ) t 6 / a family of operations/ on A, (KL)lGl 

the system of corresponding types. Then the ordered pair (A, (ft)tei} 
is called a general algebra of type (Kt)l€l. Two general algebras (A, (/) t er> 
(B, (g^ei) of the same type (Kt)Lei are called similar. 

Definition. Let (A, ( / W ) , (B, (gjt-ei) be similar general algebras. 
Let cp be a mapping of A onto B fulfilling the condition 

<p[ft(ak\xeKj]Sgt(<p(ax)\xeKt) 

for all i e I and for all Krsequences (ax)xeKl in A. Then q> is called a weak 
homomorphism (respectively, a homomorphism). A one-to-one homomor-
phism is called an isomorphism. If there exists a (weak) homomorphism 
(respectively, an isomorphism) of a general algebra (A, (/)(eI) onto 
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a general algebra (JB, (gt)tsj) then we say (.8, (gfj(€/) is a (weakly) homo-
morphic image (respectively, an isomorphic image) of (A, (ft)tei). 

Remark. The mapping inverse to an isomorphism is again an isomor­
phism. A one-one weak homomorphism such that its inverse mapping 
is also a weak homomorphism is an isomorphism. 

1.1. Let (A, (ft)tei), (B, (gXa), [C, (ht)teI) be similar general algebras, 
<p a mapping of A onto B, \p a mapping of B onto C. 

- (1) If the mappings <p and y> are (weak) homomorphisms, then their 
composite 9?°^*) is also a (weak) homomorphism. 

(2) If the mappings <p and <p°\p are homomorphisms, then the mapping tp 
is also a homomorphism. 

Definition* Let (A, (ft)vei) be a general algebra, A a decomposition of A. 
For arbitrary 1 e I define an operation Jt on A as follows: 
Jt(ax I x 6 Kt) = {x I x € A, there exists a K-sequence (ax)XGK<, in A such 
that ax e ax and ft (ay | x e K.) n x # 0}. 
Then the general algebra (2, (JX&i) is called a factor-algebra on (A, 

Remark. A general algebra and its arbitrary factor-algebra are 
clearly similar. 

Definition. Let A be aset , A a decomposition of A, A a decomposition 
of A. For each as A put ip(a) u a. Then the decomposition 

__ _ = '. -=- "^e«_ 
{y>(a) I a e A} of A is denoted by A r> A. The mapping ip of A onto 
2 > A is called natural. 

1.2. Let (A, (ft)tei) be a general algebra, A a decomposition of A, A 
a decomposition of A, \p the natural mapping of A onto A t> A. Then y> is 
an isomorp%ism of the factor-algebra (A, (Jt)tei) onto the factor-algebra 
(2 >A, (J?Ui)- „ = 

Proof. The mapping %p is a one-one mapping of A onto A<\ A. The­
refore it is sufficient to show that %p is a homomorphism. Le eel, let 
0x)xeKi l>e a -ff,-sequence in 2 . 

I. Let y e y[ft(ax | x e Kt)]. Then there exists x eft(ax \ x e Kt) such 
that ip{x) = y. Consequently there exists a Z.-sequence idx)xeKl in 2such 
that ax^ax for xeKt and ft(dx\ xeKt)n% ^Q.Letxe ft(ax \ x e Kt) n x. 
Since x e Jt(ax | x e Kt)Lthere exists a ^-sequence (ax)xeKi in A such that 
axeax for xeKt and x 0 f(ax \xsKt) -^ 0. But y 2 a, therefore also 
£ H / K I J< e #«) 4= 0. Since ax e ax S xp(ax) for x e K{, it is evidently 
yefr(f(ax)\xeKtJ. 

*) 9 ^ is defined in the following way: (<p°tp) (x) -=* v>( ?(*))'. w h e r e * eA-
* ) [5]t the construction of the hull of a subset in a decomp08^1^ 
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* 22 S= 

II. Conversely, let y G}*(f(ax) I H e # t ) . Next, let x e /,(<!„ | H G #.) 
be such that tp(x) = y. There exists a ^-sequence (ax)H€ KlbiA such that 
ax G ^(aK) for neKt and y n / ( a x | H G Kt) ^ 0. But then there exists 
an element x G x such that also x r\ft(ax \ H € Kt) '=j£ 0. Let (ajxe£. he 
the #.-sequence in A for which_^ G ax for all HG Kt. Indeed, then x G 
€Jt(ax | xG#J._Sinee_also Sea?, we have x 0 Jt(ax \ neKt) =£ 0 and 
consequently x e fffix | x G #.), for ax G ax(n e Kt). Hence 
y ^ y t / ^ g j « € # , ) ] . 

Definition. Let (.4, (/,),€/) be a general algebra, 0 an equivalence 
relation on A. 0 is called a congruence relation on A if and only if for 
each teI and for arbitrary # rsequences (ax)xeKi, (bx)xeKi in A with 
the property ax0bx for x G # . there exists to each x eft(ax \ H G #4) 
such y eft(bx | H G Kt) and to each y' ef(by \xeKt) such xr ef(ax | H e 
e Kt) that x0y, x'0y'. 

1.3. Letf (.4, (f)iei), (-B, (&),€/) be similar general algebras, cp a mapping 
of A onto B. Define an equivalence relation 0 on A as follows: a0b if and 
only if cp(a) = cp(b). Further define a mapping co of the set A\0 onto the 
set B by co(x) = cp(x), where xex. 

(1) Let <p be a weak homomorphism. Then co is a one-one weak homo-
morphism of (A/0, (ftUi) onto (B, (#.),ej). 

(2) Let cp be a homomorphism. Then 0 is a congruence relation on A 
and co is an isomorphism of (Ajco, (ft) ,ei) onto (B, (gt)tei)-

Proof. The mapping co is clearly one-one. Let i e Z, let (ax)x€K4 be a 
#i-sequence in A/0. 

I. Let cp be a weak homomorphism, y e co[ft(ax j H e #.)]. Let 
x e ]t(ax | H e Kt) be such that co(x) = y. Then there exists a #.-sequence 
(ax)xeKi in A such that ax e dx for H e Kt and ft(ax \ H e Kt) d x -?-- 0. 
Let x ef(ax | H e Kt) n x. Clearly cp(x) = y, therefore y G cp\f(ax | H G # 4 ) ] 
£ # . M « J I * G #.) = #.(ft>(ax) | * G #.) and (1) holds. 

II . To prove (2) it suffices to show gt(co(dx) \neKt) ^co[Jt(dx | X G # 4 ) ] . 
Let yegt(co(ax) | j* G # . ) . Let (ajae/r. be such a #f-sequence in A that 
ax e aK for all neKt. Then #((a>(ax) | H G #4) = ^.(^(aj | x G # f) = 
= <p[/t(ax I « G # t)] . Therefore there exists x e A such that <p(x) == y 
and jr G/(&X | « e # t ) . Let xe4/0 be such that xex. Since scG5 (1 
H /.(#* I x G # t ) , we have cc G /.(ax | H G #.), consequently co(x) = 
= j e w [ / , ( a J « e J [ J ] , 

Definition. Let 4 be a set, 4 a decomposition of 4 . Let a G 4 , a € 2 
be such that a ed. The mapping of 4 onto 4 whose value at a is a is 
called canonical. 

