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Summary. The article deals with certain nonconvex optimization problems which have features
analogous to those of the linear optimization problems. We can find their absolute extrema and
the set of all optimal points of such nonconvex optimization problem represents the closure of
a face of a spherical polyhedron which is its feasible set.
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polyhedron.
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Convex optimization problems have two features which are advantageous for
their numerical calculation, namely that any of their local extrema is at the same
time their absolute extremum, and that the optimal solution set (the set of all
optimal points) of a convex optimization problem is convex. Linear optimization
problems (LO problems) have in addition the property that their optimal solution
set is the closure of a face of a convex polyhedron (which is the feasible set of
a LO problem).

The aim of this article is to pick out certain nonconvex optimization problems

‘(NO problems) for which we can find their absolute extrema and, in addition, whose

optimal solution sets have features analogous to those of the optimal solution set
of a LO problem. Instead of considering a feasible set in the form of a convex
polyhedron, as is the case with LO problems, we have now a fesible set in the form
of a so-called spherical polyhedron (which is the intersection of a polyhedral cone
with a hypersphere, and thus a nonconvex set). We search for a nonconvex objective
function so that the optimal solution set of a NO problem should represent the closure
of a face of a spherical polyhedron. The formulation of the NO problems dealt with
in the article was inspired by the geometrical idea described in Corollary 6. We are
looking for either the smallest or the largest angle between the projection of a vector
of a spherical polyhedron in a certain plane and a certain vector of the plane. Corol-
lary 7 implies that there exist some other nonconvex functions as well as some other
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nonconvex feasible sets such that the corresponding NO problems have features
mentioned above. As an example of a spherical polyhedron we can imagine such
a region on the globe from which we can watch a certain complex of stars simul-
taneously at a fixed moment 7. Indeed, at the time ¢ any star of the complex is visible
within just one hemisphere. For various stars of the complex the corresponding
hemispheres are different. That is why the places on the globe from which all the
complex can be observed simultaneously at ¢ form a spherical polyhedron. Similarly,
the territory on the globe on which we can receive signals from more stationary
satellites located above one hemisphere forms (approximately) a spherical poly-
hedron. The inaccuracy is caused by the fact that the radius of the globe, when com-
pared with the distances of the stationary satellites from the globe, is not negligible.
The objective function considered in this article is connected with the determination
of the time period (by the rotation of the globe), during which, e.g., we can observe
the above considered complex of stars. Namely, the objective function, if equal to
a constant, forms a halfplane the boundary of which is the globe axis and whose
intersection with the surface of the globe is a meridian. Thus, to determine the time
we are looking for means to find the minimum and the maximum of the objective
function in the spherical polyhedron. Another problem like the NO problem treated
in this article can arise when determining a proper admissible direction by gradient
methods for solving nonlinear optimization problems.

INTRODUCTION

Let a,, a, be certain orthonormal vectors in the euclidean space E,. Let us denote

(1.1), R, :={xekE,|(ap, x) =0},
(1.1), H; :={xeE, (a,, x) <0},
(1.2) L,_,:={xeE,|(a,,x) =0, (a,x)=0},

(1.3) f(x) :

]

arccos (ay, x) [(ay, x)> + (a,, x)?]7'?, xeE,NL,_,.

Lemma 1. Let X, € Hy be an arbitrary point and let us define o := f(x,). Then
the set
(1.4) P,:= {xeHy|f(x) = a}

is the open halfhyperplane in E, and its boundary is the set L,_, from (1.2). For
the hyperplane

(1.5), R, := {xeE, (ay sinz + a,cosa, x) = 0} !)

1 : H ] : H L
) Since |la; sin &+ a; cos o || = 1, it follows that a; sin « -+ a cos « - o.
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and the halfspaces

(L1.5), H; := {xeE,| (a, sina + a, cos «, x) > 0},
H; := {xeE, (a, sina + a, cos «, x) < 0}
we have
P, < R,,

0 < f(x,) < f(xo) < f(x,) <m forany x,eHy nH and
x, e Hy nH, .
Proof. Obviously « € (0, m). For any point x € P, we obtain (by (1.3) and (1.4))

arccos (ay, x) [(ay, x)* + (a4, x)*]7"? = o

Hence
(ay, x) = [(ay, x)* + (@, x)*]"/? cos & = sg (a,, x) = sgcos o ,
(1 = cos® @) (ay, x)> = —(a,, x)* cos® a,
(a,sino + a5 cosa, x) = 0.

