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DISCRETE SMOOTHING SPLINES AND DIGITAL FILTRATION.
THEORY AND APPLICATIONS

Jiki HReBiCEK, FRANTISEK SIK, ViTEZSLAV VESELY

(Received July 8, 1988)

Summary. Two universally applicable smoothing operations adjustable to meet the specific
properties of the given smoothing problem are widely used: 1. Smoothing splines and 2. Smoothing
digital convolution filters. The first operation is related to the data vector r = (g, ..., r,,_l)T
with respect to the operations &, % and to the smoothing parameter «. The resulting function
is denoted by 64(#). The measured sample r is defined on an equally spaced mesh 4 = {r; = in}1Z}
T = nh. The smoothed data vector y is then p = {04(t;)}}=§. The other operation gives y € E"
computed by y = k * r, where * stands for the discrete convolution, the running weighted mean by 4.
The main aims of the present contribution: to prove the existence of close interconnection between
the two smoothing approaches (Cor. 2.6 and [11]), to develop the transfer function, which
characterizes the smoothing spline as a filter in terms of o and A (the eigenvalues of the discrete
analogue of %) (Th. 2.5), to develop the reduction ratio between the original and the smoothed
data in the same terms (Th. 3.1).

Key words: Discrete smoothing spline (DS-spline), smoothing parameter, digital convolution
filter, transfer function

AMS classification: 41A15, 93E11, 93E14, 65D07, 65D10.

1. THEORY
1. Problem statement

In technical and physical sciences most research techniques use observation and
experiment as one of the fundamental tools. On their basis one tries to construct
one or more models which describe the investigated phenomenon as a whole and/or
are focused only on some of its selected characteristics. Methods of mathematical
statistics and functional analysis play an ever growing role in the process of model
construction and verification.

As a rule, various dependent and independent variable quantities, data and para-
meters enter the model. If the model is given in the form of an analytical function,
one usually applies statistical methods when looking for the estimates of its unknown
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parameters. In case that no analytical model is known and only experimental data
loaded with measurement errors describe the relationship between the dependent
and independent quantities, it is recommendable to apply a suitable smoothing
operation derived by means of methods of mathematical and functional analysis
which would both remove the unwanted error fluctuations as much as possible
and keep the destortion of the searched physical dependence to a minimum.

The additive model of the experimental measurement r; = f(t,) + e, i =
= 0(1) n — 1is used, where r = {r,}}Z{ are the experimental data, f(¢) an unknown
function and e; the measurement errors which may be considered to be the observed
values of uncorrelated random variables ¢; with zero mean and common variance.
We want to find y; ~ f(t;,) on the mesh 4 = {ih};Z5 (h > 0, T = nh) by using
a smoothing operation. The smoothing operation should take into account the
knowledge of the physical phenomenon.

Two universally applicable smoothing operations adjustable to meet the specific
properties of the given smoothing problem are widely used: 1. Smoothing splines and
2. Smoothing digital convolution filters.

1. Smoothing spline of the data vector r = (ro, ..., r,—;)" with respect to s/, &
and o is a minimizer o,(f) of the functional

(1.1) F,f) = ||f — r|}. + o|Zf|;, (fe W*" complex),

where &/: W*” — E" is the sampling operator on the mesh 4, “Zf = (f(t,), ...
s f(t,=1))", ZL: WY > L, a linear bounded operator (e.g. a differential one) and
o > 0 a real number, the smoothing parameter.

Then r* = {r{}1Z§ with r{ = ¢,(t,) is the smoothed data vector.

2. Smoothing digital convolution filter assigns to the input data r its smoothed
output y € E" computed by

(1.2a) y=hxr.

n—1
Here # stands for the discrete convolution, y; = Y h,r;_, (= the running weighted
mean by k), where for i < Qori > n k=0

. p = Timodn) for implied n-periodicity
! 0 otherwise.

h is an impulse response of the filter modifying the smoothing effect. Without loss
of generality we can further assume a periodic convolution *. Then an equivalent
formulation of (1.2a) is as follows

(1.2b) y = Hr,
where H is a circulant matrix with the generating vector

h=(hg ..., h,_y)".
Denote by
DFT*:C" > C", DFT*(x)= X=W"'x
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the discrete Fourier transformation (DFT) of length n and by DFT ™ its inverse
DFT™(X) = x = L w-X,
n

where

(1.2¢) WE = (547l &= et

(1/\/n) W* = U is a unitary matrix, ie. UU* = I,, and U* = (1)/n) W™, sec
Lemma 2.3; as usual, U* stands for U". Then (1.2a) can be rewritten equivalently as
y = DFT~ (DFT*(k) - DFT*(r))
(12d)  or
Y =HoR (ie. Y, = HR,, k=0(1)n—1).

In view of the well-known convolution theorem [4], p- 98, H is called a “transfer
function” (or “frequency response”) of the filter saying how each of n/2 sinusoidal
wave components of r are “damped down” as r passes through the filter.

The main aims of the present contribution:

— to prove the existence of close interconnection between the two smoothing
approaches

— to develop the transfer function which characterizes the smoothing spline as
a filter in terms of « and 4, (the eigenvalues of the discrete analogue of %)

— to develop the reduction ratio between the original and smoothed data in the
same terms.
Restrictions:

n-periodicity and equally spaced mesh, 4 = {t; = ih}';;é, T = nh,h > 0.

2. Discrete analogue of a (periodic) smoothing spline

This analogue is obtained from (1.1) by replacing the integral
(2.0) |21z, = §5 1€ £(0)]* dt
by its discrete approximation

@) [lesfoFd = h"g:](,gf) O + o(h) ;

thus we approximate the operator % on the mesh 4 by its discrete analogue L,
(acomplex n x nmatrix) and define L, = /hL,. Then

02 WEIA) O = (Dl + 00 = L)

Tue foregoing observation enables us to define a discrete smoothing criterion F, ;:
C" - R by

(2.3) Foi(») = |y — v} + oLy, yeE", Ln x nmatrix.

i+ O(h?).
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It should be pointed out that the specification L = Ly(= \/ hLp) has the following
desirable property

|For(f) = Fou(f)] =0, R0, feW>.

