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CONTINUITY OF HYSTERESIS OPERATORS IN SOBOLEV SPACES

PAVEL KREICT, VLADIMIR LOVICAR
(Received November 1, 1988)

Summary. We prove that the classical Prandtl, Ishlinskii and Preisach hysteresis operators
are continuous in Sobolev spaces W!+?(0, T) for 1 < p < +0, (locally) Lipschitz continuous

in w':1(0, T) and discontinuous in W!:®(0, T) for arbitrary T > 0. Examples show that this
result is optimal.

Keywords: Hysteresis operators, Preisach operator, Ishlinskii operator.

AMS Classification: 58C07, 73E50.

A classical result by Krasnoselskii and Pokrovskii (see [1]) gives sufficient
conditions for the continuity of a wide class of hysteresis operators (including the
Preisach operators) in the space of continuous functions C([0, T). Moreover, in
typical cases hysteresis operators map Sobolev spaces W"?(0, T) into W*'-7(0, T).
When studying e.g. the continuous dependence of the solution of (partial) differen-
tial equations with hysteresis on given data, we often have to make use of the conti-
nuity of hysteresis operators in these spaces. We present here a collection of element-
ary proofs and counterexamples connected with this problem.

Definition 1. Let ue C([0, T]), T> 0 be piecewise monotone and let h > 0
be a given number. Then the elementary hysteresis operators l,, f, are defined as
follows:

» max {L,(u) (8,), u(t) — h}, te(ty tirq]
L(u) (1) = \ if u isnondecreasing in [t, tiiy],
min {I,(u) (t,), u(t,) + h}, te(t, tiry]

if u is nonincreasing in [t tyyq]

max {0, u(0) — h} if u(0)=0,
b (0 =< i {0, u(O)) + h}} if u(0)<o0,

H) () = u(t) - h(w) (). re[o.T].

The following lemma is proved in [1], p. 16.
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Lemma 1. Let u,ve C([0, T]) be piecewise monotone, h > 0. Then for every
te [0, T] we have

'lh(u) (t) - ln(v) (t)l = ”u - v”[o,t] ’
where |u — v,y stands for max {Ju(s) — v(s)|, s € [0, 1]}

Using this lemma and the density of the set of piecewise monotone functions in
C([0, T]) we conclude that the domain of definition of I, f, can be extended to the
whole C([0, T]) and these operators are Lipschitz continuous.

Notice that I,(u), f,(u) are absolutely continuous if u is absolutely continuous and,
by Definition 1, if u'(t), (1,(u))’ () exist, then either (I,(u)) (t) = 0, (f,(u)) (t) = v’

or vice versa.

Definition 2. Let ne L'(0, c0) be a given nonnegative function. Then for every
u € C([0, T]) the value of the Ishlinskii operator F is defined by the formula

F(u) (1) = 5 fu(w) (&) n(h) dh .

Definition 3. Let p: (0, 0) x R* - R*, py € C'(R) be given functions, u(h, 0) =
= —u(h, —0), to(e) = —po(—0), dufde € L'(0, 0; Co(R")), where Co(R") denptes
the space of continuous functions w: R* > R such that w(t) > 0 as |t| - co. Then
for every ue C([0, T]) the value of the Preisach operator W is defined by the
formula

W) () = o(u(®) + 15wk, 1(w) () dk

This definition is different from the “classical” one (cf. [1], [4]), but it is shown
in [3] that it is equivalent for a large class of Preisach operators. It makes sense
because for h = |u|jo,r; we have I,(u)t = 0.

The following lemma is announced without proof in [1] and [2].

Lemma 2. Let u, ve W"'(0, T) be piecewise monotone. Then we have
5o [(£@)) (1) = (Au@)) ()] dt < [u(0) —v(0)] + 2 f5 [w'(t) — v'(9)] de.

Proof. We construct a partition 0 = ¢, < t; < ... < ty = T such that in every
interval J; = [t;_y, ;] both functions u, v are monotone and in every interval
J; U J;yq at least one of the functions u, v is not monotone. We find the subset
B = {by, ..., b} = {1, ..., N} such that for i € B we have u'(f).v'(t) = 0 a.e.in J,
and for i ¢ B we have u'(t).v'(t) < 0 ae.in J;.

