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Summary. The existence of small global (in time) solutions to an abstract evolution equation
containing a damping term is proved. The result is then applied to fully nonlinear telegraph

equations and to nonlinear equations involving operators with time delay. \
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Providing important mathematical models for a variety of physical phenomena,
telegraph equations represent a subject many authors have made contributions
towards. The present paper addresses the case when both the coefficients and the
right-hand side of the equation are nonlinear operators allowed to contain time
delay.

Let us denote Xu = u,, + du, — cu,, where ¢, d > 0. With u = u(x, t) a function
defined for x € [0, I], 1€ R' we study the equation ‘

(E) FLu + Pu, ) uy, + PHu, D) uy + Pu, ) uy = F(u, A) ‘
for x € [0, [], t € [0, + o0) together with the conditions ‘
(B) u(0,¢t) = u(l, 1) =0, teR’ |
(1) u(x,t) = u(x,1) =0, xe[0,I], te(—o0,0]. ‘

Here the operators 2, i = 1,2,3, % are supposed to depend on a parameter A‘
belonging to a Banach space A.

To begin with, we intend to prove the existence and uniqueness of the solution u‘
on condition that Ze A(n) = {A|Ae 4, |A]|4 <n}, n> 0 lying close to zero.|
Taking advantage of this result, a unique function which is bounded and solves‘
(E), (B) on the whole real axis t € R' can be found. Apparently, this fact is of great
interest if the corresponding time-periodic problem is involved. |

According to the choice of the operators 2, %, various problems may be attacked.
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If, for instance, 2!, & are substitution (Nemytski) operators, the existence theo-
rems can be obtained concerning ordinary quasilinear telegraph equations (cf.
Matsumura [10], Kato [7]).

Following Shibata-Tsutsumi [15], the fully nonlinear telegraph equation can be
transformed to a systém consisting of a quasilinear hyperbolic equation and a non-
linear elliptic one. Using the Green operator related to the elliptic part we are able
to cope with this problem as well. For example, the existence of a time-periodic
solution may be stated avoiding the use of the hard implicit function theorem (cf.
[8], [12], [14]). Moreover, as an added benefit of the method employed, the uni-
queness of the solution is obtained. Recently, St&dry [16] has achieved more general
results working directly in the space of periodic functions and making use of the
Schauder fixed point theorem.

Dealing with integral operators 2, %, our results apply to hyperbolic problems
involving time delay (see Aliev [1], Kamont-Turo [6], Poorkarimi-Wiener [13]
etc.). Moreover, the operators of the form [} u2(x, ) dx can be treated arising in
equations of a vibrating string (see Arosio [2], Biler [4], Medeiros [11], Feireisl [5]).

To carry out the program outlined, we proceed as follows. As to the basic notation,
function spaces and auxiliary lemmas, we refer to Section 1.

The precise hypotheses concerning the operators in question as well as the main
results will appear in Section 2.

Addressing related linear problems Section 3 represents the bulk of the paper.
It is worth noting that our requirements concerning regularity of the coefficients
appearing in the equation are slightly more general and correspond with [3].

Section 4 is devoted to the proof of the results claimed in Section 2.

Finally, we mention some applications and examples in Section 5.

1. NOTATION, FUNCTION SPACES, AUXILIARY RESULTS

The notation is standard. All function spaces appearing are supposed to be real.
Throughout the text, the symbols ¢;, i = 1,2, ... stand for strictly positive real
constants, h;, i = 1,2,... denote positive, continuous, nondecreasing functions

on [0, + ).
For a (possible) vector function v = (vy, ..., v,) of x, 1, we denote by D*v the
vector of components
i+j A
Oy m, i 20, i+j§k}
ox' ot

and by Div (where y = x or y = 1)

oy’

Here (and always) i, j, k, | are nonnegative integers.

l=1,...,m,0§i§k}.
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Let L, = L,(0,]), pe[1, + o) be the Lebesgue spaces of integrable functions
with the norm || ||, defined in the standard way. For v = (v, ..., v,,) we set

o] = max {||v,[, |1 =1, ..., m}.