Definition. Let 4 be a set, 4 , Z? decompositions of 4 such that 
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A § B.*) Let deA,b e B be such that a c b. The mapping of A onto 
15 whose value at a is 6 is called canonical. 

1.4. Le£ (A, (f).ei) be a general algebra, 0 an equivalence relation on A, 
<p the canonical mapping of A onto A\0. Then <p is a weak homomorphism 
of the general algebra (A, (f),ej) onto the factor-algebra (A/0, (JXei). 
<p is a homomorphism of the general algebra (A, ( fW) onto the factor-al­
gebra (A/0, (ft)tei) if and only if 0 is a congruence relation on A. 

Proof. Let (ax)yzeKt be a Krsequence in A, (ax)y^iu the K.-sequence in 
A/0 such that axea x for all x e Kt. 

I. If x G <p[f(ax | x 6 K)], then there exists x ef(ax | x G Kt) such 
that <p(x) = x. Therefrom x n ft(ay \ x e Kt) 7^0, consequently x e 
e Jt(ax | x G Kt) = ft(<p(ax) \xe Kt) and <p is a weak homomorphism. 

II. (a) Let 0 be a congruence relation on A. By the preceding, 99 is 
a weak homomorphism and it suffices to show ft(<p(ax) \ x eKt) £ 
-= <p[fi(ax I * e ^i)]- Let 5 G Jt(<p(ax) I.« G K,). Then there exists a ^ - se ­
quence (aH)xeEi in -4 such that aH e <p(ax) for all x eKt and S n f(aH | « G 
€ JBC.) 9-= 0. Since ax0aH for all « G Kt and 0 is a congruence relation, 
there exists to each x' ef(aH \ x e Kt) such x ef(ax | x G if.) that 
x0x\ Let #' G # n f(a'x | n e K,). Then a; G 5 n f(#* I x e K"J and there­
fore gp(#) = # G 9>[f(a^ I H G £".)]. Consequently 9? is a homomorphism. 

(b) Let <p be a homomorphism. For x,yeAwe have x0y if and only 
if <p(x) = 9>(y), for 9? is the canonical mapping of A onto Aj0. Therefore 
0 is a congruence relation on A according to 1.3. 

1.5. Let (A, (ftjiei) be a general algebra whose all operations are of 
finite type. Then the family C(A) of all congruence relations on A is a com­
plete lattice (with respect to the inclusion of relations) and for M £ C(A) 
we h<we supC(A) M = supE(A) M, where E(A) is the family of all equiva­
lence relations on A. 

Proof. The family E(A) of all equivalence relations on A is a complete 
lattice (see [2], p. 146). Let M s C(A) and denote 0 = BU\OE(A) M. 
We shall prove that 0 e G(A). If M = 0, then 0 equals the least equiva­
lence relation on A, which is a congruence refation on A. Let M =7-= 0. 
For x, y e A we have x0y if and only if there exist a natural number m, 
elements x — t0, tx, . . . , tm = y e A and elements &l9 . . . , 0m G M 
such that to0xtx, ..., tm-x0mtm (see[2]). Let tel, card Kt = h. Let 
(a0, ax, ..., ak-x), (b0, bx, ..., bk-x) be such Kt-sequences in A that 
aj&bi for i = 0, 1. . . . , k — 1. Sincet ao0bo, there exist a natural number 
m0, elements a0 = t%\ t% . . . , t{rf = b0eA and ®%\ . . . , &(m

Q
o) e M 

such that t^&lH™,.., tfQ-~l)0f^\ Further since &™ is a congruence 
relation and a0 = C$?* (oVa*^ (oX- (* = 1. •••> *-—l)> there exists 

*) A £ B denotes that the decomposition A is a refinement of the decomposition 
5 . (See[5].) 
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to each xef(a0, ax, . . . , ak-x) such x™ e/(*<J>, ax,...} <ik^) and to each 
*&<vefti{l\ ®x> •••>.%-x) such x' e / K , ax, . . . , %^) that x#($VJ>, 
xf0(l%a\ Analogically, there exists to each x{#eft(t«0\ aXi . . . , ak-x) 
such x%]€f(tf, ax, . . . , a ^ ) and to each x'0

(2) ef(tf, ax, . . . . ak-x) 
such 4(1>e/(l(l>, a1? . . . , ^ ) that x{#0f0z<$, xo

a)0fx^ etc. 
Therefore there exists to each xef(a0, ax, . . . , ak-x) such x0

mo) 6 / (b 0 , 
a-./.. . , a ^ ) and to each xf] e / A > %> •••> %-x) s u°h a;' e / ( a 0 , 
ax, . . . , %-j) that #0asomo), x'0Xom°\ Therefrom we obtain after k steps 
that there exists to each xef(a0, ax, . . . , ak-x) such y e/(b0 ? bx, . . . , 
b^.-i) and to each y' eft(b0, bx, . . . , b^) such x' ef(a0, ax, . . . , a ^ ) 
that x0y, x'Oy'. Consequently 0 e C(A), so that 0 = sup o U ) M. To 
show the existence of the infimum denote by N the family of all W e G(A) 
such that f c $ for all 0eM. According to the preceding part of the 
proof there exists sup cufl- Evidently inf cU) M = supc(J) N. 

2. Partial algebras 

Definition. Let (A9 (/)*e/) be a general algebra. This general algebra 
is called a partial algebra if and only if 

c a r d / K | KEK) Si 

for all tel and for all Krsequences (ax)xeEl in AL 
Definition. Let '(A, (f)lei) be a partial algebra, A a decomposition 

of A. If there exists for each i e I and for each K,-sequence (dy)xeKt in 
A an element ae A such that for all K.-sequences (ay)xeKt in A for which 
ax eay (KG K) we have/(a^ | K e K) c a, then A( is called a generating 
decomposition of A.*) _ , 

2.1. Le£ (4, (ft)tei) be a partial algebra, A a decomposition of A. Then 
the following statements are equivalent; 

(A) A is a generating decomposition of A. 
(B) The factor-algebra (A, (J)tei) is a partial algebra. 
Proof. I. Let A be a generating decomposition. Let i e I, let (ay)HGzt 

be a Krsequence in A. Then there exists to the Krsequence (ay)yeKt 

an element tie A such that we have/(^ x | K e K) £ a for all ^-sequen­
ces (ax)x€Kt, fulfilling the condition (a) ay e ay(K e K). If we have 
ft(ax) K e K,) = 0 for all such if .-sequences, then also Jt(ax \ K e K) = 0. 
But if there exists a K .-sequence (ax)xeKt fulfilling the condition (a) 
such tha t / (a x | K e K) -^ 0, then clearly Jt(aH \K e K) = {a}. Therefore 
the factor-algebra (A9 (J)tei) is a partial algebra. 

*) [5]. 
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II. Let A fail to be a generating decomposition. Consequently, let 
there exist to i e I and to a ^-sequence (ax)XGK* no element as A such 
tha t / ( a x | « e Z ( ) c a for all Jf4-sequences (ax)xeKl fulfilling the condi­
tion (a). Then there exist elements a', a" € A and ^-sequences (ax)xeKi9 

(a"H)xeEt fulfilling the condition (a) such tha t / ( a^ | x e Kt) c af,f(a^ | 
| xeKt) e a". But then Jt(ax \ xeKt) 3 {a\a"}, so that the factor-
algebra (A, (7t).6/) cannot be a partial algebra. 