We introduce the following notation. For i ¢ B we denote G; = J; (“good inter-
vals”), for i e B there exists a partition t;,_; < 7;_; < 7; < t; such that if we denote
G = [ti-y,tiy], B; = [1i=1» ;] (“bad intervals”), GY = [z, t;], x(t) = f,(u) (¥),
¥(t) = fu(v) (¢), then

x()=u(t), y(t)=v() aein G;, ieB,
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X(t)=0, y({)=0v(@) or x(t)=u(), y'()=0 ae.in B,
x(t)=y(t)=0 ae.in Gy.
Indeed, any one of these intervals may degenerate. On the other hand we have
B;n B; = 0 fori = j.
For an arbitrary interval J = [a, b] = [0, T'] we denote

1(J) = [x(a) = ¥(a)|,

r(J) = [x(b) — y(b)| -
The following properties are obvious:
O BRO- YOl T e KO - YO d+ T K0 - v,
©) [x(0) = »(0)] = [u(0) —v(0)],

©) [r(G:) = U(G)| = |fq, d/dt |x(t) — y(1)| dt| <

< fo. (0 = y()l dt < fg Ju(r) — v'(®)] dt,
(4 [5, X' () = y'(9)| dt = I(B,) — #(B;) = r(G)) — I(G;y,) for i b,
(5) - s ]x(1) = y'(©)| dt = I(B)) — r(B;) < #(G)) for i=b,.

From (3), (4), (5) we obtain

P () = y'(1)] dt < [x(0) — »(0)] +
+ 3((6) - 1G)) = I+(0) = »(0)] +
Jrlévj1 o () — v(0)] dr

It remains to use (1), (2), (3) and the proof is complete.

Remark. The inequality in Lemma 1 holds if we replace f, by I,. It suffices to
modify the proof slightly, namely for i € B we put [t;_;,1;-,] = G, [1, ;] = G..
For x(t) = [,(u) (1), »(t) = 1,(v) () we obtain (1), (2), (3) without any change.
Using the inequality

(6) [al (b)) (1) = (W(v)) ()] dr = fp, [w'()) = v'()] dt +
+ Ja, [(A@) (1) = (v)) (1)] dt

together with (4), (5) we proceed as above.

Lemma 3. Let {u,}, {x,} < IZ(I) be given sequences, where I = R' is a bounded
interval and 1 < p < oo. Let x,, > x,, in L'(I), u, > u,, in I’(I) and let the inequali-
ties |x,(t)] < |u,(t)], ne N U {0} hold almost everywhere in I. Then x, - x,, in
(D).
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Proof. The proof is extremely simple. Let us assume that x, does not converge
in I(I). As the space I7(I) is uniformly convex, we can find subsequences {x,}, {u}
such that

1P dt = K > [; |x, (1" dt,

Xp > X A8, U U, a.e.

Put £,(t) = |w ()] + |u,()]” — |x(2)]” — |xo(t)P] = 0. By Fatou’s lemma we have
fr lim inf £,(¢) d¢ < lim inf [; £,(¢) d¢, hence

lim sup [, [|x,()]? — |x,.(t)]"|dt < 0,
which is a contradiction.
Theorem. The operators 1, f,, F, W are continuous in W*?(0, T) for 1 < p < .

Moreover, I, f,, F are Lipschitz in W"*(0, T) and Wis locally Lipschitz in W*+1(0, T)
provided  is Lipschitz in R* and there exists ¢ € L}, (0, o) such that

loc

9 G
a—Z(h, 1) — i(h, 22)| £ &(h) ey — @a| for every oy,0,€R".

Proof. The set of piecewise monotone absolutely continuous functions is dense
in W"'(0, T). Consequently, the Lipschitz continuity of I,, f,, F in W1(0, T)
with the norm [Ju, ; = [u(0)| + [§ |u'(z)| d¢ follows directly from Lemma 2. In order
to prove the continuity of Win W*'(0, T) we make use of the inequality

(5 [(W@) (1) = (W) (1] dt =
< Jlmo(u) = 1o(®)eo,ry Solu'(1)] dt +
+ [#6(0)]lio,ry J5 [uw' () — v'(1)] dt +

" f: o8 1) = 22 (0 1) - j () () dedh +

0
©
g
0

» and of Lemmas 1, 2.
Let us now consider a sequence v, — v,, in W"?(0, T) for a fixed value p € (1, o).
For the operator W we have

W)y ()] = 1o ( j ' 2 W) )

for some K > max [v;[;o, 11 and forevery n e N u {co}.
k

op
a—g (h, l,,(v))

r [(1,(w)) () = (1(v))’ (£)] dt dh
[0,7]

0o

ah + Iﬂé(vn(t))l)

Denoting by x, and u, the left-hand side and the right-hand side of the last ine-
quality, respectively, and using the continuous embedding W*-»(0, T) G W''(0, T) Q
Q €([0, T]) we see that the hypotheses of Lemma 3 are satisfied. The cases of the
operators I, f;, F are analogous. The theorem is proved. [
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A natural question is whether these results are optimal. We try to give the answer
in the following examples.