We have therefore x e R, and thus P, « Hy n R,. The statement Hy n R, < P,

a

can be proved analogously. The set P, = Hy n R, is therefore the open halfhyper-
plane in E,.
For the boundary 0P, := clP,\ P, we obtain from (1.1),, (1.5),

oP, = R,Nn Ry = {xeE,|(a,sino + a5 cosa, x) =0,
(a09 X) = O} = Ln—l .
For an arbitrary point x; € Hy n H, let us define o, := f(x,). Then from the
equality
o, = arccos (ay, x) [(a;, X)* + (ag, x)*] 71/
_we get by (1.3) and (1.1),

N\
(a;sino, + aycosay, x;)=0.

Hence

(g, xy) _ cos o,

L : = cot o .
(ag, x,)  sinoy

Since x; € H, we get (by (1.5),) also (a, sin « + @, cos a, x;) > 0, and therefore

(a4, x)) _ cosa

- =cota.
(ao. x;) sina

So, we have cota, > cota, and thus «, = f(x,) < a = f(x,). The statement
f(xo) < f(x,) for an arbitrary point x, € Hy n H, can be proved analogously.
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SPHERICAL POLYHEDRON

Ifb; + o (i = 1,..., m) are arbitrary vectors in E, (n = 3), then the set
(2.1) K:={xeE,|(b,x)<0 (i=1,..m)}

is evidently a polyhedral cone in E, with a vertex at the origin point o. Obviously
0+ K=+E,.

Convention. Throughout this article let us suppose that the polyhedral cone K
from (2.1) is not a linear subspace in E,,.

Definition 1. The set

(2:2) M:=QnK,
where
(2.3) Q:={xeE| x| =¢}, ¢>0,

is called a spherical polyhedron (of the hypersphere Q).
Corollary 1. Under our supposition, dim K > 1, and therefore M * 0.
Corollary 2. Because the set L of all vertices of the polyhedral cone K is a linear

subspace in E, ?), dim L = 0 if and only if L = {o}.

Definition 2. The intersection of the hypersphere Q with a (d + 1)-dimensional
face of the polyhedral cone K (d = 0)is called a d-dimensional face of the spherical
polyhedron M from (2.2). In the special case of d = 0 we call it a vertex, and for
d = 1 an edge of the spherical polyhedron M.

Lemma 2. Let K be the polyhedral cone from (2.1) and L the set of all its vertices.
Then there exists a vector a, € rel.int K? such that for the closed halfspace
(2.4) clHy := {xeE, (ap, x) < 0}
we have K = cl Hy and for the hyperplane R, of (1.1), we have Kn Ry = L.
Proof. If we denote by
Kr:={xcE|(x,y) =0, yeK}
the polar cone belonging to the polyhedral cone K at its vertex o, then

(2.5) relint K» = {xeE,| (x,y) = 0 for yeL, (x,y) <0 for ye Kx\L}?).

2) See [1], Theorem 4.1.
3) See [1], Theorem 4.13.
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For any vector g, € rel.int K» we have, by the theorem of Farkas*), K = cl Hy
(cl Hy defined as in (2.4)) and, moreover K n R, = L, by (2.5).

Corollary 3. If dim L = 0, then M < Hj for any vector a, € rel.int K.

Lemma 3. Let L, , be the set from (1.2), let K be the polyhedral cone defined
by (2.1) and ay, a, arbitrary orthonormal vectors in E, with a, e rel.int K”. Let
us define

R, :={xe [E,,[ (a;, x) = 0}.
Then

MnL,_,=0<L=1{0o} or dimL=1 and L&ER,.

Proof. Sinceee Kn L,_,,then Kn L,_, = 0 and (by Lemma 2)

KnL,_,={xeK|(ayx)=0,(a;,x) =0} =KnR,nR; =LNR,.
Taking into account that L and R, are linear subspaces in E, (dimR; =n — 1,
0<dmL<Zn-— 1), we see that the set L n R, is also a linear subspace where
oeLnR,and 0 = dimKn L, , =dimLn R, <n — 1. For the hyperspehere Q
it follows from (2.3) that LA R, n Q = M L,_, = 0 if and only if L~ R, = {o}.
But the last equation holds if and only if L = {e} or dim L = 1 and L & R,.

Theorem 1. Let K be the polyhedral cone as in (2.1) and a,, a, arbitrary ortho-
normal vectors in E, with a, € rel.int KP. If the condition

(2.6) L={ol or dimL=1 and L &R,
is fulfilled, then the function f(x) defined in (1.3) is continuous on the set M in (2.2).

Proof. The function f(x) from (1.3) is evidently continuous in E,\L, ,. The
assertion of our theorem follows from (2.6) by Lemma 3.

