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Summary. The paper deals with solutions of transonic potential flow problems handled in the
weak form or as variational inequalities. Using suitable generalized methods, which are well
known for elliptic partial differential equations of the second order, some properties of these
solutions are derived. A maximum principle, a comparison principle and some conclusions from
both ones can be established.
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1. INTRODUCTION

The irrotational, steady and isentropic flow of a non-viscous, compressible fluid
in a bounded, simply connected domain Q = RY (N = 2) is described by the equation
for the velocity potential u (1) = Vu — gas velocity):

(1.1) Y 2 (alvi) ) -

i=10x;

Here ¢ denotes the density. For a polytropic gas it is given by

2\ 1/(x~1)
(12) 0 = o(|Vul?) = Qo(l - IM)
dm

for |Vu|* < g,, with constants g, > 0, ¢ > 1 (see e.g. [7] for the physical background),
To formulate boundary value problems we assume that 0Q is Lipschitz-continuous
and has the representation 02 = S; U S, U S U 3t where Sy, S, and S are open
subsets of 9Q and uy_,(N) = 0, uy_, being the (N — 1)-dimensional Lebesgue
measure on 0Q. We consider two cases of boundary conditions for u where 1 is the
outer normal to 0Q:
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Case 1: u=0 on S,
0
o(Vu)Z =g on S,us;
on
Case 2: pn=-1(S1) =0,
Q(IVMIZ)? =g on 0Q, where fag g do = 0 is assumed.
n

An example for Case 1 can be found in [6: p. 451]. As weak formulations of these
boundary value problems we get

(1.3) fo o(|Vu|?) VuVv dx = [rgvdo forallveV,
with
(1.4) V="Vs ={ve W-*(Q)|v=00nS, in trace sense},
R=S,uSs
in Case 1 and
(1.5) V="V,:={veW"Q)| [pvdx = 0},
R = 0Q

in Case 2. In both cases ¥ is a Hilbert space with the norm [[v]| = (fo |Vv|? dx)'/?
and g € I?(R) is assumed. A further generalization of (1.1) and (1.3) is the variational
inequality for u € K:

(1.6) Jao(|Vul?) Vu V(u — v)dx < (g g(u — v)do forall veKk,

where K is a non-empty closed convex subset of V, K = G,, and
(1.7) G,:={veV||V|) £ aae. onQ}.
K may be given by a suitable entropy condition [1; 6; 9], e.g.
K={veG,|— [oVoVhdx <M [ohdx forall he(CF(Q)).
with constants M = 0,a < g,,, and
(CP(Q))+ ={heC>(Q)|supph == Q,h = 0} .

It is well known that the partial differential operator in (1.1) is of the mixed type.
If we consider transonic flows then subsonic regions (where (1.1) is elliptic) as well
as supersonic ones (where (1.1) is hyperbolic) occur in © and the transitions between
them are usually discontinuous. This fact causes many difficulties in the proof
of existence of solutions for (1.3) and (1.6) and this problem has not yet been com-
pletely solved. Some results in this direction have been found by Feistauer, Mandel,
Morawetz, Nedas and the author for the weak problem (1.3) [1—4; 8] and for the
variational inequality (1.6) [6; 9]. Nevertheless, in this paper we want to study what
properties the solutions of (1.3) or (1.6) must have. Using suitable generalized
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methods like the maximum and comparison principles which are well known for
elliptic equations of the second order (see e.g. [5]) we get some of these properties.
We point out that throughout the paper we need no entropy condition.

2. MAXIMUM PRINCIPLE

If we put
(2.1) aij(x) = o(|Vu(x)[*) ;5 -
d;; the Kronecker symbol, for a solution u € G, of (1.3), we can consider (1.3) as
a linear elliptic partial differential equation with bounded measurable coefficients
a;; i,j = 1,...,N. The ellipticity holds because of
N

Y ay(x) &&= o([Vu(x)]*) |¢]* z 0.

ij=1
The last relation, and hence the following assertions are also valid for any density
function ¢ = ¢(Vu) which is positive, continuous and bounded for |Vu|* < a, with
some a € (0, c0), but may be different from (1.2).
In this section we first consider the general case of a given symmetric matrix
(a;;(x)) with bounded measurable elements and
N

(2.2) Y ay(x) &g >0

ij=1
for all xe Q, & = (&, ..., &) e RV \{0}. For u,ve W"*(Q) we define the bilinear

form
N

(2.3) L(u, v) = '[ Y a(x)ug v, dx .

