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SOLVABILITY OF A FORCED AUTONOMOUS DUFFING’S
EQUATION WITH PERIODIC BOUNDARY CONDITIONS
IN THE PRESENCE OF DAMPING

CHAITAN P. GupTA, Reno

(Received April 22, 1992)

Summary. Let g: R — R be a continnous function, e: [0,1] — R a function in LZ[O, 1]
and let ¢ € R, ¢ # 0 be given. It is proved that Duffing’s equation u” + cu’ + g(u) = e(z),
0<x<1,u(0)=u(1), «'(0) = u'(1) in the presence of the damping term has at least one
solution provided there exists an R > 0 such that g(u)u > 0 for |u| > R and fol e(r)dr = 0.
It is further proved that if g is strictly increasing on R with u—lil-l-‘oo g(u) = —o0, u]il-]c‘o g(u) =

oo and is Lipschitz continuous with Lipschitz constant a < 472 +¢2, then Dufling’s equation
given above has exactly one solution for every € € L2[0, 1].
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1. INTRODUCTION

Let g: R — R be a continuous function, e: [0, 1] — R a function in L?[0, 1] and let
¢ € R, ¢ # 0 be given. This paper is devoted to the existence of a solution of the
forced autonomous Duffing’s equation

w4 cu' + g(u) = e, 0<z<l,
(1.1) u(0) = u(1), u'(0) = /(1).

We call the equation in (1.1) “autonomious” since the nonlinear function g is indepen-
dent of . When g is a function of both the variables 2 and u, i.e. y: [0,1] x R — R

is a function satisfying Caratheodory’s conditions, the non-autonomous Duffing’s
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equation

u’ +cu' + g(x,u) = ¢, 0<z<,
(1.2) w0) = u(l),  w(0) = w(1)

has been extensively studied earlier (see e.g. [1], [2], [3], [4], [8], among others). It
was SllOW;l, for example, by Gupta in [1] that if there exists a ¢ > 0 such that
g(z,u)u < 0 for a.e. z € [0,1] and all u € R with |u| > R then (1.2) has at least
one solution provided fol e(z)dx = 0. In the case when there exists a ¢ > 0 such
that g(z,u)u > 0 for a.e. z € [0, 1] and |u| > o, it was shown in [3] that (1.2) has at

. . 1 . - .

least one solution provided f; e(z)dz = 0 and lim sup gﬁ%ﬂ is strictly less than
fuj—oco

4n% + c2. Now when ¢ # 0, then 4n% + ¢® > 422, which is the second eigenvalue of

the linear eigenvalue problem

—u" = M,

(1.3) u(0) = u(1), u'(0) = '(1).

It was remarked in [3] that A = 0 is the only eigenvalue of the linear eigenvalue

problem when ¢ # 0,

u’ + cu' = M,

(1.4) u(0) = u(1), u'(0) = u'(1)

to explain that the nonlinearity in g(x, u) can resonate beyond the second eigenvalue
4n2 of the linear eigenvalue problem (1.3). Indeed, the author feels that when ¢ # 0
and g(z,u)u > 0 for a.e. 2 € [0,1] and |u| > g, then the boundary value problem
(1.2) should have at least one solution when fol e(z)de = 0. But this is not known
at this time. The purpose of this paper is to prove this conjecture in the case of the
autonomous boundary value problem (1.1) when ¢ # 0. The autonomous problem
(1.1) was studied, when ¢ # 0, by Nieto and Rao in [8] in the case when g: R — R
is increasing and u_l_!;l:loo g(u) = g(£o0) exists. But this case was already covered in

[1] because then g is bounded on R and accordingly, | llim g_(‘_‘g) =0 < 4n2.
Uuj|—00

Our methods involve using Mawhin’s version of the Leray-Schauder continuation
theorem and Wirtinger type inequalities to get the needed estimates. We also present

some uniqueness results for the boundary value problem (1.1).
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2. MAIN RESULTS

Let X, Y denote the Banach spaces X = C[0,1] and Y = L'[0, 1] with their usual
norins. Let Y, be the subspace of Y spanned by the constant function 1 on [0, 1],
ie.,

Yo={u€eY |u(z)=cforae z€[0,1], c€R},

and let Y} be the subspace of Y such that Y = Y7 @ Y,. We note that for u € Y we
can write

1

(2.1) u(z) = (u(.L) - /01 u(z) d;r) + (/0 u(;z:)d:c)

for z € [0, 1]. We define the canonical projection operators P: Y — Yy, Q: Y — V)
by

1
P(u)(z) = u(z) - /0 u(z) dz,
1
(2.2) Q(u) ::/0 u(z)dz

for u € Y. Clearly, Q = I — P, where I denotes the identity mapping on Y, and the
projections P and @ are continuous. Now let Xo = X NY,. Clearly X2 is a closed
subspace of X. Let X be the closed subspace of X such that X = X, @& X2. We note
that P(X) C X1, Q(X) C X2 and the projections PlX: X=X, QX: X = X,
are continuous. In the following, X, Y, P, Q will refer to the Banach spaces and

projections as defined and we will not distinguish between P, Pl,\’ (resp. @, QIX)
and rely on the context for proper meaning.