Definition. Let (A, (/).e/). be a partial algebra, 0 an equivalence 
relation on A. 0 is called a weak congruence relation on A if aiid only if 
for arbitrary tel and for arbitrary K.-sequences (ax)K6^«, (bx)xeKt 
in A with the property ax06x for xe Kt either at least one of the sets 
f(ax | x e K,), /(6X | x e Kt) is void or (if / ( a , | * e K,) = {a}, /(6X | 
\xeKt)={b})a0b. 

Remark. Every congruence relation on a partial algebra is a weak 
congruence relation. 

2.2. Let (A, (f)iei) be a partial algebra, 0 an equivalence relation on A, 
Then the following statements are equivalent: 

(A) 0 is a weak congruence relation on A. 
(B) A\0 is a generating decomposition of A. 
Proof. I. Let 0 be a weak congruence relation. Let i e / , let (ax)xeEt 

be a If.-sequence in A\0. If we have/ (a x | x e Kt) = 0 for all ^-sequ­
ences (ax)xGhi in A such that ay e ax(x eKt), it suffices to choose arbitra* 
rily ae A\0 and f(ax \ x e Kt) ^ a for all such ^-sequences. Cons­
equently, let there exist a JT.-sequence (ax)xeKl in A such that ax eax 

for all x e Kt and f(ax \ x e Kt) = {a}. Let a e A\0 be such that ae&. 
Let (a'„)xeEt be an arbitrary ^-sequence in A such that a'Heax for all 
xeKt. Then aK0a^ for all x e Kt and therefore either/(a^j H e if,) = 0 
o r / ( a « I * £ -f«) = {#'} an (* a0af, for 0 is a weak congruence relation. 
Thence we have in both cases/(a^ \xeKt) ^ a. 

II . Let A\0 be a generating decomposition. Let tel, let (a^etfo 
(6x)xe^t be two J5Crsequences in A such that ax0bx for all xeKr There 
exists a ifrsequence (ax)xeKt in A\0 such that ax, bxeax for H e Kt. 
But then there exists an element ae A\0 for which f(ay \xeKt) c a, 
/(6X l ^ e j f j c a hold. Therefrom it follows that either at least one 
of the sets f(ax | xeKt), ft(bx \xeKt) is void or (in the case that 
ft(ax | xeKt) = {a}, f(bx | * e £,) = {b})a0b. 

2.3. Let (A, (f)iei) be a partial algebra, (B, (gt)l(=i) a general algebra 
similar with (A, (ft)ter), tp ahomomorphism of (A, (f)tei) onto (B, (#.)te/). 
Thm (B, (gdtei) is also a partial algebra. 

2.4. Let (A, ( /) l € /) be a partial algebra, A a generating decomposition 
of A, A a generating decomposition of A^ y> the natural mapping of Af 
0^ 3" > A. Then the factor-algebras ( I , (/),*/), (A t> A, QtUi) am 
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partial algebras and tp is an isomorphism of (A, (/).«/) onto (A t> 3> 
(TrUi). 

Proof. The factor-algebra (A,(fl)iei) is a partial algebra by 2.1. 
The mapping ip is an isomorphism by 1.2. According to 2.3 the factor-
algebra (A t> A, (f^)t6r) is ^8° a partial algebra. 

2.5. Let (A, ( /) . e /) , (B, (gt)tei) be similar partial algebras, <p a mapping 
of A onto B. Let © be the equivalence relation on A and co the mapping 
of A\Q onto B defined in 1.3. 

(1) Let <p be a weak homomorphism.Then ©is a weak congruence relation 
on A, (A/0, (/t)iei) is a partial algebra and o) is a one-one weak homo-
morphism of (A/0, ( / t W) onto (B, (gt)ieI). 

(2) Let <p be a homomorjihism. Then © is a congruence relation on A 
and co is an isomorphism of (A/0, (/t)i€r) onto (B, (#.)Jej). 

Proof. We shall show only that 0 is a weak congruence relation in 
the case (1). Let (ax)xeKl, (bx)xGKt be ^-sequences in A such that ax0bH 

for all neKr Then <p(ax) = <p(bx) for all H e Kt and since <p is a weak 
homomorphism, we have <p[f(ax I H e Kt)] £ gt(<p(ax) \ H e Kt) ~ 
- gMK) I * e Kt) 2 <p[f(bx | H e Kt)]. If 9l(<p(ax) | * e JQ = 0, we 
b a v e / t K \*eK>) *=/,(&* I " e Kt) = 0. If gt(<p(ax) \xeKt)=* {c}, then 
either at least one of the sets ft(ax | H e Kt), ft(bx | H e Kt) is void or 
( i f / ( ^ | H e Kt) = {a}, f(bx | * e i q = {6}) <p(a) = <p(b), i.e. a©b. The 
remaining part of the theorem follows from 1.3, 2.2 and 2.1. 

2.6. Let (A, (ft)iei) be a partial algebra. Then the family CW(A) of all 
weak congruence relations on A is a complete lattice (with respect to the 
inclusion of relations) and for M £ CW(A) we have infCw(A)M = ^E(A)^-

Proof. Let M £ CW(A) and denote 0 = mtE(A)M. We shall prove 
that 0eCw(A). If M = 0, then 0 equals the greatest equivalence 
relation on A which is a weak congruence relation on A. Let M =fi 0. 
For x,ye A we have x&y if and only if x&y for all 0eM (see [2]). 
Let iel, let (ax)xeK^ {bx)xeKlhe 2?t-sequenees in A such that ax0bx 

for all H e Kt. Since ax0bx(n e Kt), we have ax0bx(n e Kt) for all 0 e M. 
Therefore either at least one of the sets f(ay | H e Kt), f(bx \H e K) 
is void or (if fj,ax \ x e Kt) = {a},f(bx \neKt) = {b}) a 0b for all &eM. 
i.e. a©b. Consequently © e CW(A) and © = ix&Cu>(A)M. To show the 
existence of the supremum denote by N the family of all W e CW(A) 
such that *P 2 0 for all 0e M. According to the preceding part of the 
proof there exists i n f c ^ N . Evidently Hwpcv'A)M = infG^DN. 

2.7. Let (A, (ft)ier) be a partial algebra whose all operations are of finite 
type. Then the family C(A) of all congruence relations on A is a complete 
lattice (with respect to the inclusion of relations) and for M £ C(A) we 
have supC(^)M = sup^^ilf and in the case that M =(= 0 also irrfC(A)M == 
= irdE{AM. 
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Proof. C(A) is a complete lattice and mpC(A)M = sup#u )If by 1.5. 
Let 0 .56 M s (7(_4) and denote 0 = inf^^M. We shall prove that 
0 G C(A). Let 1 e I, let (ax)xeKt, (bx)xeEl be K.-sequences in A such that 
%06K for all xeKt. Since %0bx (x e Kt), we have ax0bx (x e Kt) 
for all 0eM. Therefore either f(ax \xeKt) =f(bx | x e Kt) = 0 or 
( i f / K I « e KJ = {a},f(bx \ x e K) = {b}) a&b for all 0 e M, i.e. a<9b. 
Consequently in both cases 0 eC(A) and 0 -= inf^^-M. 

3. Algebras. 

Definition. Let (..4. (f)te/) be a partial algebra. This partial algebra 
is called an algebra if and only if 

cardfX I x e Kt) = 1 

for all e e I and for all K.-sequences (ax)zeKl in .4. (See [1].) 

