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ON TIME-HARMONIC MAXWELL EQUATIONS
WITH NONHOMOGENEOUS CONDUCTIVITIES:
SOLVABILITY AND FE-APPROXIMATION
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Summary. The solvability of time-harmonic Maxwell equations in the 3D-case with non-
homogeneous conductivities is considered by adapting Sobolev space technique and variational
formulation of the problem in question. Moreover, a finite element approximation is presented
in the 3D-case together with an error estimate in the energy norm. Some remarks are given
to the 2D-problem arising from geophysics.

Keywords: time-harmonic Maxwell equations, solution theory, 3D-finite element approximation

AMS Classification:18A25, 65N30, 35R05.

1. INTRODUCTION

This paper is a supplement to papers [13] and [16]. We consider the Maxwell
equations

;@ =rotH# — 4,
(1.1) ot

iag: —roté&,
ot

in a three-dimensional bounded region Q, where 9 = &¢& is the electric induction,
B = pA is the magnetic induction, & is the electric field, # is the magnetic field,
¢ is the electric dielectricity, u is the magnetic permeability, £ = o& is the electric
current and o is the 3 x 3 matrix of electric conductivities. We assume & and #
to be time-harmonic with the low angular frequency w € (0, 1), i.e.,

K

(12) &(xy, X3, X3, 1) Re (E(xy, x5, x3) exp (iot)),
H(xy, X3, X3, 1) = Re (H(xy, X5, x3) exp (iwt)),
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where E and H are complex-valued vector functions independent of time and
Re (v, 03, v3) = (Re vy, Re v,, Re v;). Moreover, we shall assume that p is a real
positive constant in the whole region. (For instance in geophysical computations,
the permeability of almost all rocks is nearly equal to the vacuum permeability
[14].) On the other hand, the conductivity ¢ may essentially vary (see Section 5).
Ase~ 107" — 1072 [Fm™'] we see that 62/0t = 0. Under the above assumptions,
the relations (1.1) and (1.2) enable us to deal with the following system without time

(1‘3) rot H=0¢E in Q,
rot E = —iouH in Q.

From here we see that H can be directly computed from the knowledge of E,

H=_ rot E ’
iou
and for E we get the equation
(1.4) rotrot E + iopucE =0 in Q.

Note that H formally satisfies the same equation at those parts of 2 where ¢ is constant

rot rot H + iwucH = 0.
On the boundary of @ we prescribe the boundary condition
(1.5) nx E=nxE on 0Q,

where n = (ny, n,, n;) is the outward unit normal to dQ and £ is a given vector
function which is for convenience defined over the whole domain Q. Since div rot = 0
(cf. (2.11)), the first equation of (1.3) yields diveE = 0 in Q (div oE will always
mean div (¢E)). So we shall look for a complex-valued vector function u = E — E
such that

It

rot rot u + iwpou = — rotrot £ — iwpusE in  Q,
(1.6) divou = — divoE in Q,
nxu=0 on 0Q.

“Here we assume that u, £e (C%(@))% and o e(C'(2))*** is a real symmetric and
uniformly positive definite matrix, i.e., (1.6) is fulfilled in the classical sense. Later
we shall prescribe weaker assumptions upon the regularity of u, £ and o.

The paper is organized as follows. In Section 2 we introduce the spaces H(div o; Q)
and H,(rot; Q) which are appropriate for a variational formulation of the problem
(1.6). Although we shall work in complex valued spaces, we employ some assertions
from the real analysis (to be understood as they are applied to the real and imaginary
parts of the functions in question). In Section 3 we introduce the variational formula-
tion of (1.6) necessary to derive the finite element approximation and error estimates
in Section 4. In Section 5 we present some remarks for the 2D-problem and give
a numerical example, where a new C!-clement is employed.

I
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2. FUNCTION SPACES OF COMPLEX-VALUED FUNCTIONS

Let Q = R? (d = 2,3) be a bounded domain with a Lipschitz boundary. The
normal n to 0Q thus exists almost everywhere (see [15, p. 88]). By H*(Q),
k=0,1,2,...,we will mean the Sobolev spaces of complex-valued functions. The
standard norm in H*(Q) and also in (H¥(Q))* will be denoted by || (or ||*[i.0 if
necessary). Further, H'/?(Q) is the space of traces of functions from H'(Q), and
H(9Q) consists of functions from H'(Q) with vanishing traces. The space (I*(Q))? =
= (H°(Q))", p = 1,2, 3, will be endowed with the usual scalar product

p
(0,w)o =Y [a(Rev; + iImv;) (Re w; — i Im w;) dx
j=1

for v = (vy, ..., 0,), w = (W, ..., w,) € (IX(Q))" .

