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Summary. The paper deals with the bifurcation phenomena of heteroclinic orbits for diffeo-
morphisms. The existence of a Melnikov-like function for the two-dimensional case is shown.
Simple possibilities of bifurcation of the set of heteroclinic points are described for higher-
dimensional cases.
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1. INTRODUCTION

In this paper we investigate bifurcation of heteroclinic orbits for diffeomorphisms.
The results are obtained by the Lyapunov-Schmidt method. This method was used
for the study of an analogous problem for ordinary differential equations in [4, 8].

2. TWO-DIMENSIONAL CASE

Let us consider a C*-smooth mapping ®: R?> — R? with the following properties
on the set M = (—1/2, 3/2) x (—o0, o)

i) @ has the form &(x,y) = (f(x),g(x, y)), where g(x,0) =0 for each
xe(-1/2,3/2),

ii) the mapping f:R — R has fixed points 0, 1 such that f'(0) > 1, f'(1) < 1,
f(*) > 0 and g,(+,0) + 0. Further we assume the existence of a sequence
{x,}12 = (0,1), xp41 = f(x,), x, = 1(0) as n — oo —o0).

Thus ¢ has the heteroclinic orbit I' = {(x,, 0)}1% from (0, 0) to (1, 0). We note
that @ also has the family of heteroclinic orbits # = {{f"(x), 0)}12, x €(0, 1)} and
this family contains I'. We perturb this mapping and try to find heteroclinic orbits
near I' for the perturbed mapping.
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Let us consider the variational equation of @ around I
Uypy — f,(x ) u, =4a,,
n+1 gy(xn’ 0) 1 - bn .

For the mapping g we have the following four cases:

|9,(0,0)] > 1, g,(1,0)| < 1.

Lemma 2.1. Let X = {{(a,, b,)} 2, a,, b, e R, |{(a,, b,)}| = sup {|a,]. |b.|} <
and consider the linear operator LX X,

L({(um Un) tz) = {un+1 - f,(xn) Uy Uy — gy(xm 0) . Un}t: .
Then
dimKerL=2, codimImL=0.

Proof. From the equation
un+ 1= f,(xn) . un > vn+1 = gy('xm 0) . l)"
using lim |f’(x,)] = land lim |g,(x,, 0)] = 1 we have
n—+ o0

n— + oo

Ker L= R{(I1 f'(x,), 0)}T% @ R{(0, M g,(x,,0)}*2
1 1

where
. ag...d,_1 z 1
[Ta, =41 , =0
! la_, ... l/a,,, <0.

For {(a,, b,)} © £ € X we solve the equation
(2'2) un+ 1= f'(x,,) u, + a,,

Upyr = gy(xm 0) v, + bn .
The first (and similarly the second) equation of (2.2) has the general solution

a.
u, = f(xy-q) ... f(x )(Z""1 — +K>, n=1
' AT () e f(x0)
u0=K9 u-—l :(_a—l +K)/f’(x—l)’

1 -2 — a. Xigq ,x-l—.a—l ’
FoT e & TS ) S ) — g+ K)

n<s =2,

u, =

Since lim |f'(x,)| < 1 we have sup |u,| < oo. The proof of the other cascs s similar.

n— o

19,(0,0)] > 1, g,(1, 0)] > 1.
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Lemma 2.2. In this case dim Ker L = 1, codim Im L = 0.

Proof. The case dim Ker L = 1 is clear. In this case the first equation of (2.2)
has a bounded solution for each K. The second has a bounded solution iff the corre-
sponding K is

b;
g,(x:, 0) ... g,(xo, 0)

This series is convergent and thus codim Im L = 0.

K=—xi=

C. |g,(0.0)] <1, lgy(1,0)] > 1.
In this case we obtain the same result as in the case B.

D. |g,(0,0)] < 1, |gy(1,0)] > 1.

Lemma 2.3. In this case dim Ker L = 1, codim Im L = 1.

Proof. We prove the second part of the lemma. The second equation of (2.2)
has a bounded solution for n — oo iff the corresponding K is

K _ Z+ <) bi
gy(x1, 0) ... g,(x0, 0)

- 0

and forn - — oo iff

I

K=232bg,xi11.0)...9,(x_1,0) +b_, .
Hence
d—l = E:Z b,’ gy(xi+1, 0)...gy(x__1, 0) + b"l +
b; ~0
gy(xi’ 0) -Hgy(xO’ 0)

We see that (2.2) has a bounded solution if and only if d_; = 0 and this relation
implies codim Im L = 1.