Also for v € X, v € Y, let (u,v) = [01 u(z)v(z) dz denote the duality pairing
between X and Y. We note that for v € X, v € Y, such that u = Pu + Qu,
v = Pv+ Qv we have

(2.3) (u,v) = (Pu, Pv) + (Qu, Qu).

Let ¢ € R, c # 0 be given. Define a linear operator L: D(L) C X — Y by setting
(2.4) D(L) = {u € X | v'(x) € AC[0,1], u(0) = u(1), w'(0) = (1)},

and for u € D(L),

(2.5) Lu ="+ cu'.
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(Here ACYO0, 1] denotes the space of real-valued absolutely continuous functions on
[0,1].) 1t is easy to see that L is a linear Fredholin mapping with ker L = X5, Im L =
Y). Further, the mapping K : Y7 — X, defined for u € Y; by

1
(2.6) (Ku)(x) = v(z) — /(; v(z)dz,
where

r r€ e~ _ ] 1

(2.7) v(x) = / / =8y (t) dt d¢ — —/ e“tu(l) dt,
0o Jo clec—1) Jo

(note that we have assumned ¢ # 0), satisfies the following conditions:

(i) for u € Y, we have K P(u) € D(L), LK P(u) = P(u),
(2.8) (i) (K P(u), P(v)) 2 — Gapeny 1Pl 2p0,1)-

Indeed, note that for v = KN'P(u) € D(L),

1

1
- — 2 2
(KP), P@) = (0 L0) = = [ 07> =il Lol

and so (K P(u), P(u)) 2 — = [1P(u)llF 2y since
1 ) 1
1LollF 0,1 = / (v" +cv') de = / [(v")? + 2¢v"v" + ()] da
0 0
1 1
= / [(v)? + *(v')?] dz > (4n® + 02)/ v'2 dz.
0 0

Let now g: R — R be a given continuous function. Let N: X — X C Y be the

non-linear mapping defined by
(Nu)(x) = g(u(z)),  z€[0,1]

for u € X. 1t is then easy to see, using Arzéla-Ascoli theorem, that KPN: X — X,

is continuous and compact.

Theorem 1. Let g: R — R be a given continuous function. Let ¢, a, A, v, R with
a< A, r<0< R, c#0 be such that

g(u) > A foru > R,
(2.9) and
g(u) <aforu<r
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Then, for every given function e(z) € L*[0,1] with a < fol e(z)dz < A, Dufling’s
equation

u' +eu' +gu)y=e, O<z<]1,
(2.10) w(0) = u(1), «'(0) =u'(1)

has at least one solution.

Proof. Define functions g;: R — R and e;: [0, 1] — R by setting

() = g(u) - 232,
ey(z) = e(x) — A ; y

Then g,: R — R is a continuous function and e;: [0,1] — R is such that e;(x) €
L?[0, 1]. Furthermore,

1
gi1(u) > ;2—(A —a)20 foruz R,
1
g1(u) < i(a —A)<0 forugR,
and

1 ! 1

—(a—-A) < / ei(z)dr < =(A —a).

2 0 2
Dufling’s equation (2.10) is equivalent to the equation

'+cu'+g1(v)=€, 0<z<],
.11 u(0) = u(1), u'(0) = u'(1).

Now, for X = C[0,1] and ¥ = L'[0,1] we consider the Niemytski operator N :
X — Y defined for v € X by

(Nu)e) = (=), z€(0,1),

and the linear operator L: D(L) C X — Y defined in (2.4), (2.5).
The equation (2.11) is equivalent to the operator equation

(2.12) Lu+ Nu=e¢e
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in X. To solve (2.12) it suffices to solve the system of equations

Pu+ KPNu = KPe,,
(2.13) QNu = Qe
in X. Indeed, if u € X solves (2.13), then v € D(L) and
LPu+ LKPNu=Lu+ PNu= LKPe, = Pe,,
QNU = Qely

which gives, on adding, that Lu+ Nu=¢,.
Now, (2.13) is clearly equivalent to the single equation

(2.14) Pu+ QNu+ KPNu = KPey + Qe,,

which has the form of a compact perturbation of the Fredholm operator P of index
zero. We can, therefore, apply the version given in [6, Theorem 1, Corollary 1} or
[7, Theorem 1V .4] or [5] of the Leray-Schauder continuation theorein, which ensures
the existence of a solution for (2.14) if the set of all possible solutions of the family
of equations

(2.15) Pu+ (1 -A)Qu+ AQNu+ AKPNu = AKPe, + AQey,

A €]0,1[, is a priori bounded independently of A. Now (2.15) is equivalent to the
system of equations

Pu+ AKPNu = AK Pe,,
(2.16) (1 =X)Qu+ AQNu = AQe;.
Let ux € X be a solution of (2.16) for some A €]0, 1, then ux € D(L) and
Pux+ AKNPNu) = AK Pe,,
(2.17) (1 =2)Quxr 4+ AQNuy = AQe;.