2.1. Definition. Let & be an operator as above, L = L;. Let y = r* minimize (2.3).
Then a (periodic) spline t,(t) interpolating r* with respect to & is called a discrete
(periodic) smoothing spline of r (shortly a DS-spline). [J

Indeed, for the smoothed data vector r* we have r*= & 1,(t) = (t,(tc), ...
A () L

Remember that the spline interpolating r with respect to . is a function of a given
Hilbert space W?*¥, which minimizes the functional (2.0) on the subclass of functions of
W2+ that interpolate the vector r. In case of £ = 9 the spline is a polynomial of
order 2v — 1.

2.1a. Convention. In all what follows let 4 = {t, = ih}iZ} (h > 0) be an equally

spaced mesh on the interval [0, T = nh], r = (rg, ..., 7,—4)" the data vector to be
smoothed, r* = (rg, e r:_l)T the smoothed vector. Further, let us assume that the
matrix L has an orthonormal system uy, ..., u,_, of eigenvectors along with the
respective eigenvalues Ay, ...,2,-1. O

Then the matrix U* = (u,, ..., u,_,) formed by the n x 1 columns u; is unitary
and (see also [16] 4.10.1 and 4.10.3)
(24) ULU* = diag (A, «+-s A1) -

E.g. the circulant matrix L has the mentioned property; the corresponding matrix
U is equal to (1/./n)W* (see the following Lemma 2.4 or [16] 4.9 and 4.8.3; cf.
also (1.2c)).

2.2. Theorem. Let L have the above property. Then

¥ = UR®,
“where
R
2.5 R* = (R}, ..., R} _ T, R} =——" | = 0(1 -1,
( ) ( 0 1) 1+0!|ls|2 S ()n
(2.6) R=Ur.

(R and R* are base U*-coordinates of r and r*, respectively). Moreover, ¥ € R"
implies r* e R".

Proof. By Parseval’s theorem for unitary transforms ([16] 4.7.14 (ii))
Foi() = |Uy = Ur|i. + «|ULy|}. = |Y — R|[zx + «|ULU*Uy|zn =
= |¥ — R||Z. + a|diag (Ao, ..., Au—y) ¥]2n .
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The vector ¥ = R* minimizing F, ,(y) is a solution of the SLE:
Feil¥) _ o k= o()n—1.
) 4

It is easy to see that this SLE in Y, ..., ¥,_; has the diagonal matrix S =
= diag (1 + a|4|% ..., 1 + «|4,-,|?) and the right-hand side R, i.e.

r* = U*R* = U*S™'R = U*S™'Ur.
Moreover, U*S™!'U = (U*S™'U)* implies that U*S™'U is real, hence r* is real
if ris real. [J

2.3. Lemma
n—1 .
iy _ fn if k=0(modn),
jgoc {0 otherwise , E=e¢ :
Proof. If k = O(mod n), thene** = 1forallj ;if k & O(mod n), then
n—1
e+ 1, thus Y &t =(e** - 1))e** - 1)=0. O
i=o

2.4. Lemma. Let L be a circulant matrix with a generating vector 1 =(l,, ..., L-y)T.
Then the Fourier base U* = (1)\/n) W~ (i.e. the system of columns of U*) is the
system of eigenvectors of L with the respective eigenvalues

(2.7) (Aos - es Agmy)T = WTL.
If Lisreal, then ) = 1,_1, k = 1(1)n — 1.
Proof. By Lemma 2.3 the matrix U* is unitary. The matrix W™ transforms the
j-th column {l,_ jumeam}i=o Of the matrix L to the column {"Z_la"‘lk_j(mod wlize =
= {"_le"("”)lk}'{;é = {¥1,}7Z4 = the j-th column of the matrI;;(()iiag (Aos +oes Agey) -
W*. Thus
2.7 W*L= diag (Ao, ..., Ay_y) W*
completing the proof. []
Note. In fact, we have proved (1.2d), because from (2.7") we have
W*Lr = diag (Ag, ..., Ay—1) Wr = diag (4, ..., 4,—1) DFT*(r) =
= DFT*(I) o DFT*(r) = DFT*(I# 7).

If Lis real, the relation 4, = 1,_, follows evidently from (2.7). O

By virtue of the above result we have U = (1 /\/ n) W* provided Lis circulant.

2.5. Theorem (Main Theorem). Let L be a circulant matrix. Then U = (1/\/n) W*
and
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(2.8) Vo= her=LwoHW Y = Hr,
n

where

(2.9) H=Wth= < ! 1 )T

1+ Ao’ 71+ afdy—y|?

is the associated transfer function (see (1.2d)),

1 . 1 1
2.10 h==-W H, H=dia s e
(210 n 8 (1 + aldo)? 1+ a[l,,_1,2>

and the matrix

(2.11) i =Ywaw
n

is circulant with the generating vector h.

Proof. Denoting H = (1/(1 + a|4o]?),..., 1/(1 + «|4,-,|?))" we have by Theorem 2.2

T
Ur* = UU*R* = R* = I =
U a1+ g
=H.Ur=Ho.(1]/n) Wtr.
Thus
M= 1 W (H.W"r).
n
If we define & = (1/n) W~ H where H is the n x n diagonal matrix with the diagonal
H, we obtain from the preceding

= h*r:lW“HWJ'r.
n

Write A for the circulant matrix generated by k. Then using Lemma 2.4 we obtain

N\

WtH = W+I§r1 W-W* = HW™*.
n

Thus

ﬁ:lw—HW+ =Hf.
n

Clearly, the matrix H is circulant and its first column is h. []

2.6. Corollary. The periodic DS-spline smoothing data vector r is a periodic
interpolation spline of the data r* which were obtained by filtration of r according
to the transfer function (2.9) provided that Lis a circulant matrix. [

33



2.7 Corollary. Let L be a circulant matrix such that L = L; where L, is associated
with the differential operator £ = 9 of order v (cf. §2). Then the operator r — r*
is linear.The operator r — (the periodic DS-spline smoothing r) is linear, too
(supposing n = v).