H* = H%0,]) are the Sobolev spaces consisting of functions having derivatives
up to the order k in L,. Further we set Hy = {v|ve H', v(0) = v(l) = 0}.

Next, we will make use of vector functions ranging in a Banach space B. I < R!
being an interval, we consider the spaces W:‘,(I, B) containing functions whose de-
rivatives up to the order k with respect to ¢ € I belong to L,,(I, B) (for exact definitions
see [17]). Let €*(1, B), #*(I, B) be the spaces consisting of all functions having

derivatives up to the order k continuous or continuous and bounded on I, respectively
(see [17] for details).

To keep the notation simple, we introduce the spaces

X* = {v | each component of D*v belongs to #(R’, L,)} ,
X"={v]ueX",%eéﬂ(R‘,Hé),i=0,...,k—1}, )
tl

X*e) = {v|veX¥, |D*u(t)| < ¢ for all 1e R}
and
Y* = {v | each component of D*v belongs to L,(R', L,)},

Yk = {v]veY", ?eLw(Rl,Hg), i=0,...,k— 1},
tl

Y¥e) = {v|ve Y* |D*v(t)] S ¢ for ae. teR'}.

We conclude with a short review of auxiliary results. Seeing that the spaces H', H?
are Banach algebras and due to the embedding relation H' C 4[0, I] (see [17]),
we arrive at the following assertion.

Lemmal. Letk =1o0ork =2 v, weY"
Then vw € Y* and we have the estimate

(1.1) |D¥ ow(t)| £ ¢y|D* v(1)] | D* w(t)|

for a.e. te R
Combining Lemma 1 with the Taylor expansion formula one obtains.

Lemma 2. Consider a function ®: U = R™ — R! where U is an open ball centered
at 0eR", & e 6*(U, R"). Let functions v = (vy,...,0,), w = (Wy, ..., w,) range
inU,v,w,eY, i=1,...,m wherek =1 or k = 2.

Then ® ov, ®owe Y* and

(12) DK@ o0 — @0 w) ()] < () [Do — w) (1)
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holds for a.e. t € R'. If, moreover, ®'(0) = 0, then
(1.3) [DKD o v — & o w)(1)] < hy(2) 2| D(v — w) (1)
for a.e. t e R'. Here the symbol z stands for

z = z(t) = max {|D* v(t)|, [D* w(1)|} .

2. SUMMARY OF RESULTS

To begin with, we specify the conditions imposed upon the operators #', i =
=1,2,3, Z. Setting 4 = 2 or ¥ = & we assume

(PF,) % =90 2): X**1(e) x A(n) - Xk
where k = 1,2, ¢,n > 0;

(PF,) %(0, 1) » %(0,0) = 0 in X?

whenever |||, = 0.

The following (Lipschitz) conditions resemble those appearing in Lemma 2 related
to substitution operators. Let A € A(n), v, w e X**!(¢) for k = 1, 2. We require

) D) - P 2) (0] =

< ¢y sup {|D* (v — w) (s)] | se (= oo, 1]}
and
(Fy) |D(F (v, 2) = F(w, 1)) (1)] =

< o(n, &) sup {|D* "' (v — w) (s)| | se (— o0, 1]}

forallte R!, i = 1,2, 3. Here ¢ is a function such that Q(}’], a) — 28 whenever 1,6 — 0.
The main results of the present paper can be summarized as follows.

Theorem 1. Let 2, i = 1,2, 3, # satisfy (PF,), (PF,), (P;), (F;). Let the com-
patibility condition
(C) Z(0, 1) e Hy

hold for all 1 € A(n).
The number n > 0 being chosen small enough, there exists a unique solution
u € Xy(e) of the problem (E), (B), (I) for every fixed A€ A(n).

Theorem 2. Let 2, i = 1, 2,3, # satisfy (PF,), (PF,), (P3), (F3).

