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CONSISTENCY OF LINEAR AND QUADRATIC LEAST
SQUARES ESTIMATORS IN REGRESSION MODELS WITH
COVARIANCE STATIONARY ERRORS
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Summary. The least squres invariant quadratic estimator of an unknown covariance function
of a stochastic process is defined and a sufficient condition for consistency of this estimator is
derived. The mean value of the observed process is assumed to fulfil a linear regression model.
A sufficient condition for consistency of the least squares estimator of the regression parameters
is derived, too.
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0. INTRODUCTION

The problem of consistency of the linear least squares estimators of regression
coefficients in linear regression models belongs to the classical problems of the
asymptotic statistics and was studied for example in [1], [2], [3], [4]. Only a few
results are known about the consistency of quadratic estimators, see [5], [6], in the
mixed linear models. The aim of this article is to define the invariant quadratic least
squares estimators of a covariance function of a covariance stationary random
process, mean value of which fulfils the linear regression model, and to find con-
ditions under which these estimators are consistent. It will be shown that these con-
ditions do not depend on the design matrix of the regression model; they depend
only on some limit properties of the estimated covariance function and are rather
weak.

It will be assumed in the sequel that the n x 1 random vector X is a finite observa-
tion of a random process X = {X(1); te Z}, Z = {0, +1, +2, ...} with E[X(¢)] =

k
= Y B.fi(t); teZ, where f,, ..., f, are known functions and Cov {X(s); X(¢)} =
i=1 t
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= R(|s s ti), s, t € Z. Thus we ‘can write
(0.1) X =Fp+e, where E[e] =0, E[eg] =2

with Z;; = R(|i = j|); i,j = 1,2,...,n and F is a known n x k matrix of the full
rank k.

1. CONSISTENCY OF THE LEAST SQUARES ESTIMATOR
OF REGRESSION PARAMETERS

Let Cive T
(1.1) B=(FF)~'FX
lze the LSE of g in (0.1). Then it is clear that the covariance matrix X3 of the estimator
B is given by
I; = (FF) ' FXF(FF)™',
and for the dispersion of any linear function f'f; f € E* of p we get
Dy[f'B] = f(FF)~* FXF(FF)~' f.
‘Using the S‘ch‘v‘v’arz inequality we can write
Dy[f'B] = (ZF(FF)"' f, F(FF) ™' f)p. <
< |2 IFER™ flz = [2] . F(FF'F,

where (a,b)z. = a'b =Y ab; a,beE" is the usual Euclidean inner product

i=1

in E" and |A denotes the Euclidean norm of a matrix A generated by the inner
product (A, B) = Z A;;B;; defined in the space of n x n matrices.

Since X;; =

<(1 2) [[2{[ < (n RZ(()) + 22 (n — 1) R(1))2.

F depends on i #nd lef s write F = F, in the sequel. Now let (F,F,) = O(1/n), by
which we mean that lim (F,F,)™' . n = G, where G is a nonnegative definite matrix.

n— oo

Then for any f e EF we have

(1.3) lim D[f'8] < lim <5-( ), 2 - ,Zl ( >R2(t))1/2 . f'Gf .

n—o0 n— o0

The following 1 theofem is a consequence of the derived inequality.

Theorem 1.1. Let X fulfil the model (0.1), and let (F,F,)™" = O(1/n). Let

lim L 3 (1——;>R2(t)=0.

n—oo N t=1

Then for any f & E*, f'B converges in probability to f'f as n — .
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Proof. It follows from the Tchebyshev inequality and from the inequality (1.3).
Corollary 1.1. Let (F,F,)™" = O(1/n) and let lim R(t) = 0. Then Theorem 1.1
holds. =
Proof. It follows from the inequality
LI (R s SR
nt=1 h nt=1

and from the fact that

lim R(f) = lim ~ Y R2(f) = 0 of limR() = 0.

t-00 noeo Mf=1 o0
Example. Let E[X(¢)] = B; + B,t be a linear trend of X. Then
2(2n + 1) 6
T R S RO
Ca(n—1) n(n® - 1)
and the first condition of Theorem 1.1 is fulfilled. Thus the claim of Theorem 1.1 is
true if the second condition of the theorem (or its corollary) is fulfilled.