A SPECIAL NONCONVEX OPTIMIZATION PROBLEM

Let us consider the problems
(3.1), min {f(x)| x e M}!,
(3.1), max {f(x)| x e M}!,
where M is as in (2.2) and f(x) as in (1.3).

Theorem 2. [f the assumptions of Theorem 1 hold, then solutions of the problems
(3.1),.5 exist.

Proof. The function f(x) from (1.3) is, by Theorem [, continuous on the set M,
which is nonempty, closed and bounded.

4) See [1], Theorem 4.9.
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Theorem 3. Under the assumptions of Theorem 1 let x, be an optimal solution
of the problem (3.1), or (3.1),. Let us define o := f(x,). Then the hyperplane

R, = {xeE,| (a, sina + a, cos a, x) = 0}
Sfrom (1.5), is the supporting hyperplane of the set M at its point x,.

Proof. By Lemma 2 and (2.2), M = clHy = H; U R, (cl Hy is defined as in
(2.4), Ry, Hy as in (1.1), ).

If x,€ MRy, then (a,, Xo) =0, xpeL (by Lemma 2) and, by Lemma 3,
(a1, xo) * 0. 1In this case, f(x,) is equal to 0 or m (by (1.3)). Therefore (by (1.1),)

R, = {xeE,| (a5, x) = 0} =Ry,

and since M < cl H; , R, is the supporting hyperplane of the set M at its point x,,.

If xo € M~ Hy, then x, € R, (by Lemma 1) and thus x, € M 0 R,. For the open
halfspaces H}, H; from (1.5), belonging to the hyperplane R, the statement M =
c clH,; or M < cl H] holds by Lemma 1.

Consequence. An optimal solution x, of the problem (3.1), or (3.1), is a bound-
ary point of the set M.

Theorem 4. Under the assumptions of Theorem 1 let x, be an optimal solution
of the problem (3.1), or (3.1), belonging to a k-dimensional face S, of the spherical
polyhedron M (k = 1). Then any point of the closure cl S, is an optimal solution
of the problem (3.1), or (3.1),,.

Proof. If x, e M n R, then dim S, = 0, and therefore such a case is not possible.
Thus we have x, € M n H; . By Definition 2, x, € Z; ., Where Z, . is a (k + 1)-
dimensional face of the polyhedral cone K with S, = Z, ;. Let us consider the
linear envelope L, of the face Z,,,. Evidently L,,; = R,, R, having the sense
from (1.5),. Since by Lemma 1 the equality f(x) = f(x,) holds for any point x e
€ Hy n R,, this equality holds also for any point x € cl §,.

Consequence. If the assumptions of Theorem 1 are fulfilled, then the optimal
solution set of the problem (3.1), or (3.1), is equal to the closure of a certain face
of the spherical polyhedron M. Among all vertices of the spherical polyhedron M
there exists at least one vertex corresponding to the optimal solutions of the problems

(3'])a,‘:‘

Corollary 4. The book [2]°) contains a rather advantageous method for cal-
culating all vertices and all edges of a polyhedral cone K, and we can use it when
solving problems like (3.1),,. The algorithm consists in the determination of all
vertices and all edges of the polyhedral cone K; := {x e E,| (b, x) < 0(i = 1, ...,j)}

%) Page 252.
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if we know all vertices and all edges of the polyhedral cone K;_, := {x e E,| (b;, x) <
S0(i=1,...j—1}L(=1).

Example. Let
K={xeE|x; —x; 0, x34+x, =0, x, +x, <0,
Xy — X3 — x4 < 0},
then L = {o} and h, = (0,1,1, —1), h, = (=1, —1, =2,1), hy = (0,0, 1, —1),

hy = (-1, -1, —1, 1) are vectors in the directions of all its edges. In the case
o =1, the points x, = (0, 1//3, 1/{/3, —=1//3), x, = (=1/J/7, —1/J7, =2/{7,
1J7), x5 =(0,0, 1//2, —1/{/2), x4 = (=1/2, —1/2, —1/2, 1/2) are all vertices
of the corresponding spherical polyhedron M. Let us choose a, = (2/,/5, 0, 0, 1//5),
a, = (0, —1/\/5, 2//5. 0). For the function f(x) from (1.3) we have f(x,) =
= arccos 1/\/2 = 45°, f(x,) = arccos —3/\/10 = 161,5°, f(x;) = arccos 2/\/5 =
= 26,5°, f(x4) = arccos —1/,/2 = 135°. Thus the vertex x; gives the minimum and
the vertex x, the maximum of the function f(x) over the set M.