Example 1. The constants in Lemma 2 cannot be improved. Let us choose
numbers 0 < é < ¢ < h and put

u(t)=<h—5+t, te[0,d]

h+e(t—0), te[s,1], v(t)=h—e+et, 1€]0,1].

We have
() =5 0 = (O {20
y(t) = fule) (1) = o(t), te[0,1],
and hence

o |[x(1) = y'(®)] dt = (e — ) + 26(1 — &) =
= Juf0) — o(O)] + 2 J2 () — v (9] dt.
Example 2. The operators I, f;, F, W are discontinuous in W**(0, T), except
in the trivial cases n = 0, x = 0. We illustrate this fact by choosing the operator F

(the other cases are similar). We choose h > 0 such that |}, n(c)do > 0 (cf.
Definition 2) and put

n(1-Lt), tefo,1]
e um=<g :)) |
' ’ Wt —-), te[t1,2]

We have ht
—, te[0,1]

u(t) — u,(1) = \\: ,

, te[l,2]

hence u, — u in W"*(0, 2). On the other hand,

h n(o) do, te(0,1),
/ 1 J htj2n
rht 1
(WY O - (P O = [ ae)de, ve(L1+ ),
\\ Jhe-1)/2 n
(*ht 1
h n(a)da, t€(1+—,2).
J h(t=1/m) n

For te (1,1 + (1/n)) we have (F(u)) (¢) — (F(u,)) (t) = h [3/, n(o) do = const.,
hence F(u,) does not converge to F(u) in W'*(0, 2).

Example 3. The operators I, f;, F, W are not locally Lipschitz in W'?(0, T)
for p > 1, except in the trivial cases. Again we choose the operator F. Let us introduce
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the functions z,: [0, 1] - R forne N:

_ in 5 te [O, T,,] _ . 1/p—1 — ,-p/p-1
z,(t) = o, te[tn1]’ where ¢, = n s T,=n .
Put

h—=, 1e[0,1]
h, [0, 1 n
R o R |

h——+z,(t—1), te[1,2]
n

where h is the same as in Example 2.
We have

, te[0,1]

, hence
, te[1,2]

u,(t) — v,(t) = <

S = 3~

lun = va1p S ¢/n, and |u,| loall1,p < const.

1,p>

Analogous computation as in Example 2 yields

[F) — F@ls = 5 I(F@)Y () — (F)) ()] dt = const.

forn = 1/h.
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Souhrn

SPOJITOST HYSTEREZNICH OPERATORU V SOBOLEVOVYCH
PROSTORECH

PAVEL KREICE, VLADIMIR LOVICAR
Je dokazano, Ze klasické hysterezni operatory (Prandtluv, ISlinského a Preisachuv) jsou
spojité v Sobolevové prostoru WL, T) pro 1< p< 4+, (lokalnd) lipschitzovské ve

Wl'l(O, T) a nespojité ve W L0, T) pro libovolné T > 0. Priklady ukazuji, Ze tento vysledek
je optimalni.
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Pesome
HEITPEPBIBHOCTDH I'MCTEPE3VCHBIX OIIEPATOPOB B ITPOCTPAHCTBAX
COBOJIEBA
PAVEL KREJCE, VLADIMIR LOVICAR
JIoKa3bpIBaeTCA, YTO KIACCHYECKHE rUCTepe3nCHbIe onepaTopsl IIpanntis, Vnumnackoro u Ipeii-
caxa HempepbIBEBI B npocTpancTee CoGosesa W Le0,T) s 1< p< -+ 00, (JI0KaJNBbHO) Hempe-

peiBEEl mo Jlnmmuuy B WI-I(O, T) v pa3pbIBHBI B W1-°°(0, T) ans mpoussoneHOro 7' > 0.
TIpuMepsI NOKa3bIBAIOT, YTO 3TOT PE3YJIbTAT ONTUMAJIEH.
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