2. CONSISTENCY OF THE LEAST SQUARES ESTIMATOR
OF A COVARIANCE FUNCTION

Let us consider again the model (0.1). Then the assumption Z;; = R(|i — j|);

n—1

i,j =1,2,...,n can be written in the form ¥ =Y R(f) U(t), where U(0) = I;
t=0

U(1) = K(r) + K(z)', with K(f) being the block matrix

_ (1)
<0 =(g¢")

where I() is the (n — t) x (n — t) identity matrix for t = 1,2, ...,n — 1. Thus the

model (0.1) can be regarded as a mixed linear model with unknown parameters

B = (B ... B) and R = (R(0), ..., R(n — 1))".

Let B be the least squares estimator of f and let
£ =(X-Fp)(X—FB)y = (I —P)XX(I - P),
where P = F(F'F)™! F' is a preliminary estimate of X.

Definition. The estimator R = (R(0), ..., R(n — 1))’ for which the equality
n—1 n—1
[ X R({)U; = £|> = min | Y. ¢;U; — £|?
i=0 ¢ i=0
holds will be called the least squares estimator of R.
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Lemma 2.1. The estimator R given by

G RO =8 (XG0 = B+ 0)(XO) — () ()

n—t
t=0,1,...n—-1,

where FB = (FB) (1), ..., (FB) (n)), B given by (1.1), is the least squares estimator
of R.
n—1

Proof. We are looking for the projection £ = Y R(i) U(i) of the matrix £ on the
i=0
subspace generated by matrices U,,..., U,_,. These matrices are orthogonal,
(U, U,) = 0 for s + ¢t and their Gramm’s matrix G is diagonal with Gy, = n and
G,=|U|*=2(n—-1);t=1,2,...,n — 1. Thus the vector R which determines
the projection £ of £ is given by

(2.2) R=G(Z ),
where (£, U) = ((&, U,), ..., (£, U,_,))". We see that R given by (2.2) is the same
estimator as that given by (2.1). =

Now let B(O) = Il and let B(t) = 1/2 U(t) = 1./2 (K(t) + K(t)’), t=1,2,...,n— 1.
Then we can write

R(1) = ;{_t (5, B(1)) = ;.1: tr (£ B(1)) =

= XU-P)BO(I-P)X; 1=0,1,..n—1.
n—t '

Using the theory of invariant quadratic estimators given in [5] we see that estimators
R(t); t=0,1,...,n — 1 are quadratic (in X) estimators, which are invariant with
respect to the regression parameters . According to this theory we can write

- 1
(2:3) E;[R(1)] = — ttr ((r—P)B(r)(1 — P)%)
and, for a normally distributed random vector X,

(24) DAR(] = — 2 tr (1 = PYB:) (1 = P) 2)?)

(n 1)
for the mean value and the dispersion of the estimators R(t); t = 0,1,...,n — 1,
where ¥ ='f_le(i) u(i).
From (2.l3=)0we get

(25) Ex[R(1)] = R(1) -

+ tr (B(t) P) — tr (B(r) PZP)),

1

n—t

(tr (B(1) PX) +
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from which it follows that the estimators R(f); t = 0,1, ..., n — 1 are biased.
Using the Schwarz inequality we get

|tr (B(1) PZ)| < |B() P[ - | Z] -
The same inequality holds with |tr (P B(1) E)l on the left hand side and
|tr (B(r) PXP)| < [|B() P| . | 2] . [P] »

since |AB| < |A] . ||B]| for any matrices A and B.
Now, let Abe any n x n matrix. Then we can write

ko= (o d) (a4 = (e o)

where A,; is (n — t) x t matrix and A,, is (n — t) x (n — t) matrix, from which it
can be seen that [|K(z) A|| < |A|. By analogy |K(z)’ A| < |A]. Thus we can write
(26) 18(1) P|| = 1 (K(1) + K(z)) P| < |[P] -
Using this inequality we get
1

— e (B P2)| < [P] - [2] .