The notation P,(Q) is used for the space of complex-valued polynomials of degree
at most k.

In the three-dimensional case we will assume that the electric conductivity ¢ €
€ (L*(Q))**? is a real symmetric and uniformly positive definite matrix. Consequently,
there are constants m, M > 0 such that

@1 o<mlel S (@(9e s Ml veect, 4o,

holds for a.e. x € Q. Here the symbols ||+|| and (-, -) stand for the standard norm
and scalar product in C3, respectively. Introduce the space

H(div o; Q) = {ve (IX(Q))* |3F e I}(Q):
(ov, grad z), = —(F, z), Vze 2(Q)}
(={ve(I’(Q))® | diveove I}(Q)}),

where 2(Q) is the space of complex infinitely differentiable functions with a compact
support in Q and the function F is called the divergence of ov in the sense of distribu-
tions. We write only H(div; Q) when o is the unit matrix. Let us set

H(div%; Q) = {ve H(div; Q) | divv = 0in Q} ,
H(div® 05 Q) = {ve H(div.o; Q) | divov = 0in Q} .

Recall (see [7, p.27]) that the function v+ n - v,, defined on (C*(Q))* can be
extended by continuity to a linear continuous mapping from the space H(div; Q)
into H™'/%(0Q), the latter being the dual space to H'/3(9Q2). Now the Green formula
may be rewritten as

(2.2) (divo, z) + (v, grad z)y = <n- v, 2D Yve H(div; Q) Vze H'(Q),
where {*, *);9 denotes the duality pairing between H~1/2(0Q) and H'/*(0Q). We set
Hy(div%; Q) = {ve H(div’; Q) | n*v = 0 on 0Q} .
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Further, we extend the range of definition of the operator
23) R R ]
0x, 0x3 0x3 0x; 0x; 0x,
z € (H'(Q))?, introducing the space (see [6])
H(rot; Q) = {ve (IX(Q))* | 3G € (}(Q))*: (v, rot 2)o = (G, 2)y Vze(2(2))%}
(= {ve(B(Q) | rotve (1(Q))}),

where the function G is called the rotation of v in the sense of distributions. We equip
this space with the norm

(24) lolaonir = ([e]lG + [[rot v]l5)"", v e H(rot; Q).

According to [7, p. 34], the Green formula reads

(2.5) (rot v, z)o — (v, rot z)g = <n X v, 2Dsq
Yve H(rot; Q) Vze(HY(Q))?,

where the vector product n x v is from (H™'/?(0Q))? and (-, +>,, stands for the
duality pairing between (H™'/*(0Q))® and (H'*(0Q))°. Let us introduce some
subspaces of H(rot; Q)

Hy(rot; Q) = {ve H(rot; Q)| n x v =0 on 0Q},
H(rot%; Q) = {ve H(rot; Q) | rot v = 0 in Q} ,
H,(rot% Q) = Hy(rot; Q) n H(rot’; Q).

Since we shall later need to employ (2.5) also for functions z which are not from
(H'(Q))?, we prove an auxiliary lemma.

Lemma 2.1. Let Q = R® be a bounded domain with a Lipschitz boundary. Then
(2.6) (rots,v)y = (s, rot v), Vse H(rot; Q) Vve Hyrot; Q). ‘

Proof: Let se H(rot; Q) and ve Ho(rot; Q) be given. Since (2(Q))* is dense in
* H(rot; Q) with respect to the norm (2.4) — see e.g. [7, p. 32], there exists a sequence
{v;}720 = (2(Q))® such that
lo = viluoisey > 0 as j— o0

Thus we conclude that

(2.7) (rot s, v;) = (rot s, v),
and
(2.8) (s, rot v;) = (s, rot v), .

By the Green formula (2.5) we obtain

(rots,v;)p — (s, 10t )y = (n X 5,00:0=0, j=12,..
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This together with (2.7) and (2.8) yields (2.6).

Note that from the density 2(Q) = Hy(Q), (2.2) and (2.5) we can easily derive
that

(2.9) grad z € H(rot’; Q) for ze H'(Q),
(2.10) grad z € Hy(rot% Q) for ze Hy(Q),
(2.11) rotve H(div’; Q)  for ve H(rot; Q),
(2.12) rotve Hy(div®; Q) for ve Hy(rot; Q).