Proof. The first assertion follows immediately from (2.8). The second assertion:
Let r > r* and s — s be two discrete smoothing operations and 7,(¢) and ¢,(t) two
periodic splines of (2v — 1)-th degree which interpolate r* and s, respectively. Then
a t,(t) + b ¢,(t) (a and b arbitrary constants) is a polynomial spline of (2v — 1)-th
degree which interpolates ar® + bs*. The first assertion implies that the discrete
smoothing of ar + bs results in ar* + bs* Now, let ,(f) be the periodic polynomial
spline of degree 2v — 1 which interpolates the data ar* + bs®*. The supposition
n = v implies the uniqueness of the spline of degree 2v — 1 which interpolates the
vector ar + bs([18], Th. 1.5) and thus ,(t) = a 7,(t) + b o,(t). O

3. Reduction of data r by the DS-spline smoothing

We are going to express the smoothed data r? and/or the reduction w, = ri/[r,
s = 0(1) n — 1(if ry # 0) explicitly in terms of r, and 4, (Fourier base is still assumed)
By Theorem 2.5 and in view of (1.2a—d) we have
3.1 Theorem. Let L be a circulant matrix and 4, its eigenvalues. Then
1 n—1 B .
3.1a rd == —= __  s=01)n-1,
(3-12) n kZ:O 1+ o4 M
where
{Bskfsk o= w- dlagR

Moreover, if Land r are real, then

[n/2]
Gi) =ty B o omyn-1,
where

n—1
Bs,O =Zrt’
=0
n—1 _
(3-2) Bs,k=22r,cosz—nl—c(t—s), k=1(1)|:n2 ]:l,

B, =(— I)Z( 1)'r, ifnis even,

 {ma g
(3.3) W=l = - 0
re  nrg kZO 1+ ]lklz (if 7, + 0).
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Proof. By Theorem 2.5

(3.4) rf = } W~ diag HR = 1 W~ diag RH = EBH,
n n n

where

(3.5) B = {B,,}i:L, = W~ diagR

is a matrix depending on r (we write B, = Bs’k(r) if necessary). Thus, we have
proved (3.1a).

If ris real, then

(36) BSJ‘ = Bs_,n—-k , k= 1(1) [n/2] ,
because
~ n—1 n—1
By =e"Re=eTMY = Y,
t=0 t=0

B, =R, _, = &R, = (¢7“R,)” = B.

Provided that both L and r are real, we obtain (3.1b) and (3.2) if we put

N ~ ~ n-1 2nk
B,o=B,o, Byu=B,,+ B,y =2ReB,;, =2y r,cos=— (t — ),
n

(3.7) ¢ = 1(1) I:n -2— 1], o

n—1

n—1 n—1
Bs,n/l = Bs,n/l = Z ry sn(t_S)/z = 8_"3/2tzo”r8"'/2 = (_1): ZO(—I)' Ty
= t=

t=0

if niseven,
following Lemma 2.4 (4, = 1,_, and consequently H, = H,_,). O

Sometimes we are interested in the parameter o expressed as a function of the other
quantities. As the function 1/(1 + «|4,|*) has the expansion

L= al > + 2|2 ]* — o4 + ...

which converges if and only if «|2,|* < 1),
( g y k

we have /2

[n/2] [n/2] [n/2]
nrgw(=nr?) = %Bs,k - “kzol)"klz B, + “Zkzol’lkld' By, — ...
= - <

ot o X [n/2] .
nrw(=nrd) =Y (=1 &/ Y | 4> By
j=o k=0

with a|4,|* < 1, k = 0(1) [n/2] , which enables us to determine an approximate
value of « in terms of 4, and w;.
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4. Digital filtration

By Lemma 2.4, the columns of the matrix U* = (1 /\/ n) W~ form an orthonormal
system of eigenvectors for each circulant matrix, and the respective eigenvalues
are obtained as the transform W™/ of its generating vector 1. The matrices W+ and
(1/n) W~ define mutually inverse linear transforms

(4.1) DFT*(x):= W'x = X and DFT (X):=(Ijn)W X=x
called the discrete Fourier transform and the inverse discrete Fourier transform,

respectively (see [4], p. 98). Hereafter, instead of ' = Lx we shall use the common

notation
n—1 n—1

(4-2) X =1lxx, x = Z lk—j(modn) j = Z ljxk—j(modn) .
j=0 j=0

This bilinear and commutative operation = is known as the discrete cyclic (periodic)
convolution (see [4], p. 110). Denoting by the symbol o the componentwise multi-
plication of vectors, we obtain from (2.7')

WH(I«x) = W¥Lx = diag (Ao, ..., Ay—y) WTx = W lo W¥x
or equivalently
(4.3) DFT*(I* x) = DFT*(I) - DFT*(x),

which is the so called discrete convolution theorem (see [4], p. 118). Hence we arrive
at

(4.4) I+ x = DFT™( DFT*(I) s DFT*(x)).

The operation x — x’ = [ x is known as the digital convolution filter, the vector /
is the impulse response of the filter (in view of / # (1, 0, ..., 0)" = /)and I = DFT* (1)
is the transfer function (or frequency response) of the filter. Inspecting (4.2) we see
that in the process of convolution filtration each value x, of the input vector x is
replaced on the output by a weighted mean of the neighbouring values with the
components of /standing for the weight coefficients.