(2.7)

1_ | (PB() 2)| < Z{_} 1P].[2] and

“— |tr (B() PP)| = —— [P[. |2]

Since “P”2 tr (P?) = tr (P) = rank (P) = k we can prove the following theorem.

Theorem 2.1. Let for a covariance function R(+) of a random process X the con-
dition

lim 1 ¥ (1__> R¥(f) = 0

n—oo Nt=1

hold. Then the estimators R(t) given (2.1) are asymptotically unbiased estimators
of R(t) for every fixed t.
Proof. From (2.5) and (2.7) we get, using (1.2), the inequality

|Es[R(1)] — R(1)| = (2k”2 + k).

< 2’50) %;( %) Rz(t)>1/2.

Corollary 2.1. Let lim R(t) = 0. Then the claim of the preceding theorem holds,
too. e

Proof. The same as that of Corollary 1.1. g
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Now let us assume that the random process X is Gaussian. Then we have the
expression (2.4) for the variances of the estimators R(f), which can be written in the
form

DARO] = 2 3 [ (80 27) + 1w (B P2)) + .

.. + (=1) tr (P B(¢) ZP B(f) PX)] .
Using the inequalities ]tr (AC)[ < |A].]€]. |Ac]l = |A] - [<], [|B(t) A] £ [ A]
which hold for any matrices A and C we get the following inequality

8 pROIS s el

where the constant ¢ does not depend on n but depénds only on k, since, for example,
|tr (B(r) 2)*)| = [B(1) 2]* = [ 2],
|tr (P B(¢) ZP B(1) PZ)| < [P|* . [Z]* = k2| Z]>.

The following theorem holds.

Theorem 2.2. Let for a covariance function R(*) of the Gaussian random process X
the condition

lim 1 ¥ (1 ——%)Rz(t) =0

n>o0 N t=1

hold. Let R(t) be the estimators of R(t) given by (2.1). Then hm ER[R(t) - R(1)]* =
for every fixed t.

Proof. Since
Ex[R(1) = R(0)]* = Ds[R(1)] + (Es[R(1)] — R(1))*,
the proof follows from Theorem 2.1 and from the inequality (2.8).
Corollary 2.2. Let lim R(t) = 0. Then Theorem 2.2 holds, too.

t— o0

Proof. The same as that of Corollary 1.1.

Remarks. 1. Using the Tchebyshev inequality we can prove that R(f) converges
in probability to R(t) for every fixed ¢t as n — oo under the assumptions of Theorem
2.2 or its corollary.

2. The required assumptions for consistency of the estimators R(t) are rather
weak and they depend neither on the shape of the regression model for the mean
value, nor on the number of regression parameters.

m

Theorem 2.3. Let £ = Y R(t) U(t), where R is the least square estimator of R
t=0
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given by (2.1) and m is any positive integer. Let £ = ¥ R(t) U(t) and let
t=0

lim Ly (1 __> R(f) =0,

n—o N t=1
where R(+) is an unknown covyriance function of a Gaussian random process X.
Then
lim E[[£ — 2|*] = 0.

n—co

Proof. We have
|2 -z]? = U (R(t) —~ R(1) U(1)|* = (R(t) — R(1))*. [U(1)]*

since the matrices U(f); t = 0, 1, ..., m are Orthogonal, and the proof is completed
by applying the results of Theorem 2.2.
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Suhrn

KONZISTENCIA LINEARNYCH A KVADRATICKYCH ODHADOV
V REGRESNYCH MODELOCH S KOVARIANCNE STACIONARNYMI CHYBAMI

FRANTISEK STULAJTER

V &lanku je definovany invariantny kvadraticky odhad ziskany metédou najmensich Stvorcov
pre neznamu kovarianénu funkciu nahodného procesu. Je odvodena postadujuca podmienka pre
konzistenciu tohoto odhadu. O strednej hodnote pozorovaného nidhodného procesu sa pritom
predpoklada, Ze spiiia linearny regresny model. Opit je odvodena postadujuca podmienka pre
konzistenciu odhadu regresnych parametrov ziskanych metodou najmensSich Stvorcov.
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