3. VARIATIONAL FORMULATION OF 3D-PROBLEM

Let us introduce the space of test functions
V = H(div 63 Q) n Hy(rot; Q)
equipped with the norm
lolla = (ldiv oul3 o + lrot ol o + Jol3of™, ve V.
Suppose that u e V (with an appropriate smoothness) satisfies (1.6). Using (2.6)
for s = rot u and then for s = rot £, we find that for any ve V
(rot v, rot u)y + (v, iopou)y = —(rot v, rot £)y — (v, iapcE), ,
(div ov, div ou)y = —(div ov, div ¢E), .
Consequently,
(3.1) a(v,u) = b(v) VveV,
where a is the sesquilinear form
(3.2) a(v, w) = (div ov, div ow), + (rot v, rot w),
—iou(v, ow)y, v,weV,
and b is the linear form defined by
(3.3) b(v) = —(div o, div 6E), — (rot v, rot £),
+ iou(v, 6E)y, veV.

In Remark 3.4 we further show that if u is sufficiently smooth and fulfils (3.1) then
u fulfils also (1.6). Hence, we are justified to call (3.1) the variational formulation
of the problem (1.6).

Theorem 3.1. Let Q « R* be a bounded domain with a connected Lipschitz
boundary 02 and let Ee H(divo; Q) n H(rot; Q). Then there exists a unique
ueV such that (3.1) holds.
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Before we prove this theorem we introduce some definitions and two lemmas. Let
Q = Hy(div’; Q) n H(rot; Q).
By S we denote the orthocomplement of the space
H g = Hy(div’; Q) n H(rot’; Q)

in Q with respect to the scalar product (-, +), + (rot-, rot+),. One may easily show
that #, is a closed subspace of Q in the corresponding norm (2.4). Note that (see
[13, p. 310]) the space #, is trivial if and only if Q is simply connected. (When Q
is e.g. a torus axisymmetric with respect to the axis x5, then for

X, X
v(xl,xz,x3)=< 5 S, — ‘2,0)

X1 + x5 xf-}-/\z

one can directly verify that ve #, + {0}) The next lemma assigns a special vector
potential function (stream function) to a divergence-free function.

Lemma 3.2. Let @ = R3 be a bounded domain with a connected Lipschitz boundary
and let y € H(div’; Q) be given. Then there exists exactly one stream function s€ S
such that

Y =rots.
Moreover,

(3.4) lIslo = elrot sfo ,

where ¢ > 0 is independent of s (and V).

Proof. Let y € H(div®; Q) be arbitrary. Since 02 is connected, by [7, p. 45] there
exists a stream function ¢’ € H(div®; 2) n (H'(2))* (not uniquely determined) such
that = rot ¢’. According to (2.2), we get {(n-q’, 1>,o = 0. Hence, there exists
a weak solution ¢ € H'(Q) (unique apart from a constant) of the Neumann problem

—-Ap=0 in Q,

0
N £=n-q’ on 0Q.
on

Then clearly the function ¢ = ¢’ — grad ¢ is from Q (see (2.9)) and g is also a stream
function to ¥, that is

Y =rotgq,
(cf. [2], [20]). However, by [13, p. 310], the stream function g € Q is still not unique

when Q is multiply connected {e.g. toroidal). Therefore, we use the orthogonal
decomposition

(3.5) 0=S@ #,
with respect to the scalar product (+, )y + (rot-, rot),. Thus by (3.5) we get ¢ =
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= s + h, where s€ S and h € 4, and from the definition of 5, we obtain
Y =rots.

Further, let us suppose that y = rot s' = rot s? for some s', s> € S. Then s' —
— s?eS N #, and (3.5) yields that s' — s> = 0, i.e. the stream function s to
exists unique in S. Consequently, by (2.11) the liner operator

(3-6) rot: S -» H(div’; Q)

is a one-to-one mapping. It is obvious that S with the norm (2.4) and H(div’; Q)
with the ||+[|o-norm are Banach spaces. As the operator (3.6) is continuous, that is

Irot s < Cllslluor; o) »

we conclude by the Theorem on Isomorphism (see [10, p. 216]) that the inverse
operator is continuous, too. Thus

”SMO = “s”H(rot; o = c”rot S”o 5w

The next lemma is known (see [12], [17], [21]) for © convex or 3@ smooth, and
under some restrictions upon o.

Lemma 3.3. Let Q < R* be a bounded domain with a Lipschitz boundary. Then
there exists a constant C > 0 such that

(3.7) oo = C(|div ov]o + |rotov]) Vve V= H(diva; Q) n Hy(rot; Q)
if and only if 0Q is connected.
Proof. Let the set 02 be not connected and let I" be one of its components. Con
sider the weak solution z e H'(Q) of the problem
—div(ocgradz) =0 in Q,
z=1 on I,
z=0 on 0Q\I'.

Then we easily find that v = grad z € H(div® ; Q) n Hy(rot®; Q), whereas [v]|, * 0,

i.e., (3.7) cannot hold.
Conversely, let 0Q be connected, let v e V be arbitrary and let z e Hy(Q) be a weak

solution of the Dirichlet problem

(3.8) —div(ogradz) = —divevr in Q,
z=0 on 0Q.