Then there is n > 0 such that for every A A(n) there exists a function u € X}(e)
satisfying (E), (B) for all xe[0,1], teR'. Moreover, the function u is the only
(global) solution lying in X>(e).
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Corollary (time-periodic solutions). Assume that for 4 = P', 4 = F
Gt + T),2)=%0v,A)(t+T), teR

where T is a fixed positive number. Then the solution u, the existence of which is
claimed in Theorem 2, is T-periodic with respect to the variable t.

Remark. Seeing that X* QG #%([0,1] x R') and %(u, 1) e 2([0.1] x R'), all
solutions mentioned above are, in fact, classical.

3. THE LINEAR PROBLEM

Now we focus our attention on the linear problem associated to (E), (B), (I). We
look for a function v,

(L) Zv + a'v,, + a®v,, + adv,, = f

for xe[0,1], 1[0, +o0),

(By) v(0,1) = v(l,t) =0, te[0, +o0)

(L) o(x,0) = 0°(x), v(x.0) = v'(x), xe[0.1].

Our goal is to prove the following theorem.

Theorem 3. Let us assume

(3.1) a'e Yz(oc) , 1=1,2,3

(3.2) feY* for k=1 or k=2
3 v’ e N , V€ N .

(3 ) 0 Hk+l H(l) 1 Hk H(l)

In case k = 2, the compatibility condition is added:
(Cu) v? = v,(0)e Hy

the function v* being determined with the help of v', v*, (L).
If the number o > 0 is sufficiently small, then there exists a unique function
ve Xyt satisfying (L), (By), (Ip). Moreover, we have the decay estimate

(3.4) [D¥* 1 p(1)|* < exp (—6t) 3| D 0(0)> +
+ ¢y sup {|D* f(s)|* | s e (— o0, 1]}

for a certain & > 0 and t € [0, + o).
Since the methods of the proof follow the line of standard arguments (cf. [3] and
the literature listed here), we point out the principal ideas only.
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STEP 1 (strong solutions). We start with a slightly more general equation
(L) Lv + a'v, + a’v,, + a@v,, + b'v, + b*v, + bPv = f
together with (By), (I). As to the coefficients b’, we assume
(3.5) bieY'(s), i=123.

Uniqueness: Arguing similarly as in [3], [9], the uniqueness of the solution v
may be proved in the class

vE Ll,loc(oa + o0, H(l)) N Wll,loc(()’ + 0] LZ)

on condition that fe L; 1,.(0, +00; L,), v° € Hy, v' € L,. The equation is satisfied,
of course, in a weak sense.

Existence:

Lemma 3. Let (3.1)—(3.3) hold for k = 1. Then there is a unique solution v to
(L), (By), (Ip) satisfying (3.4) for k = 1 whenever o > 0 is chosen small enough.
As to regularity, the function v may be prolonged for all t € R in such a way that
ve X2

Proof.

(a) Taking a ,,basis” {sin (nml™'x)}.,, the standard Faedo-Galerkin method
yields the existence of a weak solution of our problem. Since the coefficients as well
as the right-hand side of the equation are defined on the whole real axis, the unique
solution v may be assumed to exist on the interval t € (—y, + 00), more precisely

ve 6(—y, +oo; Hy) N €'(—y, +0; L,)

for a certain y > 0 (see [3] for more general results).

(b) Keeping (3.2), (3.3) in mind, we are allowed to differentiate the equation (L)
(in fact its Galerkin approximation) with respect to . Repeating the arguments
from (a), the regularity of the derivative v, is obtained:

v, € €(—y, +o0; Hy) 0 €' (—y, +o0; L,) .

Note that, due to the choice of the “basis”, the approximate problems admit the
use of the operator 9/dx?. Consequently, the terms containing v, ., v, can be estimated
with the help of the equation (L').

Finally, using (L') again, we infer v, € €(—y, +; L,). Clearly, the function v
can be prolonged on R to get v € X3.