Remark. On the study of algebras every weak congruence relation 
is a congruence relation and every weak homomorphism is a homo-
morphism. 

3.1. Let (A, (f) te/) be an algebra, A a decomposition of A. Then the 
following statements are equivalent: 

(A) A is a generating decomposition of A. 
(B) The factor-algebra (A,(Jt)teJ) is an algebra. 
|*roof. I. Let A be a generating decomposition. Let 1 e I. Then 

there exists to an arbitrary jKrsequence (ax)xeKl in A an element a e A 
such thatf,(ax | x eKt) £ a for all Krsequences (ax)KeKl in A fulfilling 
the condition axeax (xeKt). But then obviously ft(dx \xeK) -= {a}. 
Therefore the factor-algebra (A, (Jt)ieJ) is an algebra. 

II . Let the factor-algebra (A, (Jt)ieJ) be an algebra. Then (A, (ft)iei) 
is also a partial algebra and A is a generating decomposition by 2.1. 

3.2. Let (A, (f)te/) be an algebra, 0 an equivalence relation on A. Then 
following statements are equivalent: 

(A) 0 is a congruence relation on A. 
(B) A/0 is a generating decomposition of A. 
3.3. Let (A,ft)teJ) be an algebra, A a generating decomposition of A, A 

a generating decomposition of A, y> the natural mapping of A onto A t> A. 
Then the factor-algebrasJ_3,j£)l6j), (A >29(f*)tej) are algebras and " ip 
is an isomorphism of (A, (f)ieJ) onto (A $>A, (f^)leJ). 

3.4. Let (A, (f).6/), (B, (gt)teJ) be similar algebras, 99 a homomorphism 
of (A, (f)ieJ) onto (B, (gi)ieJ). Let 0 be the equivalence relation on A and co 
the mapping of A/0 onto B defined in 1.3. Then 0 is a congruence relation 
on A, the factor-algebra (A/0, (J^^t) is an algebra and co is an isomorphism 
of(AI0,(ft)ter) onto (B,(g()teI). 
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3.6. Let (A,(ft)tei)> (Bi(gt)iei) be similar algebras, 0 an equivalence 
relation on A. If (B, (gt)tei) is an isomorphic image of the factor-algebra 
(A\0, (ft)iei), then (B, (#t).ei) is a homomorphic image of (A, (/t)t€i). 

Proof. Since (B, (gt)tei) is an isomorphic image of (A\0, (/.)tei)» 
(A\0, (/,)tei) is a partial algebra according to 2.3. By 2.1, A/0 is a gener­
ating decomposition and consequently 0 is a congruence relation accord­
ing to 3.2. But from 1.4 it follows that the canonical mapping of A onto 
A\0 is a homomorphism of (A, (/) t 6i) onto (A\0, (/.)tei). The homo-
morphism of (A, ( /) t e i) onto (B, (gt)tei) is obtained according to 1.1 
by the composition of this homomorphism of (A, (ft)iei) onto (A/0, (ft)ie r) 
and the isomorphism of (A\0, (A)tei) onto (B, (gt)iei)-

3.6. Let (A, (/)«ei) be an algebra. Then the family G(A) of all congruence 
relations on A is a complete lattice (with respect to the inclusion of relations) 
and for M c G(A) we have infcU)M = intE(A)M. If all operations of 
the algebra (A, (/)teI) are of finite type, we have also s up^^M == s u p ^ ^ M . 

Remark. If card 1 = 1, card K = 2, we get from the preceding the 
well known theorems on the isomorphism of groupoids. (See [5].) 

4. r-systems 

Definition. Let (A, (/) t 6i) be a partial algebra, e an arbitrary element 
in A. Let the following conditions be fulfilled for arbitrary i e I and for 
an arbitrary ^-sequence (ax)xeKl in A: 

(&)f(ax\xeKt) = OoTft(ax\xeKt)^{ey, 
(b)f(ay\ x e Kt) = 0, if ax = e for some x e Kr 

Then this partial algebra is called an r-system, the element e its marked 
element. 

Definition. Let (A, ( /) t e i) , (B, (#.)t6i) be similar r-systems, <p a (weak) 
homomorphism of (A, (/) t ei) onto (B, (gt)tei), eA the marked element in 
(A, ( /) t e i) , eB the marked element in (B, (g)ieI). If <p(eA) = eB> <p[A — 
— {e^}] = B — {c/i}, w e say <p is a (weak) r-homomorphism. A one-one 
r-homomorphism is called an r-isomorphism. 

4.1. Let (A,(ft)tei),(B, (gt)i€i) be similar r-systems, <p an r-homomorphism 
of (A, (f)iei) onto (B, (gOiei). Thenf(ax \ x e Kt) = X is equivalent with 
gt(<p(ax) | x e Kt) = <p[X]for arbitrary t e / and for an arbitrary Ksequ­
ence (ax)XBKt in A. 

4.2. Let (A, (/).«/), (5, (#J.eI),.((?,' (h^ei) be similar r-systems, <p a map­
ping of A onto B, %p a mapping of B onto 0. 

(1) If the mappings <p and tp are weak r-homomorphisms, then also 
their composite <p°y> is a weak r-homopiorphism. 
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(2) If any two of the mappings up, tp, (p°f are r-homomorphisms, then 
the third mapping is also an r-homomorphism. 

Proof. I. If (p and tp are (weak) r-homomorphisms, (p°ip is a (weak) 
homomorphism according to 1.1. If we denote by e^, eB,ec the marked 
elements of the r-systems (Af(ft)iet), (B{(gt)iei), (C,(ht)lGl), then we 
have ((p°f) (eA) = ip(eB) = e 0 , (q>°tp) [A - - { e j ] = tp[B — {e*}] = 
= G — {ec}. Thereby it is shown that (p°%p is a (weak) r-homomorphism-

II. If (p, (p°tp are r-homomorphisms, tp is a homomorphism according 
to 1.1. If we admitted that y>(eB) -7-= ec or tp[B — {eB}] 4= C — {ec}, we 
should obtain either ((p°y>) (eA) = ip(eB) 9-- ec or (<pcy) [A —{e^}] = 
= \p[B—{eB}]^C — ec, and that is a contradiction in both cases. 
Therefore tp is an r-homomorphism. 

III. Let %p, q>°y) be r-homomorphisms. Let tel, let (ax)xe&t be a 
^-sequence in A. By 4.1, ft(ax | x e Kt) = X is equivalent with 
ht(((p

ctp) (ax) I x G Kt) = (9?°^) [X], for <p°^ is an r-homomorphism. By 
the same theorem, ht(((p°tp) (ax) \xsKt) = (9?°^) [X] is equivalent 
with gt((p(ax) \ xeKt) = 9?[X|, so that q> is a homomorphism. If we 
admit that ^(e^) ^ eB or <p[.4—{e^}] ^B — {e^}, we obtain either 
(<P°V>) (eA\ 7^ e c o r ( ^ » [ - 4 — {«A}] ^ C — {ec}, and that is again 
a contradiction in both cases. Therefore f is even an r-homomorphism. 

4.3. Let (A, (/.)' 6j) be an r-system. Then every decomposition A of A 
is generating. 

Definition. Let (A, (ft)tei) be an/-system with the marked element e, 
A a decomposition of A. If {e} e A, then the decomposition A is called 
an r-decomposition of A. 