Qij=1

Let R, be an open subset of dQ with uy_,(R,) > 0. According to [5: p. 168] we say
that u < 0 on R, is satisfied if u™ = max {u, 0} = 0 on R, in the trace sense. Other
definitions concerning the ordering on R, follow naturally: u < von R, ifu — v <0
onRy;

supu = inf {k|u < k on Ry, keR}; infu = —sup(—u).

R, Ry R,
Our results will be obtained by easy extensions of the usual arguments, However,
in the standard literature they are not to be found explicitly for a differential operator
in our special form (2.3). Therefore we present the simple proofs here, too.

Lemma 2.1. Let u € W"2(Q) satisfy
(2.4) L(u,h) <0 (L{u,h) 2 0) forall h=0, heVy').

D) Vg, is defined by (1.4) where S| has to be replaced by R,. In the case uy_1(R;) = 0
weset Vg, = wh2(Q).
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Then
(2.5) supu < supu (infu = infu)
0 R Q2 Ry
if uy—1(Ry) > 0.1In the case puy_,(R,) = 0 we have u = const. a.e. on Q.

Proof. a) Let ¢ = supu, v =u — ¢, @ = {xeQ|v(x) > 0}. Then we have
Ry

v on Q%
vt = max {v, 0} = {

0 on Q\Q*

Il

Vot _{Vu: Vu on QF

0 on Q\Q%,

v* = 0on R, and hence v* € V. Putting h = v* in (2.4) and using (2.2) we obtain

N N
o R _ +
0< L(v*,v*) = Y, aguiel dx = z aju. s dx 0.
Qij=1 Qij=1

This inequality implies Vo* = 0 a.e. on Q and v* = const. By virtue of v* =0

on R, we obtain v* = 0, which means v = u — ¢ < 0 a.e. on Q.
b) Let py_;(R,) = 0. For an arbitrary ¢ € C*(Q) we set h = ¢ — min ¢ and

o
have he W"*(Q), h =2 0, Vh = V¢. Then (2.3), (2.4) yield L(u, ¢) = L(u, h) < 0,
and hence L(u, ¢) = 0 for all ¢ € W' *(Q). Here we have used the density of C*(Q)
in W'-2(Q) which holds because 0Q is assumed to be Lipschitz-continuous. We get
L(u, u) = 0 and this implies the assertion.

The case in parentheses follows in a similar way. O

Remark 2.2. Suppose that V=V, and let ue V satisfy (1.3). Since in this
case [., g do = 0 is assumed it is easy to see that the integral relation (1.3) is also
valid for v e W*-3(Q).

We set R* = {xe R < 0Q|g(x) > 0} and R~ = {xe R | g(x) < 0} and assume
that R*, R™ are open subsets of 0Q. This is fulfilled if g is piecewise continuous
on R. Now, we can establish the following properties.

Theorem 2.3. Let py_,(R) + 0, g + 0 and let u € G, be a solution of (1.3). Then
a) piy—1(R"), uy—1(R7) are positive for V = V,.
b) u cannot be a constant in any subdomain Q' = Q for which Q' n R* or
0Q" N R™ has a positive measure py_ ;.
c) u has a nonnegative maximum M and a nonpositive minimum m on Q.
It achieves M on R¥ U S; and m on R~ U S; but does not achieve them in the
interior of Q.

d) Suppose that u = const. on 0Q' for a subdomain Q' < Q. Then we have
u = const. on @ and py_,(0Q A R*) = puy_,(0Q' A" R”) = 0.
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Proof. a) Because of [ g do = 0 (Case 2), g + 0, neither g < 0 nor g = 0 s
possible a.e. on R.

b) Suppose that u = const. in a subdomain Q' < Q with #ty_;(0Q' A R*) > 0,
We choose a y € 9Q" n R™ and a sufficiently small ball B = B() such that B n Q <
S Q' and B 0Q < R* (see Fig. 1). For an arbitrary ¢ € C5(B) we put

() = {g)(x), xeB

x¢B.

Fig. 1.