(c) The relation (3.4) represents a standard energy decay inherent to this kind of
equations. It can be easily deduced by means of multiplying the equation by v, + dv
or v, + 6v,. Since we work with the Feado-Galerkin approximations, this step is
fully justified. Note that we need the number a > 0 to be small.

Q.E.D.
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STEP 2 (regularity). To complete the proof of Theorem 3, we have but to show
the higher regularity of the solution v corresponding to (3.2), (3.3), (Cy) for k = 2.
At this stage, we are going to treat the original problem (L), (B), (Ip).

The main idea is to differentiate (L) with respect to ¢ and apply Lemma 3 to the
function w = v,. Using (L) we can express

Ve = (¢ = a®) "' (v, + dv, + a'v,, + a*v,, — f).

Taking advantage of the above relation and setting w = v, we deduce that w is
a (unique) weak solution of the problem (L"), (By), (Iy):

(L) Pw + a'w,, + a*w,, + a®w,, + b'w, + b®w, + b’w =
=fi+al(c—-a)'f,
(Ip) w(x, 0) = v'(x), w(x,0)=0*(x), xe[0,]]

where the coefficients b’, i = 1, 2, 3 are determined by a’ and satisfy (3.5) in view
of Lemma 1, Lemma 2.
By virtue of (3.2), (3.3) and (C), Lemma 3 yields the regularity of the function w.
To obtain the regularity of v with respect to x, we have to use the equation (L).
The estimate (3.4) for k = 2 can be proved in a similar way.
Thus Theorem 3 has been proved.
Consider now a function ¥, € € ,(R"), |y, < cs,

0 on (—oo, —n]
Y, =¢€[0,1] on [—n, —n + 1]
1 on [—n+1, +00).

In view of Theorem 3, we are able to solve the initial-boundary value problems:

(L,) Lo+ a'vl, + @ + @l = Yf

for xe[0,1], te[—n, + )

(B,) v"(0,7) = v"(I,t) =0, teR!

(L) (x, 1) = vl(x,1) =0, xe[0,]], te(—o0, —n].

We get the existence of a unique solution v" € X5 ' satisfying
(36) DI 2 cosup (DY SO s € (—oo, 1]} <
< ¢ sup (|04 f(9) | s (—o0, 1]}

for all t € R' whenever (3.2) holds for k = 1, 2.

By means of the weak-star topology on the space L (R', L,), we infer there is
an accumulation point v e Y§*' of the sequence {v"};%; and v satisfies (3.6) for a.e.
te R
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Dealing with a linear problem we check easily that v solves (L), (By) for x € [0, I],
t € R. Finally, thanks to the regularity result achieved in Theorem 3, we get, in fact,
ve Xy,

Thus we have obtained the following theorem.

Theorem 4. Let the conditions (3.1), (3.2) hold for k = 1, 2, and o > 0 sufficiently
small.

Then there exists a unique global solution ve X§*' to the problem (L), (By)
on [0,1] x R! satisfying

(7)) [P 0 < o sup (D9 s € (—e0, 1)

for all te R'.

Note that uniqueness in the above theorem follows immediately via the estimate
(3.4).

4. THE PROOF OF THE MAIN RESULTS

In this section we prove the theorems formulated in Section 2 via the iteration
method. To begin with, let us estimate the coefficients appearing in the equation (E).
Setting w = 0, k = 2 in (P;), we get

|D22P¥(v, 2)| < ¢, sup {|D? v(s)| | se (— oo, 1]} + |D22¥(0, 2) (¥))|

forallteR!, i =1,2,3.
By virtue of (PF,), &, 7 > 0 may be chosen so small that

(4.1) Pi(o, ) e Y2(), i=1,2,3,

where o appears in Theorem 3, whenever v € X3(e), A € A(n).
The iteration scheme is constructed as follows. Setting u! = 0, we determine
u""lasu"*(x, 1) = Ofort < 0,and u"*" is the unique solution of the linear problem

(1 Lumtt + P At + P, A ult +
+ P, W) ultt = F(u", 1)

for x € [0, I], t € [0, +o0) together with the conditions (B), (I).
In view of (4.1), the procedure just sketched will work if we are able to show

(4.2) u"eXy(e) forall n=1,....