We define the projection P: X — X, P({(a,, b,)}) = {(0, d,)} 1%, where d, = 0 for
n+ —1 and d_, is defined in the above proof. We see that {(a,, b,)} % e Im L
if and only if P({(a,, b,}}) = 0. Thus we define the operator K: (I — P) X — X,

K({(an’ bn)}tz) = {(um Un)}i: , =0,

where {(u,, v,)} £ 2 is unique bounded solution of (2.2).

The mapping @ has hyperbolic fixed points (0, 0) and (0, 0). Hence a perturbed
mapping ®,: R?> — R? has fixed points p,, g, near them, which are hyperbolic as
well. Consider the equation

(23) Zyyy — Pfz,) =0

+ 25
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on the space X. (We assume @,(+) e C*.) This equation can be written in the form

(24) Ups1 + Xy = f(x, + u,) + O(e),

Va1 = g(x, + 4, v,) + O(e) .
We seek for a bounded solution of (2.4) with |u,| + [v,] + |e| < 1, i.e. we solve the
equation (2.4) in X near 0 € X for e small. It is clear that the linearization of (2.4)

at 0e X for e = 0 is precisely the operator L. According to Lemma 2.3 we have
for the case D

dimKerL=1 and codimImL=1.

Hence applying the Lyapunov-Schmidt method [1, 10] we derive a bifurcation
eguation of the equation (2.4),

(2.5) 0(c,e)=0, Q:UxU—-R,
where U is a neighbourhood of 0 € R. Since for e = 0 the equation (2.4) has the solu-

tion u, = f"(x) — x,, v, = 0 for each x e(0, 1), we obtain that Q(c, 0) = 0. We
note that each small solution of (2.4) yields a heteroclinic orbit of &, near I".

Theorem 2.4. For the case D we obtain the above bifurcation equation (2.5).

Now we investigate the remaining cases. For these cases we have also the equation
(2.4), but according to Lemmas 2.1, 2.2 the linearization of (2.4), which is the operator
L, satisfies codim Im L = 0, i.e. L is surjective and applying the implicit function
theorem we have for e small

Theorem 2.5. In the case A there is a three-parametric family of heteroclinic
orbits near I', where one parameter is e and the other corresponds to the parameter
x from the above mentioned family 4 of heteroclinic orbits of .

Theorem 2.6. In the cases B, C we have a two-parametric family of heteroclinic
orbits near I', where one parameter is e and the other corresponds to the parameter
X from the above mentioned family M.

3. GENERAL CASE

Definition 3.1 (see [6]). Let X be a Banach space and {T,},o; € £(X). We say that
{T,}er has a discrete dichotomy on I = (Z,Z, = Nu {0}, Z_ = —Z,) if there
exist positive numbers M, 0 < 1 and a sequence of projections {P,} e such that

1) T;xPn = Pn+1:rn’
ii) T,/Im P, is an isomorphism from Im P, into Im P, ,.
iii) if T, = T,y ... Ty T, for n > m, T, , = Identity,
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then

|Tm(I = P,) x| S MO ™|x| for nzm,
| T, P S MO "|x| for n<m,

where T, ,,P,x = y iff P,x = T, , y for the case m > n.

Remark 3.2. If T, is a sequence of isomorphisms then the above definition is
equivalent to the property that there is a projection P €.#(X) such that

|T(m) P T™(s) < M6, mzs,
[T(m)(I — P)T"'(s)| £ M&™, s=m,
where T(n) = T_,... T, for n 2 1, T(n) = T;7' ... T2} for n < 0, T(0) = I.
Theorem 3.3. Let {A,},.; be a sequence of invertible matrices A,e Z(R™, R™)
with bounded |4,|, |A;"| on Z. We assume that {A,} has a discrete dichotomy both
onZ, and Z_. Define the operator

L:X > X = {{a,}12, sup [a,| < o, a,e R"},
L({a"})l! = Quyq — Anan

Then Lis a Fredholm operator and {f,} e Im Liff £
solution {c,} of the equation

(3.1)

+
-

c¥f, = 0 for each bounded

¢, = (A7) ' c,—y (* means the transpose) .
Proof. We consider the equation

(3.2)

Xp+1 = Anxn .

By assumption this equation has a discrete dichotomy on Z, _, with projection
P, Q.(3.2) has the fundamental solution on Z ,

T(n) = A,_y... Ay, nz1, T0)=1I.