Thus

(3.9) . Iz]l; < Ci|divav, -

From (2.2) and (2.10) we see that grad z € H(div o; Q) n H,(rot% Q), i.e., by (3.8)
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we have
(3.10) w = v — grad z € H(div® o; Q) n Hy(rot; Q).
Since ow € H(div’; Q), by Lemma 3.2 there exists a stream function s € S such that

(3.11) ow =rots.
By (3.11), (2.1), (2.6) and (3.4) we come to

(3.12) [wlls = |lo™" rot s|§ < m|o™"* rot s[5 =

= m(c™"*rots,o”!

/2 rot 5)o = m(rots, w), =
= m(s, rot w)y < m|s|, [rot w, =
= me|rot s [rot wl|o < C,|o™" rot 5| [rot w]y = C,|w||o [[rot o ,
where o~ 1/2 denotes the square root of the real positive definite matrix ¢~ !. Thus
from (3.10), (3.9), (3.12) and (2.9) we get
Iolo < lgrad 2l + [wlo < €] div ol + Cslrot vl
< C(|divav|o + [rot v]o),
whence the result as required. g

Proof of Theorem 3.1. It is easy to show that V is a Hilbert space with the
scalar product

(v, w)o = (div ov, div ow), + (rot v, rot w)y + (v, w)e, v,weV,
for which [|[s]|3 = (v, v)g, v € V. Employing (3.7) to (3.2), we arrive at
3.13) la(v, v)| = Re a(v, v) = ||div ov|j + |rotv|f =

1

2 oz ol + 2divovs + drot o5 = cllola (e > 0)
for any v e V, i.e., the sequilinear form a(+, +) is V-elliptic. We immediately see that
A a(+, +) is continuous, |a(v, w)| £ C|||v|o [|w]|e for all v, we ¥, and that the linear
form b(+) is also continuous when E'e H(div a; Q) n H(rot; Q). Thus the rest of the

proof follows from the Lax-Milgram lemma (see [15, p. 38]).

Remark 3.4. Let u, E and ¢ satisfy the regularity assumptions stated just after
(1.6) and let u € V satisfy (3.1). Then u satisfies all the equations of (1.6). The fulfil-
ment of the condition n X u = 0 on 0Q is obvious, since ue V < Ho(rot; Q) Next
we show that

(3.14) divou = —diveE in Q.

So let f e I*(Q) be arbitrary and let us consider the Dirichlet problem
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(3.15) —divegrad z — iopz = —f in  Q,
z=0 on 0Q.

By (2.1) and Friedrichs’ inequality [15, p. 20] the associated sesquilinear form is
H{(Q)-elliptic as

|(grad z, o grad z), — iwu(z, z)o| = (grad z, o grad z), =
= m(grad z, grad z), = C|z||} Vze Hy(Q),
where C > 0 is independent of z. Hence, there exists a weak solution z e Hy(Q)

of the problem (3.15). Setting v = grad z, we find by (2.10) and (3.15) that ve V.
Consequently, from (3.1), (3.2), (3.3), (2.9), (2.2) and (3.15) we get

0 = a(v, u) — b(v) = (div ov, div o(u + E)), — iwp(grad z, o(u + E)), =
= (div o grad z, div o(u + E))o + iou(z, div o(u + E)), =

= (f, div o(u + E)), .
Thus (3.14) is valid.
Further, let ve (2(Q))* be arbitrary. We see that div ov e C(Q) < I*(Q) and thus
ve V. Due to (2.6), (3.2), (3.1), (3.14) and (3.3) we obtain

(v, rot rot u + iwpou), = (rot v, rot u)y — iwu(v, ou)y =
= a(v, u) — (div ov, div ou), = b(v) + (div ov, div 6F), =
= —(rot v, rot £), + iwu(v, 0E)y = —(v, rot rot £ + iwucE), .
Since {2(Q))? is dense in (L*(Q))°, the first equation of (1.6) holds.

Remark 3.5. Let ¢ = 0 in some subdomain Q, =+ 0 of @ (i.e., (2.1) is not valid).
Then the problem (1.6) is not uniquely solvable. Putting E, = grad ¢ for some
0e{zeP(Q)|z=01in Q\Q}, ¢ *+ 0, we find that

rot rot Eq + ioucEy, =0 in 2,
diveE, =0 in Q,
nx Ey,=0 on 0Q.

For such a case we refer to the paper of Colton and Paivirinta [5].

Remark 3.6, Lemma 3.3 may be also applied to get the unique solvability of the
stationary problem

diveu =F in Q,
(3.16) rotu =G in Q,

nxu=0 on 0Q.
The associated sesquilinear form
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A(v, w) = (div ov, div ow), + (rot v, rot w)y, v,weV,

occurring in the variational formulation of (3.16), is V-elliptic due to Lemma 3.3.
Let us further mention that Theorem 3.1 remains valid also when w = 0.