In this case, the above problem can be uniquely solved by means of Theorem 3.
To prove (4.2), assume that we have already stated u” € X3(g). Evoking the estimate
(3.4) together with (F5), we have

[D3 um*1(1)|? < co0?(n, €) sup {|D* u"(s)]* | se R'} +
+ ¢1o sup {|D2Z(0, A) (s)|* [ se R} .
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Consequently, 1, ¢ > 0 being small enough, we get (4.2) for u"*'.

Now let us consider the function v" = u""! — u"e X;3(2¢). Clearly v" = 0 for
te(—o0,0], v" solves the linear problem (L), (B), (I.) with v°* =v' =0, a' =
=P u" 1)i=1,23,and

(4.3) f=Fw ) — Fu, 1) +
+ [2'w, 2) — 2 (u", )] uf, +
+ [2*(w" 1, 2) — 2*(u", )] ul, +
+ [2(w1, 2) — 23(u", )] ul .

Our aim is to apply the estimate (3.4) for k = 1 together with Lemma 1, Lemma 2.
According to (P3), (F5), one deduces

D' (1)) < cii(e(n, &) + &) sup {|D*(w" — u"~ ") (s)| | se R'} .

For small values of #, ¢, we infer from (3.4)

%

@9 s (Dt ) ()] ser) <
< wsup {|{D*(u" — u""*) (s)] | se R*}

where w < 1. As a consequence of the contraction mapping principle, we obtain
the existence of a function u € X§ — the unique limit of the sequence {u"};%;.
According to (P3), (F;), we get

(4.5) P, 1) > P(u, k), Fu',A)—> F(u,A) in Y,

Moreover, in view of (4.2), u € Yo(¢) by virtue of the weak-star convergence of the
derivatives in L (R', L,).

Using (4.5) we deduce that u is a solution of (E), (B), (I). A regularity argument
concerning linear problems (see Theorem 3) gives finally u € Xg(e).

In order to complete the proof of Theorem 1, the uniqueness of the solution u
is to be proved. Consider two possible solutions uy, u, satisfying (E) on [0, /] x
x [0, T] for some T > 0, |D® uy(f)| < &, i = 1, 2. Repeating the above arguments,
we get similarly as in (4.4)

sup {|D*(u; — u3)(s)| | s e (—co, T]} s
< o sup {|D*(u; — u,)(s)| | se(—o0, T]}.

Clearly, u,(f) = u,(t) for all te (— o0, T].

As to the proof of existence in Theorem 2, we proceed similarly as above using
Theorem 4 instead of Theorem 3 and (3.7) in place of (3.4).

The uniqueness of the solution claimed in Theorem 2 is proved analogously.
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5. EXAMPLES AND APPLICATIONS

Our eventual goal is to present some applications of the results stated in Section 2.

Example 1 (fully nonlinear telegraph equations). We examine the problem

(5.1) LV + F(0y5 0ypy Uyys Uy Uy, 0) = f
(5.2) v(0,1) =0v(, 1) =0, teR'
(5.3) v(x,t + T)=v(x,1), xe[0,]], teR!

(cf. [8], [12], [14]). Here the function f is supposed to satisfy (5.3) as well.
Using the idea of Shibata-Tsutsumi [15] (cf. also [16]), the problem can be trans-
formed to the system

(54) Lu + Fy(D'u, Div)u, + Fy(D'u, Div)u,, +
+ Fy(D'u, Div)u,, = —F\(D'u, Div)u, — F5(D'u, D2v)u, —
— Fg(D'u, DZv)u + f,

(5.5) —CUyy = —u, — du — F(D'u, D}v) + f

(5.6) u(0,1) = u(l, 1) = v(0,¢t) = v(l, 1) = 0 forall reR'

(5.7) u(x,t + T) = u(x,t), o(x,t+ T)=ro(x,t) forall xe[0,I],
teR!

via differentiating with respect to ¢ and setting v, = u. Here, of course, the symbols F;
stand for the derivatives of the function F with respect to the i-th variable,i = 1, ..., 6.