Then we have v € V, and
0 = fonp o(|Vu|?) Vu Vo dx = (4 o(|Vu|?) Vu Vo dx = [ gvdo =
= IRmB go do

where (1.3) is used. This equality yields g = 0 on R n B < R* in contradiction
to the definition of R*. By replacing R* by R~ the other case follows.
c) By virtue of u € G, we have u € W"*(Q) and u is a.e. equal to a function from

C®'(Q) which has a maximum and a minimum on Q.
Now, we first apply Lemma 2.1 with R, = R U S; and a;; given by (2.1). From

(1.3) together with Remark 2.2 we obtain
"L(u, h) = [g+ ghdo + [g- ghdo = [p- ghdo <0
for all h = 0, h e V,, and hence M = max u = max u. Application of Lemma 2.1

2 R*TUSy
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with R, = R~ U S, yields m = min u = min u. In the case ,uN_l(Sl) > 0 we have
2 R=0S,
M = infu = 0 = sup u = m. In the other case the inequality m uy(Q) < [ u dx <

S1 St
< M py(2) and the condition in (1.5) yield m < 0 < M.

The rest of this assertion follows from the strong maximum principle for weak
subsolutions [5: Theorem 8.19] together with part b) above.

d) We consider the equation (1.3) for ve C3(Q'), extended by 0 outside of 2,
and get [q o(|Vu|?) Vu Vo dx = 0 for all ve Wy?(Q'). Replacing Q by Q' we can
again apply Lemma 2.1 with R, = 0Q', Vi, = Wg*(2) and a;; given by (2.1).
Note that in this case no assumptions on dQ’ are needed in the proof of Lemma 2.1.
The inequalities (2.5) immediately yield u = const. and part b) above completes
the proof. O

Corollary 2.4. Let g = 0 or yuy_;(R) = 0. Then (1.3) has only the solution u = 0.

Proof. We apply Lemma 2.1 with R; = S, and recall the corresponding definition
of V. O

Remark 2.5. The subdomains in which u = const. have a physical meaning.
Namely, there the gas is at rest because of Vu = 0. Theorem 2.3b), d) deals with
such subdomains. Moreover, part b) is a generalization of the following fact: For
a u which is smooth in a neighbourhood of R* or R, (1.3) yields o(|Vu|?) du/én = g,
dul/on > 0 on R*, and dulon < 0 on R™, respectively. Hence, u cannot be a constant
in this neighbourhood.

Theorem 2.6. Let V= V5, g < 0(20), g + 0 and u € G, be a solution of (1.3).
Then we have u < 0 (>0) in the interior of Q. Furthermore, for all points x, € S,
at which Q satisfies an interior sphere condition?®) and the outer normal derivative
dufon exists we have du[on(x,) > 0 (<0).

Proof. According to Theorem 2.3c) with uy_,(R*) = 0 we have u(x) < max u =
S1
= 0 for all x € Q, analogously for the case in parantheses. The assertion concerning

the sign of the normal derivative follows from [5: Lemma 3.4] which is easy to extend
for weak subsolutions. O

Remark 2.7. The last theorem shows that on S; only flux outwards occurs,
provided g < 0; that means: only flux inwards on R, is supposed.

2) That means: there exists a ball B < @ with x, € 8B. This condition is fulfilled if e.g. 8Q € C?
[5: pp. 27, 32].
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3. COMPARISON PRINCIPLE

If we want to compare two solutions uy, u, of (1.3) or (1.6) we have to study
the difference between them. From the relation (1.3) or (1.6) we can derive the

inequality
Ja (o(|Vu,|?) Vu, — o(|Vuz|?) Vu,) V(uy — u,)dx < 0.

An estimate from below is required. Therefore we estimate the integrand. For
Pis P2 € RY we define the function

(3.1) F(py, p2) := (e(p?) py — o(p3) p2) - (P — p2) =
= /(1) = /(0) = Jo /(1) dt

where f(t) = o(r*(t)) r(t) (p, — p2), ¥(t) = p, + t(py — py). Let
(3.2) H(q) := o(q) + 29 ¢'(q) be defined for g€ [0, a].
Simple computation shows that

£1(1) 2 2¢'(r(0) (1) (py = p2)* + o(r(1) (py = p2)* = H(*(1)) (b1 = p2)?
if ¢'(q) < 0 is assumed. Hence, we have
(33) F(p1> p2) = F(p2, p1) Z (py = p2)* fo H(r*(1)) dt .