OPTIMALITY CRITERION
Let Hy be the halfspace from (1.1), and Q the hypersphere from (2.3). For any
point x, € Hy n Q and any unit vector v with the property (x,, v) = 0, the set
(4.1) C(xo;v):= {x€E,| x = xocost + gvsint, 1e(0,2n)}

is a main circle of the hypersphere Q with a parametrical description. The inter-
section C(xy; v) N Ry, where R, is as in (1.1),, defines the unique value of the para-
meter 1, € (0, 2n), so that

(4.2) B(x,;v):= C(xo;v)n Hy =

={xeE,| x = x,cost+ gvsint, te(0, 1)} .

Definition 3. The set B(x,; v) of (4.2) is called the arc of the main circle C(xy; v)
originating at the given point x, in the direction v and belonging to the
halfspace Hy .

Lemma 4. The function f(x) from (1.3) is along the set B(x,; v) from (4.2) strictly
increasing, strictly decreasing or constant according to whether the determinant

L |(a,.v) (ao.v)
(4.3) D:= I (°|~ xo) (ao, XO)

is positive, negative or equal to zero, respectively.
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Proof. From (1.3) we have for any point x € Hy

L= It (o Pl 07 + (o X 0.

(a1, %) + (a0, x)"]7/* = 1/(a, x) [(a1, x)* + (a0, x)*]"/2.

(a0, ) [a1,(aq, X) — ap,(ay, x)] . [(ay, x)* + (a,, x)*] 73 =

= [a1,(a0, %) = aoy(ar, ¥)] . [(a1, %)* + (a0, %)’] ",
(¢« =1,...,n). Thus

Vi (x) = [a,(ay, x) — ao(ay, x)] . [(ay, x)* + (a5, x)*]7", xeH; .
For the function

J(@) := f(x(t)) = f(xocos t + gvsint), te(0,1,),

we have

g{' - (Vf(xa)), fjl—t) — ([ax(a0, x(2)) — agfay, x(1))] -
J(ay, x(1))? + (ag, x(£))*]7", —xosint + gvcost) =
= (@ () + (a0, x(0)7] 1, | (@) (20:Y)

(a1, xo) (o, xo)

and the assertion of our theorem follows by (4.2).

>

Theorem 5. Let K be the polyhedral cone from (2.1), L the set of all its vertices
and ay, a, arbitrary orthonormal vectors in E, with a, € rel.int K”. Then

a) the spherical polyhedron M from (2.2) has at least one vertex if and only if
dimL < 1;

b) if dim L < 1 and dim K > 2, then the spherical polyhedron M has always

edges, and the function f(x) is strictly increasing or strictly decreasing or constant
along any edge.

Proof. By Corollary 1, dim K > 1 and assertion a) follows from Definition 2.

If dim L < 1, then, by assertion a) and by the assumption dim K > 2, the spherical
polyhedron M possesses edges. By Definition 2, any of its edges is the intersection
of a 2-dimensional face of the polyhedral cone K with the hypersphere Q, and
therefore an arc of a main circle of Q. The inclusion M < cl H; shows that any
edge of M is contained either in Hy or in R, (c1 H; having the sense of (2.4),
R,, Hy from (1.1),,). In the former case, assertion b) is proved by Lemma 4. The
latter case implies that the corresponding edge is a subset of R,, which contradicts
our assumption and Lemma 2.
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Theorem 6. Let the assumptions of Theorem 5 hold, L & R, and letv, (i = 1,...,N)
be arbitrary vectors in the directions of all edges h; of the spherical polyhedron M

originating at its vertex x,. The vertex X, is an optimal solution of the problem
(3.1), or (3.1), if and only if

| aj,V) (C'o,V) l> or ,(a,,v) (009";) B
(4.4) | (a1, %) (a9, x0) | = ° o) (e x| 5 0 (i=1,..,N),

respectively.

Proof. If x, is an optimal solution of the problem (3.1),, then, by Theorem 5
the function f(x) is either constant or strictly increasing along any edge h; (i =
=1, ..., N) of M.If x, is an optimal solution of the problem (3.1),, then, by Theorem
5, the function f(x) is either constant or strictly decreasing along any edge h; of M.
But any edge h; is an arc of a main circle of Q originating at x, in the direction v;
belonging to the halfspace Hy , which implies, by Lemma 4, the assertion (4.4).