To apply the results of Section 2, we are forced to require F € €*(U) for some
open ball U centered at O e R®, and

(5.8) F(0)= Fi(0) =0, i=1,..56.

In agreement with the notation of Theorem 2, we set A = X3, 1 = f.
To apply Theorem 2, we need the following auxiliary lemma.

Lemma 4. Let f € A(n), u € X*(¢) where 1, ¢ > 0 are sufficiently small.
Then there exists a unique (small) solution v = T (f, u) of the “elliptic” equation
(5.5) satisfying the boundary conditions (5.6). Moreover, Div € X,, and

(59) ID2DH(0" — v?) ()] < 1o DM (u' = u?) (1)
|DID* v°(1)] < cq5|D¥f|, k=0,1

where v = 7 (f,u'), i = 1,2, v° = 7(f, 0).
If u e X*(e), then DZve X5 and (5.9) holds for k = 0, 1, 2.

Proof. First of all, consider a linear problem
(a) Ve, =h
(b) v(0,1) =v(l,t)=0, reR".
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As to the above problem, we have the following result. If h e X*, k = 1, 2, then
there is a unique solution v such that

(c). Dive Xk,
and
(d) [DZD*v(t)] < c1q|D¥H(1)|, teR'.

(Cf. [15] for a more general case.)
Fix for the moment u € X*(¢), fe A(n). Consider the operator S determined
uniquely as a solution of

~¢(Sv),y = —u, — du — F(D'u, DXv) + f
Sv(0,1) = Su(l,1) =0, teR'.

Combining (d) with Lemma 2, we get

(e) |D2DH(Sv! — $0%) (1)) <
< eus(e + [DID*1(0)] + [DEDF (1)) (|D2DH(0" = %) (1))
(f) |DZD*Sv| < ¢y6(e + 1 + (e + | DID*Sv])?).

One checks easily by means of the contraction mapping principle that for ¢, > 0
small enough, S has a (unique) fixed point. Using the results of Lemma 2 we can
show the estimate (5.9).

Q.E.D.
In accordance with the notation of Theorem 2, we can set
P(u, A) = F{(D'u, D27 (f,u)), i=1,2,3
F(u,2) = —F4(D'u, DT (f,u))u, — ... — Fg(D'u, D27 (f,u))u + f,.

It is a matter of routine, by combining Lemma 1 with Lemma 2, to verify all
assumptions required in Theorem 2. Thus the existence of a unique solution to the
problem (5.1)—(5.3) can be proved via the results of Section 2.

Example 2 (integral operators). Consider integral operators of the form
Pi(u, A) = o * p'(s, D'u(x, t — s))ds, i=1,2,3,
F(u, ) = [o % F(s, D'u(x, 1 — s))ds + 4

where 1e X3,
As to the functions p’ = p(s, y), i = 1,2,3, F = F(s, y), we assume that they
are defined on [0, +00) x U, U being an open neighborhood of the point 0 € R3.
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Further, p', F are supposed to be smooth and
(5.10) [Dig(s, )| < @u(s) k=0,1,...

for g = p', F where ¢, are functions integrable on the set [0, + o).
Moreover, we require

(5.11) D;F(s,0) = 0 forall se[0, +o).

Taking Lemma 1, Lemma 2 into account, we are able to verify all requirements
appearing in the theorems of Section 2.
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Souhrn

GLOBALNI V CASE RESENI KVAZILINEARNICH ROVNIC
SE ZPOZDENIM

EDUARD FEIREISL

V praci je dokazana existence malych globalnich (v &ase) feSeni abstraktni evolu&ni rovnice
s tlumicim &lenem. Vysledek je aplikovan na siln& nelinearni telegrafni rovnici a na rovnice
obsahujici operatory se zpozdénim.
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