The equation (3.1) on the set I, = {—1,0, 1, ...} has the fundamental solution
S(n) = (45)~"...I = (T(n + 1)*)~*.

We see that (3.1) has a discrete dichotomy on I, with the projection I — P*. Indeed,
by Remark 3.2 and using the fact [4| = [4*| we have

(T(s + 1)%)"1 P* T(m + 1)*] < Mo™~

| (s + 09 (1 = P*) T(m + 1] < MO 52 m,
T st e s i) < Mo mzs,
|S(s) (I — P*¥) S™(m)| £ M6~ s=m.
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Similarly, on the set/, = {..., —2, —1} the equation (3.1) has a discrete dichotomy
with the projection I — Q¥*. It is clear that Ker L~ Vn W, where V = Im P and
W = Ker Q. Hence dim Ker L= dim Vn W. For (3.1) we have dim Ker L* =
= dim V- n W*, where V* is the orthogonal complement of ¥V and L*: X — X
has the form

(L*({cn}ii)n =C, — (A:()—l [

Using the fact dim Ker L = dim V* n W* we see that {c,} is a bounded solution
of (3.1) iff ¢, € V' n W, and since {4, } has a discrete dichotomy on I, and I, we
obtain that for cach such solution {c,}, ¢, tends geometrically to zero as n — +o0.
Hence Zc,f, is convergent for {f,}*% bounded.

For {f,} €Im L and a bounded solution {c,} of (3.1) we have

Ay = Anan +fn’

Hence
+o0 ¥ +oof ¥ *
z:-oo Cnan+1 = Z-oo(annan + cnfn) .
Thus
+o0 ¥ +o0 ¥ 4% +o0 ¥
Z:—eoancn—l :E—oo anAncn+Z—oocn n N
and
+oo 3k * + o0 %k
0= E—oo an(cn—l - Ancn) = z—oocn n

Conversely, if 222 ¢,f, = 0 for each bounded solution {c,} of (3.1) then we see that
for each d € R™ satisfying d*(P — (I — Q)) = 0 and putting T; = T(j) for j = 0,
T, = T(j) = A; ' ... AZ{ for j < 0, the sequence

(3.3) ¢, =(T5) "(I-=P9d, nz -1
6= (Th) Q. n< -1
is the solution of (3.1) and hence
AN, 0(Ts 1) fu + Zg (I = PY(T,+1) "' f,) = 0.
Thus the following matrix equation has a solution g:
(P=(I-0)g=200T ) " fu + Z5°(I = P) T34 1, -
Let us define the sequence {x,} by
x, = T,Pg + %7 TPT f, — Z7° T,(I — P)T,33f,, nz0,
X, =TI - Qg + 2, TOT i f, — & ' T,(I - )T, n<0,
where we consider Z7 ... = 0 for p > g. The sequende {x,} is well-defined since g
satisfies the above matrix equation. It is not difficult to see that {x,} is a solution
of Lx = f. Now we proceed in the same way as in [4] and hence we obtain that

codim Im L = dim ¥* n W* and index L = dim V + dim W — m. This completes
the proof.
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Lemma 3.4. Let {A,},>, have a discrete dichotomy on Z,, A, being invertible,
bounded on Z,, A, e £(R™). Let |B,| > 0, B,e Z(R™), as n - +oo. Further we
assume that {A, + B,} are invertible. Then {A, + B,},>, has a discrete dichotomy
on Z, and, moreover, if P, P’ are projections of dichotomies for {A,}, {4, + B,}
(see Remark 3.2), then dim Im P = dim Im P'.

Proof. For e > 0 sufficiently small there is j € N such that for each n = j we have
|B,| < e. Hence by [6] the sequence {4, x B,},»; has a discrete dichotomy with
projections {P,},. ;. If {P,},, ; are projections for {4,},>, then by [6] we also have

(3.4) |P, — Pl <eM,, nzj.
Since A4, + B, are invertible we can construct back projections P, Py, ..., P;_,

such that {4, + B,},», has a discrete dichotomy on Z, with the projections
{P2}nz0- It is clear that

dimIm P, = dimIm P,,; = dimIm P,

dim Im P, = dimIm P,,, = dim Im P’ .
By (3.4) we have

dimIm P’ =dimIm P.