4.1 Theorem. If L is a circulant matrix, then the smoothing process described
in Theorem 2.5 is exactly the convolution filter defined by (2.8). [

The algorithm of smoothing by discrete smoothing splines may be then sketched
as follows:
Step 1: Computing DFT* (r) = R
Step 2: Multiplying R by the transfer function H: R* = H o R (Theorem 2.2)
Step 3: Computing DFT™ (R*) = r* (Theorem 2.2)
Step 4: Interpolating the data {t,, ri}, s = 0(1) n— 1 by a periodic interpolation

spline.

Steps 1 and 3 may be accomplished very effectively by using a “fast Fourier transform”
(FFT) algorithm, e.g. see [4, 5,7, 17].

36



5. Discrete analogue of the differential operator & = 9™ 1 <y <n — 1
and its eigenvalues

The differential operator 2, defined by 2(f) = f, may be discretely ap-
proximated by various methods. We shall apply the method of divided differences
[3] 2.4, p. 56 ff, [14] IIL, 3.6, p. 106, which will give rise to an n x n matrix D™
approximating 2 and consequently to L = \/ h D™. Both D) and L are circulant
in view of the implied periodicity of f. Supposing themesh 4 = t, < t;, < ... < th_y
to be equidistant, the v-th divided difference of a function f(¢) assumes the form

Tt oo tinn] = hlvj}:jo(— 1)~ <;>f(ti+j) .

If v = 2z — 1is odd, the value of the v-th derivative of f at the point t, is approximat-
ed as follows

v 1 c v—j v
(5-13) A )(tk) R fltkezits o terz] = E, jzo(— 1= (v _j>f(tk—z+1+j)
andifv = 2ziseven,

(515 SO = STt = o X0 j)f(tk_,+j> .

The same result may be obtained from Bessel’s interpolation formula [13] III, 1,
p. 187—8.

After some formal rearrangements we can rewrite (5.1) into the matrix form
(independently of the parity of v) as follows.

5.1. Theorem.
(5.2) (FOto)s s fOlt, )T % DO(f(t6), .or fts- )T

where DY = (1/\/h) L, L is circulant with the generating (first column) vector
L= (los . i),

R =y )2+ v C v
I, = HaD=(—1) (z ’ j) for j = 0(1) [2]
(5.3) I, =0 for j=[§]+1(1)n—z—1,

l,- = h(l/l)-v(__l)}'—n+z( v > for j=n-— Z(l) n—1,

j—n+z
v+ 1
z=|—=1.
2

Proof. Denoting ¢; = h(”z)"v(—l)v—’(

where

v‘) for 0 <j<v and ¢; =0 for

v—J
v+ 1<j<n-—1 we have by (5.1a) and (5.1b)
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1 n—1
o) = \7}: ;)c,-f(tk—(z-a—j))

where v =2z — ,ae{0,1} and [v/2] =z — 2 = 0. Putting k — (; — o — j) =
= j'(mod n), i.e. j = (z — a — (k — j’) (mod n)) (mod n), we Obtain

1 n—1
fO) = \_/i_z .Zol(k-j’)modnf(ti') where ;= Ci-amjymoan -
=

We have to distinguish two cases:
(1) 0<j<z—o Then (z—a—jjmodn=z—-a—jand s0 0 < z — a —
—jSz—a<2z—a=v. Hence in view of v—(z -0 —j)=2; —a—

—(z—a—j)=z+j wegetl=c,_, ;= h(l/z)““(—l)z“( Y.
z4j

(2z—a+1=<j<n—1 Then (z —a—j)(modn)=n+z—a—j. In this
case the inequality 0 £ n+z—a —j<2z—a=vholdsifand onlyif n — z <
<j<n-1 Indeed, {n+z—a—j<2z—a<wn—z=j} and j<n—1
implies j < n—o whence 0<z—-a=<z=j+z—-j<n+z—oa—j Hence
inviewof v—(n+z—a—j)=2z—a—-(n+z—a—j)=j—n+ 2z weget

L= Chpgoqj = h(‘/z"”(—l)j’””.< Y )ifand onlyifn—z<j<n-—1,in

j—hn+z
particular [; = Oforz —a+ 1 <j=n—-z- 1

Let us note that the matrices Ly, and L; from Sec. 2 are now specified by D and
L, respectively.

5.2 Theorem. The eigenvalues 4, of the matrix L= /(k) DV fulfil
nk\2¥
(54) [A]> = B' 2 (2 sin ~> , k=0(1)n—1.
n
Proof. By Lemma 2.4
n—1
=YL, k=01)n— L
j=0
Substituting (5.3) for I; we cbtain

v z—1
A SEO - —1) (V) (J—z)k + —1 ]<v) gU=2k =
i j;z( Y{; j;o( Y{;
hd Y AY R A v\ v
— —1y ] 8—(—1+z)k — o(v=2)k -1 J('>8 =Nk _
1;0( ) (1) ’ j=20( ) J

= a(v—-z)k(g—k _ l)v — g(v—z)k (s—k/Z(g—k/Z _ 8k/2))" =

ok — . . zk\"
= g"=2kg ”"/2(——21 sin —) ,
n

(5.5) '1]: — 8(v~22)k/2 h(1/2)—v(_i)v (2 sin ﬂ() X
ny
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Now, if v = 2z — 1, then

(5.6) (=22 ) = (= 1) (sin ™ 4 i cos ﬂ‘)
n n

and if v = 2z, then

(57) §0-2M2( i)y = (1)

Now (5.4) follows from (5.5) to (5.7) O

Conclusions

We believe that all results stated in the present paper are approximately valid
also for the classical theory of smoothing splines because the smoothing criteria
(1.1) and (2.3) do not differ much. The following conclusions can be drawn from our
results.