4. FE-APPROXIMATION OF 3D-PROBLEM

Let Q be a bounded polyhedral domain with a Lipschitz boundary, , a decom-
position of @ into elements (tetrahedra, prisma, parallelepipeds, etc.) in the usual
sense (see [4]), i.e., any face of any K € 7, is either a subset of 02, or a face of another
K'eJ,. Let

W, = {v, e (I*(Q))® | vi|ce (Px)® VYKeT,},

where Py is a space of complex-valued polynomials such that Py = P,(K). A discrete
analogue of the problem (3.1) consists in finding u,, € ¥}, such that

(4.1) a(vy, u,) = b(v,) v, €V,

where V, = ¥V~ W,. From the V-ellipticity of a (+, -) we see that u, exists unique
if ¥, & 0. First we establish some properties of the space V.

Definition 4.1. Let v, € W,. Then the tangential components of v, are said to be
continuous at element interfaces if for any two adjacent elements K, K, € 7,
we have

(4.2) VX Ok, =V X vk, on S=K;nK,,

where v is a normal to S.

Lemma 4.2. If v, €V, then the tangential components of v, are continuous at
element interfaces.

Proof. Let K;,K, €7, be adjacent and let v,e ¥, = H(rot; Q) be arbitrary.
"Using the Green formula (2.5) for z € (2(K; U K;))*, we get

(4.3) Jk,(zrot v, — vyrot z) dx = [ (ng, X vyg,) zds, j=1,2,

where ny, denotes the outward unit normal to JK;. Summing (4.3) over j = 1,2,
we find by (2.5) that
0 = [5(ng, X vix, — ng, X v4lx,) zds,
which holds particularly for all z € (2(S))*. Hence (4.2) is valid.
To the end of this section we shall moreover assume that the first derivatives

of ¢ exist and that they are continuous over each element K € 7, i.e., for any v, € W,
the divergence of ov, exists on each K € 7, in the classical sense.
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Defirition 4.3, Let v, € W,. Then the normal component of ov, is said to be conti-
nuous at element interfaces if for any two adjacent elements K, K, € 7, we have

(4.4) ve(ov)|k, = v:(ov)|k, on S=K,nK,,

where v is a normal to S.

Lemma 4.4. If v, € V, then the normal component of av, is continuous at element
interfaces.

The proof is analogous to that of Lemma 4.3 (now the Green formula (2.2) has
to be used).

Note that when ¢ is e.g. a diagonal matrix and ¢,; = 6,, = 633 € C'(Q), then
any v, € V, is continuous on the whole O due to Lemmas 4.2 and 4.4.

Lemma 4.5. Let (4.2) and (4.4) be fulfilled for some v, e W, and let n x v, =0
on 0Q2. Then v, € V.

Proof. We show that v,e V= Hy(rot; Q) n H(div o; Q). Let G e (I*(Q))* be
defined through the relation
Gl =rotv,lc, KeT,.
Denoting by ng the outward unit normal to K, we obtain by (2.5)

fovsrotzdx =Y fgv,rotzdx = Y (fgzrotv, dx — [ox (ng x 1)) zds) =

KeJn KeTn

= [pGzdx Vze(2(Q))°,

where the sum of the boundary integral vanishes as ng, + ng, =0on S = K; n K,
for adjacent elements K;, K, € 7,. Hence G = rot v, and v, € Hy(rot; Q) because
of the assumption n X v, = 0 on 0Q.
Defining F e I(Q) by
Flg =divoy|c, KeT,,
we get by (2.2)
fa(ov,) grad zdx = Y [ (ov,) grad z dx =
K

€I n

= (= [xkzdivov,dx + [ ng(ov,) zds) = — [ Fzdx Vze2(Q),

KeJn
ie.v,e H(dive; Q).
Remark 4.6. Let us consider the problem (4.1) in case of linear tetrahedral elements,
ie.
(4.5) Py =P(K) VKeJT,.

We will briefly outline that under certain assumptions the rate of convergence takes
the form

(4.6) llu — uyfjq = O(h) as h—0.
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We shall suppose that ¢ is piecewise constant; more precisely, let there exist mutually
disjoint polyhedral domains Q;,j = 1, ..., r, such that

a=ug
j=1
and

olo, € (Po(2;))**? Vj.
Then evidently
[divovlo., = Clof o, Voe(H'(2)),
and thus
(4.7 I-llle, = €110,
where C, C' > 0 do not depend on j.
We shall consider only such decompositions 7, into tetrahedra for which

(4.8) 09, nintK =0 VKeJ,.