Now we consider a C'-mapping G: U — R™, U being an open subset of R™.
We assume that G has two fixed points y,, y, which are hyperbolic and there is
a subsequence {x,} % < U such that

limx, =y,, limx,=y,, x,4; =G(x,), detDG(x,) 0.
n— — oo n—>+ o
Then we can solve the same problem as in the previous section: we put G into a smooth
family G,: R™ — R™ of mappings, G, = G. We want to find heteroclinic orbits of G,

for e small near I' = {x,}12. To this end we consider the equation H,(+) = 0,
H,:.X - X,

H({z} 12 = 2441 — Golz,) -

We see that Hy(I') = 0 and (D Ho(T') {z,}13), = z4+1 — D G(x,) z,, and if we put
L= D Hy(T), by Theorem 3.3 Lis a Fredholm operator. Since x, = y;;) as n —
— 0o(—c0), applying Lemma 3.4 we have

index L= m,; + m, — m,

where m,,, is the number (counting multiplicities) of the eigenvalues of D G(y21)
with absolute values smaller (greater) than 1. Hence we can reduce the equation
H,(z) = 0 near z = I' by using the Lyapunov-Schmidt method to the bifurcation
equation

Q(c,e) =0,
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where Q: U, x U, - RY¥™ " 7. U, are open neighbourhoods of O e R*™¥eE,
R respectively, and Q(0, 0) = 0. Note that dim Ker L* = dim codim Im L. Finally,
we can investigate the equation Q(c, e) = O near ¢ = 0, e = 0 by applying the theory
of singularities of finite-dimensional mappings [5,9]. We note that each solution
of H,(+) = 0 near I for e small yields a heteroclinic orbit of G, near {x,} 5.

We will follow the above mentioned procedure for special cases of G in the next
section.

4. APPLICATIONS

We generalize the problem from Section 2. Consider a mapping f: R — R with
the same properties as in Section 2. Further, we consider a C3-mapping G

X1 = f(x) + o([yl)
i =A(x)y + o(]y]),

where y € R"™1. We assume that A(-) e L(R™ '), det A(+)/<0, 1> + 0 and 4(0),
A(1) are hyperbolic, i.e. they have no eigenvalues on the unit circle. Then G has the
trajectory I' = {(x,,0)}X2 and (0, 0), (1, 0) are hyperbolic fixed points. Consider
a perturbed mapping G,: R" — R", ee R, G, = G, G.(-) e C*. Now we apply the
above mentioned procedure from the end of Section 3, and the relevant operator L
has the index

(4.1) index L=2dimKerL+ m; + m, — m,

where dim Ker L + m;;, — 1 is the number of the eigenvalues of A(1,(0)) with
absolute values smaller (greater) than 1.
We shall investigate two cases:

A. dimKerL=1, indexL=0.

In this case the bifurcation equation (see the end of Section 3) has the form
Q:U, x U,eR,
where U,(,, are neighbourhoods of 0 e R and Q(c, 0) = 0, since G, = G has the
family of heteroclinic orbits 4 = {{(f"(x),0)}7%, x (0, 1)}. Hence Q(c,e) =
= e H(c, e). Thus a necessary condition for the bifurcation is H(0, 0) = 0. Moreover,
if H(0,0) = 0 and H,(0, 0) % O then by the implicit function theorem we have near
(0,0) '
e+0 and Qc,e) =0 iff c=cle), c¢(0)=0.

Summing up we have proved the following theorem:

Theorem 4.1. If H(0, 0) = 0 and H,(0, 0) = O then in a neighbourhood of I' there
is a unique trajectory I', of G, for e £ 0 small. From (4.1) we have m = 2.

B. dimKerL>2, codimImL=1.

362



From (4.1) we have m = dim Ker L + 1. In this case the bifurcation equation has
the form

Q:U;, xU; xU,—>R,
where U, are neighbourhoods of 0 € R, Uj is a neighbourhood of 0 € R¥™KerL—1,
ee U,. The variable ¢ € U, corresponds to the family .#. Hence Q(c, 0, 0) = 0 and
since Q is the bifurcation equation we have D, 0(0,0,0) = 0, x € U;. We assume

that D2 Q(0, 0, 0) is a nondegenerate matrix. Then using the splitting lemma [9]
we obtain that Q(+, -, +) is strongly right equivalent to

0(c, 0, ¢) + (D2 0(0, 0, 0) x, x> (1]2),

where (-, +) is the scalar product in R*™ ">~ ', Since Q(c, 0, 0) = 0, we obtain
0(c,0,e) = e H(c, e) .