4.4. Le£ (A, (f)iei) be an r-system with the marked element e, A an 
r-decomposition of A. Then the factor-algebra (A, (/.).ej) is an r-system 
whose marked element is {e}. 

Proof. A is a generating decomposition according to 4.3, so that 
the factor-algebra (A, (7.).€/L-S a partial algebra by 2.1. Let tel, let 
(ax)x€Ki be a Jf.-sequence in A. Ifft(ax \ x G Kt) = 0 for all ^-sequences 
(flx)x€if( in A such that axedx(xeKt), then also Jt(ax \ xeKt) = 0. 
K f(ax I xeKt) 7-= 0 for a Z.-sequence (aJM 6 £ ( in 4̂ such that ax e ax 

(x e Kt), we have ft(ax \ x e Kt) = {e} for all such .K.-sequences, so that 
Jt(dx) x e Kt) = {{e}}. Further consider the case that <v = {e} for some 
x' G Kt. Let (ax)Hc£« be a Z rsequence in A such that ax e dx for all 
x G JK"(. Since ax' = {e}, we have necessarily aH> = e and/,(a„ | # eKt) = 0. 
Consequently also Jt(dx \ x e Kt) = 0 and the factor-algebra (A, (/.)t€/) 
is an r-system with the marked element {e}. _ 

4.5. Let (A, (ft)t.ei) be an r-system, A an r-decomposition of A, A an 
r-decomposition of A, tp the, natural mapping of 3 onto A t> A. Then the 
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factor-algebras (2, $ ) , . , ) , (2 u A, QrUi) are r-systems and y> is an 
r-isomorphism of ( i , j / W ) onto (1 > A, tff )../)• 

Proof. By 4.4, (A, (f)iei) is an r-system with the marked element 
{{e}}? where e is the marked element in (A, (/.).«./). (A t> A, (jrUi) is 
a partial algebra by 2.4. We shall show that it is an r-system with the 
marked element {e}. Let tel, let (5x)H6.Ki be a Kt-sequence in A i> A. 
For an arbitrary if.-sequence (ax)HeKi in A such that axe~bx for all 
neKtwe h.s,ve f(ax \neKt) s {e}. Since {{e}} e A, we have {e} e 2 t> A 
by the definition of the decomposition A i> A, From the preceding it 
follows Jr(b% | KBK) £ {{e}}. Further assume that 6„, ={e} for some 
x' e Kt. Again let (ax)neKi be a ^-sequence in A such that &„ e bx for 
all KsKt. Since by = {e}, we have necessarily aH, = e and f(ax | x e . J ( ) = 
== 0. Therefore also ^ ( 5 * | « e Kt) = 0 and the partial algebra (A r> A, 
(ft)iei) is an r-system with the marked element {e}. By 1.2, the mapping \p 
is an isomorphism. It remains to show that it is also an r-homomorphism. 
I t was already shown that {{e}} is the marked element of the r-system 
(A, (f)i*i) and {e} the marked element of the r-system (A t> A, (/^i*/). 
dearly ^({{e}}) = {e}. Since y> is a one-one mapping, we have \p[A — 
— {{{e}}}] = -4 P> A —{{e}} and y> is an r-isomorphism. 

Definition. Let (A, (f)tei) be an r-system with the marked element e, 
0 an equivalence relation (respectively, a congruence relation) on A. 
If a non 0 e for all a e A — {e}, then 0 is called an r-equivalence relation 
(respectively, an r-congruence relation) on A. 

4.6. Let (A, (f)iei) be an r-system, 0 an equivalence relation on A. 
Then the equivalence relation 0 is an r-equivalence relation if and only 
if A\0 is an r-decomposition of A. 

4.7. Let (A, (/)i6i), (B, (gt)iei) be similar r-systems, tp a mapping of A 
onto B. Let 0 be the equivalence relation on A and oo the mapping of A\0 
onto B defined in 1.3. 

(1) Let (pbea weak r-homomorphism. Then 0 is an r-equivalence relation 
on A, (A\0, (Jt)iei) is an r-system and OJ is a one-one weak homomorphism 
of (A\0, (?.).«/) onto (B, (gt)teI). 

(2) Let q> be an r-homomorphism. Then 0 is an r-congruence relation 
on A and a) is an r-isomorphism of (A\0, (7.)tej) onto (B, (gt)^i). 

4.8. Let (A, (f)tei) be an r-system, 0 an r-equivalence relation on A, 
<p the canonical mapping of A onto A\0. Then 9? is a weak r-homomorphism 
of (A, (/,)l6/) onto (A\0, (/.)i6j). <p is an r-homomorphism of (A, (/,),«/) 
onto (A\0, (ft)iej) if and only if 0 an r-congruence relation on A. 

Proof. I. By 1.4, q> is a weak homomorphism of (A, (/,)«ej) onto 
(A\0, (/.)(€ r). Since 0 is an r-equivalence relation on A, we have g?(e) = 
= {e}, cp(a) ^z {e} for a ^ e, so that <p is a weak r-homomorphism. 
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II. (a) Let 0 be an r-conguence relation. Then<p is a homomorphism 
of (A, (/,)t6/) onto (A 10, (fUi) by 1.4. But by the preceding, y is even 
an r-homomorphism. 

(b) If <p is an r-homomorphism of (A, ( / .W) onto (A/0, (ft)ieih 
then 0 is an r-congruence relation by 4.7. 

Definition. Let A be an ordered set, Z c i . If there exists an element 
a e A such that X ={x \ xe A, x S a}, then X is called a principal ideal 
of the ordered set A. 

4.9. Let (A, (/)£ej) 6e an r-system. Then the family Er(A) of all r~equi-
valence relations on A is a principal ideal of the complete lattice E(A). 
If all operations of the r-system (A, (/.)te j) are of finite type, then also the 
family Cr (A) of all r-congruence relations on A is a principal ideal of 
E(A). (See [3].) 

Proof. I. Let e be the marked element in (A, (/.)£6/). Define an equi-
valence^relation S on A as follows: e S e and a S b if and only if a, 6 e A — 
— {e}. Clearly S eEr(A) and for arbitrary 0 c S we have 0eEr(A). 
Consequently Er(A) is a principal ideal of E(A). 

II . Denote 0 = svpEiA)Cr(A). By 1.5, we have 0 eC(A). We shall 
show that even 0 G Cr(A). Let ae A, a0e. Therefore there exist a natural 
number m, elements a = t0,tx, ..., tm = e e A and elements &x, /.. 
...,0meCr(A) such that to0xtx, ..., tm-x0Jm (see [2]). But since 
®x> • • • > ®m

 a r e ^-congruence relations, we have e = tm = tm-x = 
=-= . . . = tx = t0 = a, so that 0eCr (A) and 0 = supcr(^)Cr(^.). Let 
0eE(A), 0 ^ 0 . Let * e Z, card K. = h If (a0, ax, . . ., ak-x), (60, 
&!, . . . , bk-x) are Krsequences in A such that at$6t. for i = 0 ,1 , . . . 
. . . , k — 1, then we have also a{0b{ for i = 0, 1, . . . , k — 1, so that 
there exists to each xeft(a0, ax, .. .,ak-x) such y e / (6 0 , bx, ..., bk-x) 
and to each y' e/.(60, bx, .:., bk-x) such x' e / (a 0 , ax, ..., ak-x) that 
x0y, x'0y'. Thence we have either /.(a0, ax, .. -,ak-x) = / t (6 0 , 6X, . . . 
. . . , bk-x) -=-. 0 or/.(a0 , ax, ..., ak-x) = / t (6 0 , 6X, ...., 6*_x) = (e), so that 
there exists to each x e/.(a0, ax, ..., ak-x) such y e / ( 6 0 , bx, . . . , bh^x) 
and to each y' eft(b0, bx, , . . , 6A.-X) such #' e/.(a0 , a l5 . . . , a^-j) that 
xCfo/, a?'0y\ Consequently <2> e 0(^4) and from the first part of the proof 
we have 0 e Cr(A). Therefore Cr(A) is a principal ideal of E(A). 