1. On an equally spaced mesh the periodic smoothing spline is not a new quality
among the existing smoothing operations. Approximately the same effect may be
achieved by applying a digital convolution fiiter with the transfer function

_ 1 1 T
1+ o2 1+ oc[A,,_1[2> '

The convolution filtering is preferable also from the point of view of the computa-
tional effectivity because there exist fast algorithms with time consumption propor-
tional to n Ig n, see [4].

2. The transfer function H may serve as a guideline allowing to choose o and L
which are best-suited to satisfy our smoothing requirement. It is preferable to choose
directly the eigenvalues 4, when looking for a suitable L. In case of the differential
operator, we choose a suitable order v considering formula (5.4) for I/I,,lz.

3. The smoothing effect depends strongly on the sampling rate. If r are n samples
and r’' are n’ samples of the same function on a fixed interval T = nh = n'h’,
then r* and (r')” may show a qualitatively different behaviour caused by an irregular
» dependence of 1, (and consequently of the transfer function H) on n and h, as can be
seen from (5.4) — n enters the sin function.

II. APPLICATIONS
6. p-Periodic data r

In all what follows r and L are real.

If the data r have some specified properties such as
— p-periodicity: 75 = 7yn0q,), Where p is an integer =2 and n is divisible by p,
— partial symmetry: r, = r,_,,

— full symmetry: peven, ry = r,_sand ry = —r, 5,
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then simpler formulas can be derived from (3.1)—(3.3) in the sense that the summa-
tion terms are shortened to p instead of n in case of p-periodicity, those for B
even to [(p — 1)/2] if additional partial symmetry is present. For p-periodic and
fully symmetrical data both summation terms have only [(p/2 — 1)/2] members.
For some given p-periodic wave functions the sums for B;;, may be evaluated ex-
plicitly.

First, we shall confine our discussion to p-periodic dara r, where p is an integer =2
and n is divisible by p. A representant of this kind is the sequence

sp,q = {5p,q(t)};'=_(§ >
where

5, (1) = 1 for t=tp+gq, q=01)p—-1, ¢ =001)n/p—1.
palt) = 0 otherwise .

Denote ¢, = e2"/* for every positive integer k, and ¢ := ¢,.
The definitions of the matrix B (3.5), of the vector R (2.6) and of the matrix W~

(1.2c) imply by Theorem 3.1
1

5 —sk -skn”l kt —sk("/p)_ k(t'p+q)
B, ,(6,,) =& R, =¢ Z 15, =c¢ Z & =
-1 t=0 =0

= s(q—S)k Z Sﬁ;; .
=0
Thus by Lemma 2.3

By i(3,,0) = ’;j € for K =0()p— 1,

(6.1)

Bs,k(‘sp.q) =0 for k $ 0<mod ;) .

Now, let r be an arbitrary p-periodic sequence of length n,
p—1
r= Z T0p,q >

q=0

then by (3.5) and (6.1)
~ r-t no_grat
gs,k’n/p = B, ionp(r) = By ponsp( X 148p.) = = DI
q=0 P q=0
(6.2) K=01)p—1,

B =B,0r)=0, k= 0<mod f).
p
It is easy to see that * is p-periodic if r is p-periodic. Indeed, s = s'(mod p) implies
e, =¢,*%, thus by (6.2) B, = By, and by (3.1) ri = ri.. Therefore, we may
evaluate r* and w, for s = 0(1) p — 1 only.
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Denoting

Es,k' = fgs,k'n/p) S, kl = 0(1) P - 1 >

r® = (ro,...,r,-1)" (the basic period of the data vector r),
Wi = (572, ,

p—1
Pt __ +ap) — k'q, \p—1
R< _Wp' _{Zep TaSk =0
q=0

(6.3)

we obtain by (6.2)

(6.4,) B, =& M RPT =gV Pz_lf:;‘,"’rq, s,k =0(1)p—1.
By virtue of e

(64,) Bypro = Bly s Hiwpp = Hy_gony» K =0(1) [p[2],

the following assertion is true. (The proof proceeds like in Theorem 3.1.)

6.1 Theorem. The smoothed vector ¥* of a p-periodic data vector r is p-periodic,
too, and
1 [p/21 B .,
(6.5) re = — _ s,k ~, S= 0(1) p-—-1,
pr=o 1+ ocllk,"/p[

where

p—1
Bio =B 0o =RV =} r,,
q=0
p—1 _
(6.6) B, =B + B, . =2 r,cos2nk'(q —s)|p, k' =1(1) [32—1] ,
qg=0

p—1
B, ,.=B8,,,=(-1yRY =(=17Y (=1)r, for peven.
4=0 ‘
If ry + 0, then

[p/2] '
(6.7) wy = rifry = ! Bi

-y B o_o)p-1.
DPrs k'=0 1 +(x|)~k'n/p!2 ’ ( )p D

6a. Partially symmetrical p-periodic data r

Consider a vector r of length n and denote by r* = (r;_imoan);=0 the vector
cyclically shifted k positions to the right, k = 0(1) n — 1. Then (r*)* is the vector
r* = Hr cyclically shifted k positions to the right, i.e. (#)* = (+*)*. Indeed, the i-th

n—1

component of the smoothed vector (r)* satisfies ()7 = Y hi jmodn)j—k(modn) =
n—1 j=0

=Y hig—jrmoamtjs = Ti—x = (r**); = the i-th component of the shifted vector r".
i'=o

Thus without loss of generality we may restrict our considerations to such r or r?,
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respectively, for which
(6.8) ro = min(ro, ..., 7,—y) = min (ro, ..., 7,_y) .
6.2 Definition. A data vector r of length n is said to be partially symmetric if

e = Famkmoany Jor k=0(1)[n/2]. O
Clearly a p-periodic vector r of length n is partially symmetric if and only if

e = Fp_moapy TOr k =0(1)[p/2].
6.3 Theorem. Let r be a p-periodic and partially symmetrical data vector. Then

/2
1 [p/2] B_/x’k

6.5a re = , s=01)p—-1
( ) pk—ol +lik,,/p|2 ()
where
[(p—1)/2]
Bjo =R =ro+2 Y ry+ Ty,
q=1
2nsk’ [(p—1)/2]
B, = 2c0s 2K RD* = 205 2™ ( +2% 1, cos 74 4 (—y¥ ,,,2>,
14 p p

(6.6a) K=10)[(p - D2l
B2 = (=R = (=1)'(ro v2 Z (=1, + (~1p7 p2)

for p even.