Let (4.4) hold for any vector v; (i = 1,...,N) and let us consider an arbitrary
point x; € M, x; + x,. The points x,, x; define a unique main circle C(x,;v),
where v is its tangential vector originating at the point x, (it is oriented to the
point x;). We have (x,, v) = 0, likewise (x,, v;) = 0 (i = 1, ..., N). The intersection
of the hyperplane

T(xp) := {x € E,| (%0, X — x,) = 0}

(the tangential hyperplane of the hypersphere Q at its point x,) with the polyhedral
cone K is a convex polyhedron M(x,). Obviously, the point x, is a vertex of M(x,)
and v, (i = 1,...,N) lie in the directions of all edges of M(x,) originating at x,.
Thus, for the vector v we have

N
veT(x,) and v=3Ydv,, 2,20 (i=1,..,N).
i=1
This implies, by (4.4),

(a.v) (a0,v) | i | (@ v) (o, vi)

(a1, %) (g, xo) I ("1’ Xo) (ao, Xo)

‘(als") (a0, v) 2’1 |(ai,v) (a0, v:) [ <0,
("1: X,) (a0, xo) ("1’ x) (@9, %) | =
and further, by Lemma 4, f(xl) 2 f(xo) or f(x,) < f(x,), respectively®). Since
x, € M was an arbitrary point, the last inequality shows that x, is an optimal solution
of the problem (3.1), or (3.1),, respectively.

>0

or

Corollary 5. Theorem 6 further gives an idea about how to solve the problems
(3.1), 5. If we know an arbitrary vertex x, of the spherical polyhedron M, then we
can define a convex polyhedron M(x,) := K n T(x,), and by the simplex method

) The assumption L d&- R; guarantees that the function f(x) is defined on the set M.
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we look for x, as for a vertex of M(x,). From the corresponding simplex table, we
read the vectors v; (i = 1,...,N) in the directions of all edges of M originating
at x,, and the inequality (4.4) shows whether x, is an optimal solution of either
(3.1), or (3.1),. If it is not the case, then we shall find, by one step of the simplex
method, the vertex x, € M adjacent to the vertex x, (after its normalization with
respect to the value g), with which we repeat the above mentioned process.

Corollary 6. The problems (3.1), ,, in question have, in 3, a simple geometrical
interpretation. Under our assumptions, the vectors a,, a, define a plane R, in Ej;.
If x* denotes the projection of a vector x € M in the plane R, and a, := x*/”x*",
then the function f(x) represents the angle between the unit vectors a, and a,, and
the nonconvex programming problem (3.1), or (3.1), means to find respectively the
smallest or the largest angle between the vectors a; and a, with respect to all x e M.

Fig. 1

Corollary 7. We can create even other functions for which Theorems 1—6 also
hold. They are e.g. continuous strictly monotone functions of the argument
(ay, x)/(a,, x), as artan (a,, x)/(a,, x). Further, we can carry out an extension with
regard to the feasible set M. It is possible to take into consideration e.g. the set
M := Kn E, where

-

E:={xeE| Y (x/e)> =1}, ¢;>0 (i=1,...,n),

]

i=1

or a co-called strictly convex smooth manifold.
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Souhrn

O SPECIALNIM TYPU NEKONVEXNICH OPTIMALIZACNICH ULOH
LiBUSE GRYGAROVA
Clanek pojednava o speciainim typu nekonvexnich optimaliza&nich uloh, které maji vlastnosti
obdobné vlastnostem optimaliza&nich uloh linearnich. U nekonvexni optimaliza&ni ulohy tohoto

typu umime najit jeji absolutni extrém a mnoZina vSech jejich optimalnich FeSeni predstavuje
uzaver stény sférického polyedru, ktery je jeji mnoZinou pfipustnych feSeni.

Pe3ome

Ob CHHELIVMAJIBHOM TUIIE 3AJJAY HEBBIITYKJIOI'O ITPOT PAMMMPOBAHMU S

LiBUSE GRYGAROVA

CTaThq 3aHMMAETCS CNELMANIbHLIM TMIIOM 3aJa4 HEBBIINYKJIOTO NPOIrPaMMMPOBaHHMA, CBOHCTIBa
KOTOpBIX TMOJNOOHBI CBOMCTBAM 3a/ay JIMHEHHOTO INPOTrpaMMHMPOBAaHUs. Y 3a]a4d HEBBINYKIIOTO
NPOTPaMMUPOBAHHUSL 3TOTO THNA Mbl yMeeM HaliTH €€ aGCONIOTHBIN 3KCTPEMYM M MHOXKECTBO
BCEX €€ ONTHUMAJIbHBIX PELICHMII NpeACTaBisieT COOOM 3aMKHYTYIO CIEHY CHepuiecKoro MHOro-
TPaHWKa, KOTOPbII ABIAECCTS. MHOXECTBOM €€ NOMYCTUMBIX PEIEHHH.
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