5. Derived r-systems. 

Everywhere in this paragraph we suppose that all operations on 
r-systems are of finite type. The greatest element in the family Cr(A) 
of all r-congruence relations on A will be denoted by 0A. 

5.1. Let (A,(ft)iei) be an r-system, 0 an equivalence relation on A. 
Then the following statements are equivalent: 
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(A) & is an r•-congruence relation, on A. 
(B)0^eA. 

Definition. Let (A, (/ t) te/) he an r-system, A anjr-decomposition of At. 
Let A be such an r-decomposition of A that A = A/0J- Then the 
r-decomposition A' = A > A is called derived from the r-decompositi­
on A, the r-system (A[\ (J')iei) derived from the r-system (A, (74W). 
(See [3].) 
_ 5.2. Ze£ (..4, (f)tei) be an r-system, A, B r-decompositions of A. Let 
A ;§ B and let x be the canonical mapping of A onto B. Then thefollowing 
statements are equivalent: 

(A) x is an r-homomorphism of (A, (fA
t)£6j) onto (B, (7?).ei). 

(B) B S A'. 

Proof. Let A, Bhv the decompositions of A for which we have 
A' = A t> A, i? == B o A. Further let 0 be the equivalence relation 
on A such that 5 =. A]0. We have A = A/02* Letj? be the canonical 
mapping of A onto 22, ^ the natural mapping of B onto B. Then the 
following statements are equivalent: 

(B) B <> A'. 

(C) B £ A. 
(D)0^0J. 
(E) 0 is an r-congruence relation on A. ___ 
(F) 9? is an r-homomorphism of (4>J/f)»!/) onto (.B, (0«6/). 
(A) # is an r-homomorphism of (A, (/f)te/) onto (B,(fB

t)l£i). 

In fact, (B) is equivalent with (C) (see [3], Theorem 2.5) and (C> 
is equivalent with (D) (see [3], Theorem 2.3). (D) is equivalent with (E) 
by 5.1, (E) is equivalent with (F) by 4.8. Since x ~<p°y> and according 
to 4.5 ip is an r-isomorphism, (F) is equivalent with (A) by 4.2. 

5.3. Let (A, (ft)iej) be an r-system, A an r-decomposition of Ak Then 
A" = A'. 

Proof. From the definition of the derived ̂ -decomposition it follows 
A' ^ A". Let (p be the_canonieal mapping of A onto A', ip the canonical 
mapping of A' onto A". Since A' g A', A" g A", the mapping <p is 
an r-homomorphism of (A, (ft)t€i) onto Q', (/t')*ej) and the mapping ip an 
r-homomorphism of (A', (7,'W) onto (A^, (f*)l€l) according to 5.2. Conse­
quently (p°y> is an r-homomorphism of (A, (?.)<6i) onto (A", (f')imi) by 4.2. 
But by 5.2, we have A" g A'. Therefore A" = A'. 

5.4. Let (A, (/.W)* be an r-system, A, jg r-decompositions of A. Then 
the following statements are equivalent: 

(A)A'^'E'. 
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(B) There exists an r-decomposition C of A such that A < C g A', 
72 < C < B' 

(C)lv B £ Af, AVBS £'*). 
Proof. I. Let (A) hold true. Then_it suffices to put C = A' = B' 

and we have A g C < A', B £C g B'. Therefore (B_holds true. 
_ II. Let (B) hold true. Since A^ C S A', B S C S B\ we have also 
A V B <\ C <\ A', A V B S C S B', so that (C) holds true. 

III. Let (0) hold true. Clearly A V B is^an r-decomposition of A. 
Denote C^A\JB. From (C) it follows A £ C S A', B < C S B'. 
Further denote by <p the canonical mapping of A onto C, by y> the 
canonical mapping of C onto A'. Then <p°y) is the canonical jnapping 
of A onto Ai'. By 5.2, <p is an r-homomorphism of (A, (ft)tej) onto (C, (/*)_=/. 
<p°tp an r-homomorphism of (J, (^W) onto (A',(J't)iel), for C «g A', 
Af <l A'. By 4.2, >̂ is an r-homomorphism of (0, (7IW) onto (2_, (7t')*e/)-
We have -tl' ;S C' again by 5.2. Similarly we should show that Bf <; C. 
Let # be the canonical mapping of A' onto C. Then v>°# is the canonical 
mapping of C onto C\ By 5.2, ^°# is an r-homomorphism of (C, (/*),«=/) 
onto (C, (/*').€/), for C g C". Consequently # is an r-homomorphism of 
(if, (7,'W) onto (C,(/:')«•/) according to 4.2. By 5.2, we have j 7 | i ' , 
SimUarly we should show tks,t C < B". Since A' £ C £ ^", J5' £ 
^ C S 5*, we have A' = C = i?' by 5.3and (A) holds true. 

hJd^Let (A, (/4)ter) &e aw r-system, A, B r-decompositions of A. Let 
A g 2?. Then the following statements are equivalent: 

(A)A'^B'. * 
(BJ'S <: A'. 
Proof. (A) is equivalent with (C) from 5.4. Therefore we show that (C) 

from 5.4 is equivalent with (B). __ 
I. Let (C) from 5.4 hold true. Then, A \J B <, Af implies B £ A', 

so that (B) holds true. ___ __ 
II. Let (B) hold true. Since A ^ A'^B <^A', we have .4 V B £ A'. 

Further since A £ B £ Bf, we have A V B g Bf, so that (C) from 5.4 
holds true. _ ___ 

6.6. Let (A, (fjusi) be an r-system, A, B r-decompositions of A. Let 
A' < BJ. Then (A y B)' = B'. 

Proofs.*!' V B is_ evidently an r-decomposition of -A. Since B << 
<Af V B S Bf V B = B', we haveJJ' V 2 ) ' = fi' by 5.5. 

5.7. Let (A, (f)tei) be an r-system, M the least decomposition of A^A 
an r-decomposition of A, P an r-decomposition of A such that P g AT. 
Let a, 7t be such r-equivalence relations on A that A/oc = A, A\n = P. 

*) Ay B denotes the least decomposition such that A £ A y B, B ^ A y B. 
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Let ocn = noc. Then the canonical mapping <p of the r-system (A, (/J.ei) 
onto the r-system (A V P> (H)iei) is an r-hommnorphism. 