It follows that
Luy + (1 = X)Quy + Nuy, = Aey,

i.e.

1
uy + cul + (1 — A)/ ur(z)dz + gy (unr) = Aey,
0
(2.18) ur(0) = ua(1), u)(0) = uj(1).
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Multiplying the equation in (2.17) by u) and integrating over [0, 1] we obtain that

C/o‘ u)? = ,\/ e (z)u) () dz

which implies, using the Cauchy-Schwarz inequality, that

(2.19) lelllwhllzepo,ny < lleallLago,y-

Now, we claim that there exists a £ € [0, 1] such that » < ux(€) < R. Indeed, suppose
that ux(x) > R for every z € [0, 1], then we get from the second equation in (2.17)
and our agsumptions on g, and e; that

(l—,\)R-{-)\v%(A—-a) < (1= A)Qux +AQNuy = AQe; < A -%(A—a),

so that (1 — A)R < 0, which is a contradiction since A € ]0,1[ and R > 0. Similarly,
uy < r for z € [0, 1] leads to a contradiction. This proves the claim.
Next it follows that for every z € [0, 1]

1
Jur(z)| < max(—r, R) +/0 Ju\(z)] dz

< max(—r, R) + [|w)[lL2[o,1)

1
H“el ”L"‘[O,l] =C.

< max(—-r, R) +

Hence

[luallx < C,

where C' is a constant independent of A €]0, 1]. v

This completes the proof of the theorem. a

Corollary 1. Let g: R — R be a continuous function and let ¢ € R, ¢ # 0 be
given. Suppose there exists an R > 0 such that g(uv)u >0 forueR, |u| > R
Then for every e(x) € L]0, 1] with fol e(z)dz = 0, Duffing’s equation (2.9) has at

least one solution.

Proof. The proof follows immediately from Theoremn 1 with a = A = 0 and
r=-R. a

201



Theorem 2. Let g: R — R be a strictly increasing function with lim g(u) =
U— =00

—00, lim g(u) = 0o and let ¢ € R, ¢ # 0. Suppose that g is a Lipschitz continuous
U -+ 00
function with a Lipschitz constant «, i.e.

(2.20) lg(u) — g(v)| < au—v|
for u,v € R, with
(2.21) a < 4n’ 4+ ¢?

for all u € R.
Then for every e € L?[0, 1], the boundary value problem

W't +g(u)=e(z), 0<z<l
(2.22) u(0) = u(1), u'(0) ='(1),
has exactly one solution v in X = C[0, 1].

Proof. Under our assumptions, it is easy to see that there exist a, A, r, R
with a < A, » < 0 < R such that

and

1
a</ e(z)de < A
0

Accordingly, Theorem 1 implies that (2.22) has at least one solution u in X.
Let, now, uy, uy € X be two different solutions for (2.22). Then
(2.23) uf —uf +c(u] —uy)+g(w1) —g(ua) =0, 0<z<l.

It follows that

1 1
0= ——/0 (v} — uh)*dz +/0 (9(u1) — g(u2))(ur — up)dz

1 1
- / (uh — uy)? de + / lo(ur) — g(uz)| ur — ug] de

\%

1 1!
- 4—{2—‘—2“1‘“1 = Lua||Eap01) + -/ lg(u1) — g(uz)|? dz

1
2(5 41:2+cz / lo(u1) = g(uz)|? dz,
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in view of (2.23). Using (2.21), we get that

9(w1(2)) = g(uz(2))

for a.e. € [0, 1], which implies u;(z) = uz(z) for a.e. z € [0, 1], since g is strictly
increasing on R. Hence u;(x) = ua(x) for every x € [0, 1] since u;, uz are continuous
in [0, 1].

This completes the proof of the theorem. a

Remark 1. Theorem 2 seems to imply that Duffing’s equation (2.22) in the
presence of the non-zero damping term cu’ has a unique solution as long as the non-
linearity g(u) does not resonate against too many eigenvalues of the linear eigenvalue
problem

-u"=Xxu, O0<z<l,
u(0) = u(l), «'(0)=1'(1).

Also, it indicates that while the presence of even a small amount of damping gives
existence, the presence of large enough damping ensures uniqueness.
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