Further, let {77,},., be a regular family of decompositions of @ into tetrahedra
(i.e., there is a constant » > 0 such that for any decomposition ,, from this family
and for any tetrahedron K € 7, there exists a ball By with radius gk such that
By = K and x diam K < gy).

Moreover, we will require the following piecewise regularity of u e V:

(4.9) ul, € (HXQ)Y, j=1,...r.

Note that u need not be continuous across dQ;, since ¢ may possess jumps and the
normal component of gu has to be continuous at 0Q;. In case of (4.9) it is well-known
that

(4.10) u — IHuls 0, < Chlu|ze,, j=1,....7,

where ITju e (H'(Q;))? is the standard linear interpolant of ul, .
Let v, € W, be defined as

(4.11) v, =1Iu on Q;, j=1,..,r.

We show now that v, € ¥;. Since ITju = u at the vertices of each tetrahedron K <
c Q,,je{l,...,r}, the condition n x u = 0 on any face S = 02 and the relation
(4.5) imply n x ITju = 0 on S, thatis n x v, = 0 on dQ. According to the Sobolcv
imbedding H*(K) =- C(K), (4.9) and (4.8), u is continuous on every K € 77,. Thus
analogously to the proof of Lemma 4.2 we obtain that
VXulg, =vXulg, on S=K,nK,

for any two adjacent tetrahedra. Ky, K, € 7,. This equality is valid particularly
at the vertices of S and thus from (4.11) it is easy to see that (4.2) holds. The relation
(4.4) may be derived ina similar way, since o| is constant for every K € 7. Therefore,
v, € V, by Lemma 4.5.

In the sequel we slightly modify the proof of Cea’s lemma (see [4, p. 104]) to the
complex case. As u, — v, € V;, we get from (3.1) and (4.1) that
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(4.12) a(u, — vy u —uy) = 0.

Now using the V-ellipticity condition (3.13), (4.12) and the continuity of a(-, *),
we find that

(4.13) ellu = uil|s < |a(u — wyu — w,)| <
< la(u = v, u = w)| < Cllu = wvyfle [Ju — e -

Hence, by (4.13), (4.11), (4.7) and (4.10) we come to

e = il < Clla = el = X Ju — i,

SCY Ju = M, = 0(1),
j=1

j=

whence (4.6) as required.

5. SOME REMARKS TO 2D-PROBLEM

A two-dimensional analogue of (1.6) is much simpler. It has been investigated
by many authors (see e.g. the reference list in [1]). For error estimates for the FEM
to Maxwell-type boundary value problems see [16]. Here we confine ourselfs only
to several notes and recommendations.

Let D = R? be a bounded domain with a Lipschitz boundary and o, 8 e R,
@ < B. Assume that E (see (1.3)) defined in @ = D x («, ) is polarized, i.e. E =
= (0, 0, E,), where E; is independent of x5 € («, ). Let ¢ be diagonal and let o33
be also independent of x;. Then div ¢E = 0 is trivially fulfilled and we will write
for simplicity only o instead of ¢33. Putting e(x,, x,) = E3(xy, x,, x3) for (x;, x,) € D,
the equation (1.4) reduces by (2.3) to the Helmholtz equation

(5.1) —Ae + iwpoe =0 in D,

where the conductivity ¢ = 0 belongs to L°°(D). Contrary to the three-dimensional
case, we admit ¢ = 0 in some subdomain of D. (F or instance, the electric conductivity
of the air is zero.)

Assume that E = (0,0, £5) and &(xy, x,) = E5(x;, X5, x3), where Ej; does not
depend on x; € (o, f). Then (1.5) reduces to

0=n x (E - E) = (n,E;5, —n,E;, 0) = (ny, —ny, 0) (E5 — E3)
which yields E; = £, on dD. Hence, we can consider the Dirichlet boundary condition
(5.2) e=¢ on 0D,
where &e H'(D) is a given function. A variational formulation of (5.1), (5.2) consists

in finding u = e — &e Hy(D) such that
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(5.3) a(v,u) = b(v) Vve HyD),

where
(5:4) a(v, u) = (grad v, grad u), — iou(v, ou), ,
(5.5 b(v) = —(grad v, grad &), + iwp(v, 6€), .

The next lemma is in fact standard, but we shall need it in the proof of Lemm a 5.2

Lemma 5.1. The problem (5.3) has a unique solution.

Proof. The form (5.5) is evidently linear and continuous on Hy(D), and (5.4)
is a sesquilinear and continuous form on Hy(D) x Hy(D). Moreover, a(-, *) is
H{(D)-elliptic:

la(v,v)| = Re a(v,v) = |grad v||§ = C|jvo||} Vve H}(D),

where the last inequality is Friedrichs’ inequality [15, p. 20] with C > 0. Now the
rest of the proof follows from the Lax-Milgram lemma [ 15, p. 38]. 4

Lemma 5.2. Let D be convex and &e H*(D). Then u € H*(D).