Proof. Denote by e the marked element in (A, (Oeei). By 4.4, {e} is 
the marked element in (A, (/t)ieI) and (A V P, (7?)*«J). Let ieL 
cardK t = k,let (a0,ax, ...,ak-x)be a Kt-sequence in A.Let ft(d0,dx, ... 
. . ., ak-x) = {{e}}. Then there exists a K.-sequence (a0, ax> ...» %-i) 
in 4̂ such that â  G 5$ for i = 0, 1, . . . . & — 1 aj dft(a0, ax, . . ., a^-x) = 
-= {e}. But since <̂  £ ^(at-), we have ai e <p(a{) for i = 0 ,1 , . . . , & — 1, 
so that 7r(y(a0), <p(ax)., . . . , <p(d^x)) = {{e}} = <p[{{e}}]. Let ?:(<p(a0)» 
c :{dx), . . . , ^(a^-j)) ={{c}}. Then there exists a l£t-sequence (a0, ax, .. . 
. . . , ak~x) in 4 such that a. €<p(a{) for i = 0 ,1 , . . . , k— 1 a n d / ^ , ^ , . . . 
. . . , ak-x) = {e}. Let (p0,px, . . . , ^ - x ) be such a .BT.-sequence in P that 
aiepi for i = 0 ,1 , . . . , k — 1. We have p{ c <p(at.), af c ^(e^) for 
i = 0 , 1 , . . . , & — 1. We shall show that p{ n 5t- ^ 0. In_fact,denote 
by ft such an r-equivalence relation on A that A\fl = A \l P. Since 
a?r = noc, ocn is also an r-equivalence relation (see [2], p. 175) and 
ocn = a V n = /3. Let b-e a(. Since ai5 6t. e <p(at.), we have e^/3^. 
Consequently there exists c{e A such that ainci, c^ab .̂ But then 
ci e Pi H «i. Let P be the r-decomposition of M such that P = F t> M. 
Further let 0M be such an r-equivalence relation on M that P = M\0M. 
Since P g -¥', we have © f g Q i (see [3]). Therefore by 5.1 0 F is an 
r-eongruenee relation on M. Define an r-equivalence relation 0A on A 
as follows: a0Ab if and only if {a} 0M{b}. Since the r-systems (A, (/.)<«.;) 
and (M, (/f )te7) are r-isomorphic and 0 M is an r-congruence relation 
on M, 0A is even an r-congruence relation on A. Considering that 

«o cie P* w e n a v e {at} ©^{cj and therefore also a^c^ for i -= 0 , 1 , . . . 
. . . Jc — 1. S i n c e / ( a 0 , % , . . . , a*--,) = {e}, we haye/(c0 , cx, . . . , ck-x) = 
-= {e}, so that /t(a0, o-,, . . . , ak-x) = {{e}}. Since {A, (ft)tei) is an r-system, 
it is thereby shown that <p is a homomorphism. Finally, since <p is the 
canonical mapping of the r-system (A, (/t)ter) onto the r-system (A V I\ 
(7r).ej), we have <p({e}) ^={e}, <p[A — {{e}}] = J V ? — {{«}} and 9? is 
even an r-homomorphism. 

5.8. Let (A, (/).€/) be an r-system, M the least decomposition on Aj_A 
an r-decomposition on A, P an r-decomposition on A^such that P g Mf. 
Let cx, n be such r-equivalence relations on A that A = A\oc, P = A\n. 
Let ocn = noc. Then P g A'. 

Proof. By 5.7, the^canonical mapping <p of the r-system (A, (ft)i€i) 
onto the r-system (A V P, (/,VW) i s _ a n r-homomorphism. By 5.2; 
we have A V P § i ' . Therefore P £ A V P ^ -4'. 
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6. Simple г-syst ms. 

Definition. An r-system (A, ( fW) is called simple, if there exists 
a unique r-congruence relation on A, (See [4].) 

6.1. An r-system (A, (f)«6/) is simple if and only if the following condit­
ion (b) is fulfilled: To arbitrary elements xy ye A, x^y there exist 
t0el, K^-sequences (ax)HGKi, (bx)zeKl and an index H0eKlQ such that 
«H0 = x, 6Ko = y, ax^bx for ne Kh — {H0}, fo(ax | H eKiQ) ^ fh(bx | 
**eJ? t 0 ) . 

Proof. I. Let the condition (b) fail to be fulfilled. Then there exist 
elements x,y e A,x ^y such that we havef(ax \neKt) = f(6,, | H e Kt) 
for all i el, for all H0 e Kt and for all Kt-sequences (ax)HeKl, (bjxetf* with 
the property aHo = xy 6Hf) = y,ax = bx(x eKt — {H0}). Define an r-equi-
valence relation 0 on A as follows: a&b if and only if a = 6 or a -= #, 
ft == ^ or a = j / , b = x. 0 is clearly an r-congruence relation on .4 
different from the least one, so that (A, (ft)iei) is not simple. 

II . Let the condition (b) be fulfilled. I f we admit that (A, (f) t ej) 
is not simple, then there exists an r-congruence relation 0 on A which 
is not the least one. Consequently we have x0y for some x,y e A,x 7-= y. 
Let 1 el, H0eKt, let (ax)HeKl, (bx)„eKl be such ^-sequences in A that 
aHo = cc, &H0 = y, ax = by for neKt — {H0}. Further let (ax)^Kt be 
such a -/^-sequence in AJ0 that ax e ax for all neKc Clearly bxe dK 

for all neKt. By 4.8, the canonical mapping of (A, (f)<ej) onto (A\0, 
(7«)»e/) is an r-homomorphism and therefore we havef(ax \ne Kt) -== 0 
if and only if ft(dx \neKt) = 0 and ft(ax | H e K) == 0 if and only if 
ft(bx I H e Kt) = 0, which is a contradiction with (b). 

6.2. Let (A, ( f W ) be an r-system whose all operations are of finite 
type, 0 an r-congruence relation on A. Then the factor-algebra (A\0, (ft)iei) 
is simple if and only if 0 = 0A (see Paragraph 5). 

Proof. I. Let (A\0, (74)t6/) be a simple factor-algebra. By 5.1, we 
have 0 ^ 0A. Let 0 be an arbitrary r-congruence relation on A. 
Admit that there exist elements x, y e A such that x&y, x non 0y. 
Let x, y e A\0 be such that xex, yey. Let c eI, H0eKt, let (ax)HeKtt 

(Bx)*eEi be ^-sequences in A\0 such that aKo = x, 6Ho = y, ax = lx for 
neKi — {H0}, let (ax)K€Kl, (^)He^. be Z.-sequences in A such that 
0MO = %> K = y> a * = &x e 5 * for neKt— {H0}. Finally let (cj***. be 
a ^.-sequence in A\<P such that # e c*0, ax e cx for xeKt— {H0}. The 
following statements are clearly equivalent: 

tA)]t(dx\KeKt) = 0; 
(B)/,(oJ ***.)== o; 
(C)/f(5J*e #,)==-(); 
(D)/ i(6x|»eZ i)-=0; 
(E) 7(5, | *<-#,) ~ 0 . 
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In fact, the canonical mapping of (A, (ft)t*i) onto (A\0, (7,)<€j) is an 
r-homomorphism (see 4.8), so that (A) holds if and only if (B) holds. 
Similarly we should show the equivalence of (B) and (C), (C) and (D), 
(D) and (E). Therefore (A) is equivalent with (E), which contradicts 
to the condition (b) of 6.1. Consequently 0 ^ 0 holds for all r-congruence 
relations on A and hence 0 = 0A. 