If we assume that H(0, 0) = 0, then the following theorem holds:

Theorem 4.2. Under the above conditions in a neighboz)rhood of I"for‘e :sma‘ll
either there are infinitely many trajectories of G, or

i) there is no heteroclinic point near (x,, 0) € R™ for e < 0(>0),
ii) the set of heteroclinic points of G, near (x,,0) lies on (0,1) x {0} = R x
x R™™' and is homeomorphic to (0, 1) for e = 0, .

iii) the set of heteroclinic points of G, near (x,,0) is homeomorphic to ST™KerE=% x
x (0, 1) for e > 0(<0).

(We note that a heteroclinic point is a point which lies on a heteroclinic orbit and
S* is the k-dimensional sphere.)

Proof. Near (0, 0) we must solve in (¢, x) the equation
e H(c, e) + <D% 0(0,0,0) x, x» (1/2) = 0

for e small. Since H(0,0) # 0 and DZ Q(0,0,0) is nondegenerate the structure
of solutions near (0, 0) depends mainly on the matrix D} Q(0, 0, 0). According as
this matrix is indefinite or not we obtain either the first or the second assertion::

Remark 4.3. The conditions of regularity from the above theorems 4.1 and 4.2
can be expressed explicitly.

Remark 4.4. Using the Morse critical point theory [5] we obtain a precise
picture of the set of heteroclinic points of G, near (x,, 0) for e small in Theorem 4.2.
For instance, in the second part of this theorem the sphere, which is homeomorphic
to SHmKerL=2 'in the case iii) shrinks to the point 0 as e — 0.

We see that we can use this method for the investigation of local intersections
of stable and unstable manifolds. For instance, let f: R™ — R™ be a C3-dit’feomorphisiﬁ
with hyperbolic fixed points y,, y, and let us assume that m; =1, m, =m — 1
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(see the end of Section 3). The point y, has a one-dimensional stable manifold S,
and y, has an (m — 1)-dimensional unstable manifold R,. If Ry N Sy 3 x, then for
the orbit {f"(xo)}*% we have an operator L from Section 3 and index L= 0,
dim Ker L < 1. If dim Ker L = 0 then L is inverible and for a perturbed smooth
mapping f,: R™ - R™ R, and S, have a transversal intersection near x, for e small,
where R,, S,, are the stable and unstable manifolds of f, near R, S,, respectively.
This follows from the fact that in this case the operator H,(-). (see the end of Section 3)
is invertible in {f"(x,)} T %. If dim Ker L = 1 then for f, we obtain the bifurcation
equation Q(c,e) =0, Q:U x U — R, where U is a neighbourhood of 0 e R and
0(0,0) = 0, 0(0, 0) =0. The generic conditions are Q..(0, 0) # 0and Q,(0, 0) =+ 0.
Under these conditions R, is tangent to S, at x,, since R,, S, have no intersections
near x, for small e > 0 (e < 0), and have precisely a two-point transversal inter-
section near x, for small e < 0(>0). This last assertion follows from the fact that
our assumptions for Q imply that Q = 0 is equivalent to ¢* + e = 0.

Now we return to the case D from Section 2. It is a particular case of the case A
of this section and we are going to derive the bifurcation equation Q from the end
of Section 3. Thus we consider the mapping

(4'2) Zn+l = f(zn) + e h(zm yn) H
Yn+1 = g(z,,, yn) + e t(Z,,, .Vn) >

where f, g have the properties from Section 2, h, te C*. We put v, = y,, z, = X, +
+ ce, + u,, where I' = {x,}12, {e,} 2% e Ker L, u, = 0. Then

U,y = fx, + ¢, e, + u,) — f(x,) — ce,oq + eh(-, +)
Upy1 = g(x, + ce, + u,,0,) +e.1(,*).

Using the projection P from Section 2 we have
U,y = f(x, + ce, + u,) — f(x,) — ce,.q + eh(-, *)
(I - P){v,s; — g(x, + ce, + u,,v,) —et(-,")} =0
P{v,,, — g(x, + ce, + u,,v,) —et(-,*)} =0,

where by the implicit function theorem we can solve the first two equations and
inserting this solution in the last equation we obtain the bifurcation equation

0(c, e) = P{v,44(c, €) — g(x, + ce, + u,(c, e), v,(c, e)) — et(+, *)} =

As a matter of fact, we have just carried out the Lyapunov-Schmidt procedure for
our case.
We see that