Proof. Using the fact that e = u + &, we rewrite (5.1) into the form
—Au + iouou = f,

where f = A& — iwpoé belongs to I*(Q). Thus for the real and imaginary parts
we obtain the system

(56) —Au, = ouou, + f,,

—Au, = —opou, + f, .
Since u € Hy(Q) due to Lemma 5.1, we get that
][au”z < vraimax ¢*(x) ”u”é < C]]u”f < o,
xeD

. 1.e. ou € I}(Q). From (5.6) we see that u; satisfies the Poisson equation with a square
integrable right-hand side. As D is convex and u; = u, = 0 on dD, the lemma
follows from [11]. g

Remark 5.3. In contrast to the 3D-problem, the solution u from Lemma 5.2 is
by the Sobolev imbedding theorem continuous even when ¢ has jumps (cf. (4.9)).
Suppose again that &e H?(D). If D is a rectangle and I is the union of its two opposite
sides, then u € H*(Q) also for the following mixed boundary conditions (see [8])

e=¢& on oD\T,

de 22

=— on I.
on  On
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Remark 5.4. The H2-regularity enables us to achieve the O(h)-convergence of con-
forming finite element methods in the H'(D)-norm. Moreover, when ee H*(D)
one may use C'-elements for approximations. Then by (1.3) the corresponding
approximation of H = (H, H,, 0) (which is sometimes more interesting than E3)
will be continuous.

Numerical test 5.5. We have recomputed a geophysical model example from
[3, p. 384], where (cf. (5.1)) @ =27.107' [s7'], p=4n.10"" [Hm '], o, =
=10"[Q 'm™~*], D = (0,520) x {—226, 200),

0 if x,>0,
o(x, x3) = {1000, if (x,. x,) e B = (240, 280) x (—16, —6),
o if x, <0 and (x;,x,)eD—D,

and the values characterizing D and D are given in [km]. The boundary condition
(5.2) is defined through the function

o(x1, x,) = ax, + 1 + iax, if x,>0,
7277\ (cos (ox,) + i sin (ax,)) exp (ax,) if x, £ 0,

where o = \/(wpc,[2), i.e., & has been taken so that &e H*(D),&(x,0) =1,
&(xy, x;) = 0 as x, - —oo and & fulfils the equation

—A& + iouoy(t — 1signx,)&=0 in D.

Although o corresponds to isotropic media, the use of any triangular elements
causes “‘an artificial anisotropy” (especially near the corners of D, where o changes
very much). Thus, in this case it is better to employ rectangular elements (which may
be of the class C! according to Remark 5.4). We have developed a composed rectan-
gular C'-element which is briefly described in Remark 5.6 below. Its use is compared
in Table 5.1 with the standard 5-point finite difference method (FDM) from [3] on
the same grid (38 x 38). (The values of the two last rows in Table 5.1 were taken
from a graph in [3].) The real and imaginary parts of the finite element solution e,
are illustrated in Figure 5.1.

Table 5.1.
x; in [km] 0 50 100 150 200 250 260
FEM Re e,(x, 0) 1-000 998 -986 926 688 294 +293
Im e,(xy, 0) 016 022 -047 -097 130 -082 -084
FDM Re e,(xy, 0) — — 99 ‘95 19 36 34
Im e,(xy, 0) — — -04 -07 ‘12 -06 -06
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T2

Reep

z2

Imey
Fig. 5.1.
The discrete problem reads
N
(5.7) Ya(, ) = b)), j=1,..,N,
k=1

where {v/}Y_, is a basis of ¥, = Hy(D). Note that the complex stiffness matrix
{a(v’, v*)}} = from (5.7) is never Hermitian, but it is symmetric provided v’ are real.
The necessary and sufficient condition for the convergence of the conjugate gradient
method (see [19, p. 203]) is unfortunately not satisfied. Thus we have employed
the Gauss-Seidel iterative method which converges in our case (see [18, p. 73])
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and enables us to store only non-zero diagonals of the half band of the stiffness
matrix. To economize the computer memory it is better to use complex arithmetics
for (5.7) than to solve a discrete analogue of the real system (5.6) with the Dirichlet
boundary conditions. In the complex case, not only the number of equations is twice
smaller than in the real case, but the half bandwidth of the stiffness matrix (and the
number of non-zero diagonals) is smaller, too.