For p odd we define r,,, = 0.
(6.72) wy = rifry (if ry & 0).
Proof. The vector r is p-periodic and partially symmetric, so we only need to
evaluate formulas for s = 0(1) [p/2]. In view of the partial symmetry, by (6.3)

and (6.4) we have
[(p=1)/21
(6.9) RD*T = Zs" Iry=r9 + 2 Z ry cos 27K

k= 0(1) [p/2].
[p=1)/21 0
If p = 2, then the sum Z ( Z ) will be omitted; this convention will be applied
=1 q—l
in the sequel, too. Thus R js a real partially symmetric vector, which implies

(6.6a). Indeed, by (6.6)
B, =B, + B, = e, RP* + "R =
— 2c0s K pd* for k= 1(1)[(p - 1)2]
' P

and the cases k' = 0 and k' = p/2 (p even) follow directly from (6.6).
Hence we see that r* is partially symmetric because B,_, ;. = By .. O

+ (=) 7,2,
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6b. Fully symmetrical p-periodic data r

6.4 Definition. The full symmetry of a p-periodic data vector r means that

p=2m,
(6.10) rg= —F for q=0(1)m,
Ty = I'p—gmeap) - [
Formulas (6.8) and (6.10) yield

m—q

= max (ro,...,r,—y) = max(ry,...,r,) and ry 0.

Indeed, vy >0 and ry < r, imply —ro =r, = ry, a contradiction. We may
restrict ourselves to the case r, < 0 (omitting the trivial case ro = 0). Thus r,, > 0
will be assumed in all what follows. As the reduction w, = r{[r, does not depend

on the data scale, without loss of generality we may suppose r, = —1, r,, = +1.

6.5 Theorem. Let r be a fully symmetrical p-periodic data vector. Assume that
ro = —1 and r, = 1; define r,;, =0 for m odd and put B, = 1B} ,;.,, | =
= 0(1) [(m — 1)/2]. Then

1 [(m—1)/2] BI// ( )

6.5b ¢ = Sal g =01 _q
(o) Tom S 1+ OC|’1(21+ 1)n/2m[2 P
where

B;’:, = cos TE(_ZZ,J'_ 1) R(2p’)++l _

m
_ ns(21 + 1) [(m=-1)/2] nq(2l + 1)

(6.6b) = 2 cos T (-—1 + 2 Zl r, €os T) ,

|l = 0(1) [m/2] -1,

(m—1)/2
Bln-nz = $(= D RPT = (=17 (=L +2 % (=1)'7) for m odd;

(6 7b) ' w, = r—: = ———];« e Z”/Z] __—?‘;/:l____ s = O(l) _ 1(" :#: 0)
e Y oor omry 1S 1+ “M(Zl+1)n/2,,,|2’ p A .

The vector ¢* is fully symmetric and p-periodic. Moreover,
Wpos =W, s=01)p—1 andifmiseven, r,,=0.
So we only need to evaluate the formula (6.7b) for s = 0(1) [(m — 1)/2].

Proof. By (6.10) [(p — 1)/2] = m — 1 and r,,, = 0 for m even. Further (6.9)
is reduced to the form

[n=1)/21 K k ,
RP* = —-1+2 Y <rq cos =24 P q COS %— + r,,,/z) + (=1~
q=1 m m

k= 0(1)m,
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whence with respect to r,_, = —r, and r,,, = 0 it follows for k' odd or even,
respectively

[(m—1)/2]

nq(2l + 1

RPN =4 Y r,cos _q( ~)
g=1 m

RP* =0 for I=0(1)[m/2].
Then the formulas (6.5a)—(6.7a) reduce to (6.5b)—(6.7b).

Further, for every I there evidently holds B, _,;, = — By, whence r},_, = —ri,
which means that the smoothed data is fully symmetric. Thus the reduction

—2 for I=0(1)[(m - 1)/2]

o o
re_. =T
Wpes = 275 = —5 =y (for ry % 0)

Fin—s T

is the same for the positive and negative part of the halfwave. [J

6.6 Definition. The number |ro| = r,, is called an amplitude of a a fully symmetric
p-periodic data vector r. []

This legitimates us to define the notion of a reduction of the amplitude by wy = w,,.
According to our convention concerning the data scaling we may suppose (without
loss of generality) the unit amplitude of r.

6.7 Corollary. Let r be a fully symmetrical p-periodic data vector. Then

1 [(m—1)/2] Al
Wo = W, = — H—*ﬁ’
m =0 1+ “ll(zw l)n/ZmI
where

[(m—1)/2] 21 1
A, = —RDS, = 2(1 -2 ¥ ,-qcosfri(_i_)>,
g=1

I=0(1)[m2] - 1,
(m=1)/2
A1y = —3RP* =1-2 Y (=1)'r, for m odd.
q=1

m

For some special periodic data the R’ may be easily evaluated. This will be
demonstrated by several examples such as the sinusoidal wave, for which a detailed
derivation is given, and others where only the results are presented.