0.(0,0) = P{t(x,, 0)} .
Further, using v,(c, 0) = 0, ug(0, 0) = (d/dc) u,(c, 0)/.—o = 0 we obtain
Q.(0,0) = P{—t.(x, 0) e, — v5(0,0) g, (x,, 0) &,} ,
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where the sequence {v;(0, 0)} satisfies
@3)  (50a(0,0) = 1500, 0) gy(xs 0)) = (I — P) {1(x, 0}
Taking the system {x,(s)}*%, se(—4,6), x,(s) = f"(s + x,) we repeat the above
procedure and the equation (4.3) assumes the form
(0724(5.0.0) — 15(5,0,0) (5,51, )} = (I — P9 {(x(5). 0},

where P(s) is the projection from Section 2 corresponding to {x,(s)}* . Differentiat-
ing the above equation by s we find

(4.4) {075 1(0,0,0) — 550, 0, 0) g,(x,, 0) — v;(0, 0, 0) g, (x,, 0) x3(0)} =
= (1 = P(O) {1.(5, 0 x3(0)) ~ P(0) {i(x,,0)}.

Note that x,(s) = x, + se, + u,(s, 0) for small s, hence
x3(0) = e, .

Finally, we put

F(s) = P(s) {t(x.(s): 0)} ,

7(0) = 0,(0,0).
From (4.4) we have

0.0, 0) = P{—1.(x,, 0) &, = (0, 0) g,(x,, 0) &} =
P{=P(0) {1.(x, 0) e&,} — P*(0) {t(xy 0)}} =
—P(0) {t,(x,. 0) e,} — P*(0){t(x,,0)} = —F(0).

Hence the conditions Q,(0,0) =0, Q.(0,0) # 0 are equivalent to r(x,) =0,
r'(xo) # 0 and r has the explicit form

(4.5) r(s) = T22H(f(5), 0) g,(f**(s), 0) ... g,(f ~*(s), 0) + t(f'(5), 0) +
fse 6.0
0,76),0) - 9,(5.0)

Summing up we have proved

then

Theorem 4.4. For the mapping (4.2) the function (4.5) r:(0,1) > R has the
following properties: If there is s € (0, 1) such that r(s) = 0 and r'(s) + O then
the mapping (4.2) has for e small an orbit T', near I' = {(f"(s), 0)}X%. Moreover,
for e % 0, ', is a transversal heteroclinic orbit. Hence the function r plays the same
role as the Melnikov function for ordinary differential equations

Finally, we consider the quasi-linear mappings

ax, x<1f2, a>1, a<?2
f(x)_{(2—a)x—1+a, x =12
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yp, x=1[2, 0<p<1
g(x, y) =3yuv(x), 12<x=af2
yld, x=zal2, 0<d<1,
where v e C? is increasing on (1/2, a/2) and v = p for x £ 1/2,v = 1/d for x = a2,

ty, x=<1/2
((x,0) =3Sw(x), 12<x<af2
t23 X g a/za

where te C°, a, p, d, t,, t, are constants. We will apply Theorem 4.4. In this case
the sequence {x,}* % has the form

x; =a'z, j<0
Xo =2z, ze(1/2, a/2)
2-af(z-1D+1, j>0,

II

Xy
and

i
r(z) =22, P71 + v ol _

oD ) '
+ (w(z) + t, —
(o)

1-4d v(z\).

=1
1 1 _ p
Further, if

r(1)2) = by (t1 + 1, d >1 >0 <0
(4.6) d or
d <0

1-p 1-d
i)

Theorem 4.5. If f, v, t have the above properties, h e C*(R x R, R), the numbers
1y, 15, , d satisfy the condition (4.6) and r'(+) % 0 on (1/2, a/2), then the mapping

x; = f(x) + eh(x, y),
yi=yu(x) + ex, y)

has at least one transversal heteroclinic orbit for e + 0 small near the set (0, 1) x
x {0},

" Note that for a general ¢ the function r has the form

r(a/2)=12 +(tz+t2 i >0

1

then we obtain the following theorem.

r(z) = 225 t(a’z, 0) phl~t Lz 0

v(z)

I 2 —a)f (z = 1) + 1, 0)%, ze(1)2, af2).
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Stuhrn

BIFURKACIA HETEROKLINICKYCH TRAJEKTORIf DIFEOMEORFIZMOV

MicHAL FECKAN

V ¢lanku sa Studuja bifurkacie heteroklinickych trajektorii difeomorfizmov. Hlavnou metédou
je Lyapunovova-Schmidtova redukcia. Pre dvojrozmerny pripad je odvodena funkcia, ktora
hra t ista ulohu pre bifurkacie ako Melnikova funkcia pre diferencidlne rovnice.
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