II . Let 0 = 0A. By 5.1, 0 is an r-congruence relation oix^A. If we 
admit that (A\0, (Jt)tei) is not simple, then there exist elements #, y e A\0 
such that for arbitrary tel, H0G_K1 and for arbitrary K.-sequences 
(5*)HCJTI, W»e£ { in A\0 (aKo = x,b*0 = y, ax = bx for all n'e Kt — 
— {̂ o}) w e ^ a v e Jt(®x \ xeKt) = 7.(5 x | x G Kt). Define an r-equivalence 
relation 0 on A as follows: a0b if and only if a0b or a ex, bey or 
aey, bex. 0 is clearly an r-congruence relation on A, but we have 
0 $ 0, which is a contradiction. 

6.3. Let (A, (ft)ier) be an r-system whose all operations are of finite 
type, 0 an r-congruence relation on A* Then the simple factor-algebra 
(A, Jt)tei) on (A, (/«),6/) is an r-homomorphic image of the factor-algebra 
(A\0,Q»U?>. 

Proof. By 6. 2, we hawe 0 s © ^ so that A\0 ^ A. Denute by <p 
(respectively, y>, %) the canonical mapping of A onto A\0 (respectively, 
of A\0 onto A, of A onto A. Clearly x = 9°W' V a n ( i X are r-homomor-
phisms by 4. 8. Consequently y> is also an r-homomorphism by 4.2. 

6.4. Let (A, (f)tei) be an r-system whose all operations are of finite type. 
Then there exists a unique simple r-system (except for r-isomorphisms) 
which is similar Jo (A, (f)tei) and which is its r-homomorphic image. 

Proof. Let (A, (ft)t*i) be the simple factor-algebra on (A, (ft)l6i) 
and let (5 , (gt)tei) be a simple r-system which is similar to (A, (/t),e/) 
and which is its r-homomorphic image. Denote by <p the corresponding 
r-homomorphism. Define an r-equivalence relation 0 on A as follows: 
a0b if and only if <p(a) = <p(b). By 4.7, 0 is an r-congruence relation on A 
and (B, (gt)tGi) is an r-isomorphic image of the factor-algebra (A\0, (Jf ),«/). 
Since (B, (gt)tei) is simple, (A\0, (Jf)tei) is clearly alsojrimple. Therefore 
0 = 0A and (B, (gt)ter) is an r-isomorphic image of (A, (7,),./)-. 

Definition. Let (A, (f)tei) be an r-system whose all operations are of 
finite type, (B, (gt)iei) a simple r-system which is similar to (A, (ft)t*i) 
and which is its r-homomorphic image. Let <p be the corresponding 
r-homomorphism and let Q be a mapping defined on B as follows: Q(b) =-=' 
= card <p~x[b]. Then the ordered pair [(JB, (&)««/), Q] is called an h-cha-
racteristic of the r-system (A, (f)t e i). 

Remark. Let (B, (gt)tei) be a simple r-system whose all operations are 
of finite type, Q a mapping assigning to each b e B a cardinal number 
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g(6) J> 1. Then there exists a unique r-system (A, (/.)tej) (except for 
r-isomorphisms) such that [(B, (<7t)tej)> Q] is its ^-characteristic. 

6.5. Let (A, ( / ) t e j ) , (B, (gjtei) be similar r-systems whose all operations 
are of finite type. Let [(C, (ht)iei), Q], [(D, (kt)ieJ), a] be their h-characte-
ristics. Then (B, (gt)tej) is an r-homomorphic image of (A, (ft)l€i) if and 
only if the following condition (c) is fulfilled: There exists an r-isomorphism 
cp of (0, (ht)tei) onto (D, (kt)iei) such that Q(C) ^ <r((p(c)) holds for all 
ceC. 

Proof. Denote by % the r-homomorphism of (A,(f)iei) onto (C, (A.)tej) 
and by T the r-homomorphism of (B, (gt)iei) onto (D, (Jct)tei) and define 
an r-equivalence relation X on A and an r-equivalence relation Ton B 
as follows: aXa' if and only if %(a) = %(a')\ bTb' if and only if T(6)-=T(6')-

I. Let (B, (gt)iei) be an r-homomorphic image of (A, (/,)*ej). Denote 
by tp the corresponding r-homomorphism of (A, (f)iei) onto (B, (gt)tei). 
The mapping ip°r of (A, (/.)tej) onto (D, (kt)ieI) is an r-homomorphism 
by 4.2. Define an r-equivalence relation W on A as follows: aWa' if and 
only if (y)°r) (a) = (tp°r) (a'). By 4.7, X, !Pare r-congruence relations on A, 
Tis an r-congruence relation on B. By the same theorem, (AjX, (ff)iei) 
is an r-isomorphic image of (C, (A.)tej) and (AjW, (ff)tej), (-B/-T, (?,)«e/) 
are r-isomorphic images of (D, (kt)tei). (AjX, (ff)teJ), (ii/SP, (/f W ) a n d 

(BIT (gt)tei) are clearly simple, for (C, (ht)ie{) and (D, (&t)tej) are simple. 
Therefore we have X =W= 6A, T^ 0B by 6.2. With regard to that 
we may define a mapping (p of C onto D as follows: <p(c) = (y>°r) (a), 
where a is an arbitrary element such that a e %~1[c]. Since %°9? = ip°r, 
<p is an r-homomorphism of (G, (ht)tei) onto (D, (&.)tej) (according to 4.2) 
which is clearly one-one. But since y> maps each class of the decomposi­
tion AjW onto a class of the decomposition B\T, we have Q(C) = 
= card %~1[c\ = card (y°x)-\y(c)"\ ^ card ^[^(c)] = a(99(c)) for each 
c e O , 

II . Let the condition (c) be fulfilled. Let ceC and let ac e A\X^ be such 
that %(a) = c for a e ac, 5d e .B/Tbe such that T(6) = diotbebd. Since 
g(c) ^ cr( 92(c)), there exists a mapping $>c of ac onto 5V<C> for each ceC. 
Define a mapping ^ of A onto 5 as follows: tp(a) = 9>c(&) for aeac* 
We have clearly %°q> = \p°x and therefore y> is an r-homomorphism of 
(A,(f)ter) onto (J5, (#.)te/) by 4.2, for #°9? is an r-homomorphism of 
(A, (/,)*«/) onto (D, (*,),*/) by the same theorem. 

6.6. Let (A, (f)iei), (B, (gt)iei) be similar r-systems whose all operations 
wre of finite type. Let [(G, (&,),« j), Q] be an h-characteristic of (A, ( / t W ) . 
Then the following statements are equivalent: 

(A) (A, (f)t6i) is simple. 
(B) (B, (gt)iei) is an r-homomorphic image of (A, (f) ( e /) implies that 

(-B, {gjiei) is an r-isomorphic image of (A, ( / . W ) . 
(G)Q(C) = 1 for all c e C, 
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Proof. We shall show only the equivalence of (A) and (B), for (A) is 
equivalent with (C) by the definition. Let <p be an r-homomorphism of 
(A9 (/.).6j) onto (B9 (gt)iei)- Define an r-equivalence relation 0 on A as 
follows: aOa' if and only if <p(a) = cp(a')t © is an r-congruence relation 
on A by 4.7. But (A, (ft)iei) is simple if and only if © is the least r-con­
gruence relation on A and this holds if and only if (p is one-one. 
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