III. EXAMPLES
7a. Sinusoidal wave

A sample of a sinusoidal wave on an equidistant mesh 4 = {th};Z is the vector

n—1 n—1
(7.1) F= {— cos gﬁﬁ} = {— cos E—t}
P )izo P Ji=o0

with P = ph — the period, p an integer =2 and divisor of n.
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7.1 Theorem. For the sinusoidal wave with the sample vector (7.1) we have

r

rl — s
S+ ala,, P
(112) o 5 = 0(1) [p]2]
ws= T (ry £ 0),
+

Thus the reduction wg does not depend on s.
Proof. Clearly, the vector r is partially symmetric with the basic period r(® =
= {— cos 2nt[p}P=}. We have

_ —2nit/p\p—1 __ 1f.—2ri(p—1)t/pyp—1
r = _%{e t=0 —Z—{C }t=0 B

which means that »® is a linear combination of the second and the last column
of the matrix W, = (¢, )7%1,. By Lemma 2.3

(p—3)times
ROF — @ — (0, —p/2,0,...,0, —p[2)T for p>2,
? (0, —p)T = (0, =2)7 for p=2,

RO+ _ —p[2 for kK=1 and p>2,
¥ T3)—p for kKK=1 and p=2,

RP* =0 for k' =01)[p2], kK *1.

Then (7.1a) is obtained from (6.5a)—(6.7a) after subsutituting the above derived
R®* into (6.6a). [

7.2. Note. As we have seen, the relations (3.1) and (3.2) are equivalent to (2.8)
and (2.10). In a similar way, the relations (6.5) and (6.6) are equivalent to

(7‘2) pP2 = FOp® - e = (llp) WP—H(p)Wp+

where H® is a circulant matrix with the generating vector A = (1/p) Wp‘H("),
= (e;7)07 Lo, H® is a vector the components of which are HP? = Hk nip =
= 1 (1—!— (x[lk ,,,pl ) and H® = diag (HY, ..., H?,); the property H(") H
is an evident consequence of H, = Hn_kmodn)
Now, the result of Theorem 7.1 may be obtained from (7.2) because H? = HP,
is the reduction of the base vectors {¢, ‘}2Z¢ and {e, V" = ¢ }?- and consequently
also of (7.1). In more detail, the equations

wyH® = Wy HOW; (1/p) W, and W** = W, HOW,} (1/p) W+,
where W~ = {¢, }/2g and W™ = {g, = ¢, ?"V}?] are the 2nd and the last
column of W, respectively, say that the respective W¥* is the 2nd and the last col-
umn of W, H(P) which is equal to HPW ™~ or H? ,W*, respectively. Then, in view of
HP, = H(I’) = 1)(1 + afd,,|*) and r@ = ~—l(W + W), we get the desired
formula r@ = /(1 + al4,,|?) ¥®.

p= k (modp)
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Th. Saw-like wave

The basic period of the saw-like wave is given by the vector
K = (1~ g = m] 22"

where n is divisible by p, p = 2m, m = 1. This data vector is p-periodic and fully
symmetric.

Fig. 1. Saw-like wave.

7.3 Theorem. For the saw-like wave we have

1 Wm—1)/2] B"”
K= ———— . s=0()2m - 1,
mo =0 1+ afdois gy
2
(706) B = = 2 cos™2LED) / sin? "CLE D o 1 = o(1) [mf2] =1,
m m 2m

" 1
Bl m-1y2 = ~ (=1)** for m odd.

For the reduction of the amplitude we obtain

1 [m—-1)/2] A
Wo = W, = — ﬁ_—.‘—z ,
m o iso 14 afdg 1)n/2m|
2

A T 1=0(t)[mj2] - 1,

Ap-1y2 = 1 Jor modd.
m

In particular, for p = 2 (m = 1) we have
_ 1
1= 75>
1+ a|d,,)?

which is the same result as in (7.1a) (for p = 2 the samples of the sinusoidal and saw-
like waves are identical).

Wo = W
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7c. Rectangular pulse train

Figure 2 shows the graph of the function representing a sequence of rectangular
pulses for m odd. From these functions the following p-periodic fully symmetric

discrete function will be deduced:

+1T r— I
[ m+1

m=1 m+
-a| |q |3]al|5la 12 m C 2
0j |2ja|éla|bla O m_z_l m-1 me] m+m§—1 2m=p

-1

Fig. 2. Rectangular pulse train.

p=2mmz21,

Tq = Tp—gmodpy = —1, 4 = 0(1) [(m - 1)/2] >
Tq = Tp—gmoapy = +1, q = [m/Z] + 1(1) m,
Tmpz =0 for m even.

7.4 Theorem. For the rectangular pulse train we have

1 Wm=1)2] B"
ry=— — ., s=01)p-1,
m i=o 1+ oc|}~(zt+1)n/2m 2
BY, = 2(—1)*! cos s(21 + 1)[m
(7.1¢) > sin n(21 + 1)/2m 1=0(1)(m - 1))2

B” _ (—1)S+1 for (m — ])/2 even fOr m Odd,
s,(m—1)/2 — (_l)s for (m _ 1)/2 odd
By, = 2(—1)"*"" cos (ns(21 + 1)[m) ctg (x(2] + 1)[2m),

1=0(1)[(m — 1)]2] for m even. [

7d. and e. Other two examples

The p-periodic curve ¢) results from the curve d) by shifting and multiplying:
r{(e) = 2(ry(d) — 1/2). These curves are not symmetrical. The result for the curve d) is
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-1 -1

Fig. 3. Cases d) and e).

_ tp/2] '
ri(d) = p-1 + ! _ Bew , s=01)p-1,
2 pr=11+ ocll,c',,/plz
, sin 7k'(2s + 1 ,
(11d) B = - STEE NP gy - 1),
sin 7k’[p
B, o = 3(—1)*Y for p even;
and for e):
2 [p/2] B .. 1
7.1e rle)=p—1+= Sk - =
(71¢) €)=r P PR RPN E
s=01)p-—-1.