Remark 5.6. In [9], Heindl has presented a triangular composed piecewise quadra-
tic C'-element with only 12 degrees of freedom. (Note that the number of degrees
of freedom of any noncomposed C'-element is greater — see [4].) Here we will
introduce a rectangular composed piecewise biquadratic C'-element (K, Py, Zy),
where for simplicity K is the unit square with vertices A,, 4,, A5, A, — see Figure
5.2.

7 : S A3
1
1
1
]
1
_________ J
L]
]
]
)
)
]
L]
‘
( 1 re
o) ks
Fig. 5.2.

First of all let us define two piecewise quadratic function z,, z, € C*([0, 1]),

() = —2x2 + 1, xe[0,4],
(5-8) A= a2 —4x 2, xe[4 1],
_ —3x* + x, xe[O,—%—],
zz(x)—{ X —-x+3%, xe[31],
for which clearly
622
z(0)=—(0)=1,
. ©=2)
0 0 0z
ZL(0) = 2y(1) = 22 (1) = 25(0) = 2,(1) = =2 (1) = o.
ox O0x 0x
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Further, we set
(5.10) z3(x) = z,(1 — x), xe[0,1],
z4(x) = z,(1 — x), xe[0,1].

Note that the functions zy, ..., z, form a basis of the one-dimensional C*-element
analogous to the proposed rectangular element.

Now we define the space Py of piecewise biquadratic C*-functions as the linear span
(with complex coefficients) of linearly independent functions p, ..., p; given by

(5.11) p4j+k—-4(x1a xz) = Zj(xl) Zk(xz) >
Bhk=1,..,4, (x,x)ekK.

The associated set of degrees of freedom Xy = {®,, ..., ®,,} may be symbolically
written as

(1) Ze=fola) 2 24, i (A)———”~»<A,)J-1 4}.

| 0%, 0x,
Due to (5.9), (5.10) and (5.11) the set X can be ordered so that
(5.13) o,(p,) = 6,5, rs=1,...,16,

i.e., Xy is Pg-unisolvent.
Notice that
(5.14) P,(K) = Pg.

To see this, we find from (5.8) and (5.10) that for any x € [0, 1]
1 z4(x) + z3(x),

z,(x) + z3(x) — z4(x),

¥ = 2(3) - 22().

i.e., any quadratic function on [0, 1] is a linear combination of zy, ..., z,. Hence, by
(5.11) the space P contains all biquadratic functions and (5.14) follows.

Given a rectangular grid, we will construct the finite element space V}, in the usual
+ way [4]. The standard basis functions v/ € ¥}, (see (5.7)) are generated via the functions
p, occurring in (5.13). The support of v/ thus consists of four rectangles and each
nodal point corresponds to four basis functions (cf. (5.12)). Referring to the pro-
perties of zy, ..., z, and (5.11), we can directly verify that any v/ belongs to C'(D),
i.e., the finite element (K, Py, X) is of the class C*.
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Souhrn

O CASOVE PERIODICKYCH MAXWELLOVYCH ROVNICICH
S NEHOMOGENNIMI VODIVOSTMI:
RESITELNOST A APROXIMACE METODOU KONECNYCH PRVKU

MicHAL KRiZEK, PEKKA NEITTAANMAKI

V praci se vySetfuji Casové periodické Maxwellovy rovnice v trojrozmérném pripadé s ne-
homogennimi vedivostmi. Navic se pfedklada aproximace metodou konefnych prvka v troj-
rozmérném prostoru spolu s odhadem chyby v energetické normé&. Nékolik poznamek se tyka
téZz dvojrozmdrného problému, ktery vznika v geofyzice.

Peszrome

O NMEPUOAMYECKUX BO BPEMEHU YPABHEHMSIX MAKCBEJTA
C HEOJHOPOJHBIMU ITPOBOJAVMOCTSAMM:
PA3SPEIIMUMOCTb 1 AIIITPOKCUMALIMA METOJACOM KOHEYHBIX DJIEMEHTOB

MicHAL KRiZEK, PEKKA NEITTAANMAKI

B paborte paccmaTpuBacTCsl BapHaniOHHasi (GOPMYJIMPOBKA M Pa3pelIMMOCTh HEPUOTHUECKHX
BO BPSMEHH ypaBHeHHI MakcBe/ula B TPEXMEPHOM CiIyyae ¢ HEOJHOPOAHBIMY TIPOBOAUMOCTSIMH.
Kpome TOro mpeajiaraeIcsi anmpoKCUMaids METOJOM KOHEYHbIX IEMCHTOB B TPEXMEPHOM IipO-
CTPaHCTBE BMECTE C OLICHKOM NOTPEIIHOCTH B QHEPreTHIeCKoil HopMme. HeCKONbKO 3aMeyanuii kacaeT-
Csl TAKXKS IBYMEDHOIf 3a1a41, KOTOPasi BOSHUKAET B reodusnke.
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