Note. Problems similar to those of the present paper are dealt with also by Gau-
tschi [8], Locher [15] and in a more general form by Gutknecht [9]. The first two
authors deal with the periodic interpolation problem in one dimension, the third
author has generalized their results admitting any linear and translation invariant
operator (not only an interpolating one) in several dimensions. In a certain sense
our Theorem 2.5 may be viewed as a special case of Gutknecht’s result which, when
applied to the DS-spline, says that the transfer function coefficients H are to be
computed as DFT of the DS-smoothed unit vector (1, 0. ..., 0)T. Thus Gutknecht’s
result implies only that the DS-smoothed data are obtained by discrete convolution.
Our Theorem 2.5 is stronger in that it moreover provides explicit formulas for H.
Using Gutknecht’s result the proof of the above mentioned Theorem 2.5 might be
modified by considering r = (1,0, ..., 0)T only.

References

[11 P. M. Anselone, P.-J. Laurent: A general method for the construction of interpolating or
smoothing spline functions. Num. Math. 12 (1968) No. 1, 66— 82.

[2] P. Beéi¢ka, J. H¥ebidek, F. Sik: Numerical analysis of smoothing splines (Czech). Proceed.
9-th Symposium on Algorithms ALGORITMY 87, JSMF, Bratislava. 1987, 22—24.

[3] K. Bohmer: Spline-Funktionen, Teubner, Stuttgart, 1974.

[4] E. O. Brigham: The Fast Fourier Transform. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1974.

48



[5] C. S. Burrus, T. W. Parks: DFT/FFT and Convolution Algorithms. Wiley Interscience,
1985.
[6] P. Craven, G. Wahba: Smoothing Noisy Data with Spline Functions. Numer. Math. 31
(1979), 377—403.
[7]1 D. F. Elliot, K. R. Rao: Fast transforms. Algorithms, Analyses, Applications. Acad. Press,
New York, London, 1982.
[81 W. Gautschi: Attenuation Factors in Practical Fourier Analysis. Num. Math. 18 (1972),
373—400.
[91 M. H. Gutknecht: Attenuation factors in multivariate Fourier analysis. Num. Math. 51
(1987), 615—629.
[10] J. Hfebiek, F. Sik, V. Veselp: Digital convolution filters and smoothing splines. Proceed.
2nd ISNA (I. Marek, ed.), Prague 1987, Teubner, Leipzig, 1988, 187—193.
[11]1 J. Hfebitek, F. Sik, V. Vesely: How to choose the smoothing parameter of a periodic
smoothing spline (to appear).
[12] J. Hiebilek, F. Sik, P. Svenda, V. Vesely: Smoothing splines and digital filtration. Research
Report, Czechoslovak Academy of Sciences, Institute of Physical Metallurgy, Brno, 1987.
[13} L. V. Kantorovié, V. I. Krylov: Approximate methods of higher analysis (in Russian).
4. ed. Moskva, 1952.
[14] P. J. Laurent: Approximation et Optimisation. Hermann, Paris, 1972.
[15] F. Locher: Interpolation on uniform meshes by the translates of one function and related
attenuation factors. Math. Comput. 37 (1981) No. 156, 403—416.
[16] M. Marcus, H. Minc: A survey of matrix theory and matrix inequalities. Boston 1964
(Russian translation, Nauka, Moskva, 1972).
[171 H. J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms. 2nd ed., Springer,
Berlin, Heidelberg, New York, 1982.
[18] V. A. Vasilenko: Spline-Functions: Theory, Algorithms, Programs (in Russian). Nauka,
Novosibirsk, 1983.
[19] J. H¥ebitek, F. Sik, V. Vesely: Smoothing by discrete splines and digital convolution filters
(Czech). Proceed Conf. Numer. Methods in the Physical Metallurgy (J. Htebicek, ed.)
Blansko 1988, UFM CSAV Brno 1988, 62— 70.

Souhrn

DISKRETNI VYHLAZOVACI{ SPLAJINY A CISLICOVA FILTRACE.
TEORIE A APLIKACE

Jikf HREBICEK, FRANTISEK SIK, VITEZSLAV VESELY

Hlavni vysledky prace: dukaz existence uzké souvislosti mezi vyhlazovacimi splajny a digital-
nimi konvoluénimi filtry (Cor. 2.6), vytvoteni pfenosové funkce, ktera charakterizuje vyhlazovaci
splajn jako filtr pomoci vyhlazovaciho parametru a vlastnich hodnot diskrétniho analogu opera-
toru .% (Th. 2.5) a uréeni podilu mezi puvodnimi a vyhlazenymi daty (Th. 3.1).
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Pesome

JUCKPETHBIE CIJIAXXVBAIOIIUE CITJIAMIHBL U1 ITU®POBASL ®UIILTPALIUSL.
TEOPU U ITPUMEHEHU A

Jikf HREBICEK, FRANTISEK SIK, VITEZSLAV VESELY

I'naBHble pe3ynpTaThl paboTel: J{0Ka3aTeNbCTBO CYIIECTBOBAHMS TECHOM CBA3H MEXAY CIIIaXH-
BAIOIIMMH CIUIAHHAMM ¥ UH(POBEIME KOHBOJIIOLMOHHBIMU (dunbTpamu (Cor. 2.6), co3nanue nepe-
NaTo4yHOM (YHKUMH, KOTOpast XapakTepPU3yeT CIJIAXHMBAIOIIUM CIUTafH KaK (QUIBTD C HOMOIIBIO
CIIIQXHMBAIOIIEro IapaMeTpa ¥ COOCTBEHHBIX 3HAYEHUM MUCKPeTHOTO aHajora omeparopa & (Th.
2.5), ¥ YCTAHOBJIEHAE OTHOIIEHHMS MEX/y NEePBOHAYAJLHBIMY U CrilaxeHHbIMHU Jauuemu (Th. 3.1).
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