Remark 3.1. For a polytropic gas (1.2) we obtain the formula

+1 q.— . % — 1
(3.4) H(q) = Q(q)»%— . TN q.:= G -
% — 1 dm — 4 x+ 1

It is easy to see that
(3:5) H(q) > 0(<0) iff ¢ <gq.(>q.).
For |Vu|* < q.(>q,) the partial differential equation (1.1) is elliptic (hyperbolic).
This function H plays an important role not only for the type of the differential
operator but also for our estimates. Thus, we will examine it carefully.
From now on the following assumptions are imposed on ¢ = ¢(q):
i) 0eC¥[0,q,),
i) o(qg) >0, ¢(9) <0 forall qe0,4q,),
iii)  H defined by (3.2) satisfies (3.5) with some g, € (0, g,,) ,
iv)  H'(q) <0 forall ge[q,, (1 + do) q.] for some given

dy € (0, m li’f) .
q.

If ¢ is defined by (1.2) all these assumptions are satisfied. To verify iv) we calculate

x + 1 q — 34,
(K - 1)2 ' (q - qm)2

(3.6) © H'(q) = o(q)
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from (3.4). Hence, iv) is fulfilled if we choose d, < min {2/(x — 1), 2}. Using i)—iv)
we obtain the following estimates for F.

Lemma 3.2. Let d € [0, d,]. Then there exists a constant b = b(d) > 0 such that

(3-7) F(py, P2) 2 (b(py — p2)* + H((1 +d)q.) (py — p2)?
forallph,pi < (1 + d)q..

Proof. a) For a sufficiently small ¢ > 0 we have H'(q) < 0 for all gel, :=
:=[(1 — &) g.. (1 + d) q.]. Thus, the mean value theorem yields

H((1 + d)q.) — H(q) = M((1 + d) g, — q) with M =maxH <0

I

On J,:= [0, (1 — &) gq.] the function H has a minimum m > 0 by virtue of (3.5),
and for g € J, we have

Hg)zm=z=zA+ (m— A)(1 +d)a. — 4
(L +d)g,
with 4 := H((1 + d) q.) < 0. If we put
B= min{—M m —-—Aﬁ} >0
(1+d)a.
these two inequalities imply
(3.8) H(g) = B(1 + d)gq. — q) + A for qe[0,(1 +d)q.].

b) Because of the convexity of the function r*() on [0, 1] we have
(39 PO+ 0 -0r*0) =1tpi + (1 —1)p; < (1 +d)q.,

and (3.8) yields H(r*(r)) = B((L + d) q. — r*(t)) + A. Using (3.3) and carrying
out the integration we finally obtain

F(pi, p2) 2 (p1 = p2)* (B((L + d) g — 4p3 — 31 + (P — p2)*) + 4) 2
B
2 o= paf* + A)p, - Pz)z- O
Corollary 3.3. Let H'(q) < 0 on I, = [0,(1 + d) q.]. Then we can choose ¢ = 1

in part a) of the proof above obtaining b = —1 max H'.
Iy

Note that in (3.7) the constant 4 = A(d) = H((1 + d) q.) is negative for d > 0.
But for d = 0 we have H(q,) = 0 by virtue of (3.5), and hence

(3-10) F(Pn p2) = b(0) |P1 - le4 forall pi,p3<gq,.

Lemma 3.4 Let p; < (1 — d) g, for some d e (0, 1]. Then there exists a
8 = 8(d) > 0 such that (3.10) is valid for all p; < (1 + 9) q..
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Proof. a) First, let p3 < g,. Hence, (3.9) yields r*(1) < (1 — td) ¢; = ¢e- Accord-
ing to (3.8) with d = 0, we obtain

[LH(r(1)) dt 2 B [ (9. — r*(1)) dt =
= B(‘Jc - Jz‘l’% - %Pf + 'f;(l’x - Pz)z) 2 B(’%d‘lc + ‘2;(!’1 - Pz)z)'

b) The function K(py, p,) := [o H(r*(t)) dt — {B(p, — p,)* is uniformly conti-
nuous for p> < (1 — d) g, p3 = (1 + do) q.. By virtue of a) we have K(py, p2) =
> 1Bdq, > 0 for p2 = g.. Consequently, there exists an ¢ = &(d) > 0 which is
independent of py, pa, such that K(py, p,) > 0 for all p, with |p, — p,| < & Thus
we obtain K(py, p;) = 0 for all p; < (1 —d)q. p5 = (1 +0)q.if 6 = 5(d)y >0
is suitably chosen. The inequality (3.3) yields the assertion. O

Lemma 3.5. Let H be convex on [0,(1 + do)q.]. Then (3.10), with b(0) =
= — L H'(q,), is valid for all p; < (1 — d)q., p3 < (1 + d) g, d€(0, do]-

Proof. Using the convexity and H(q.) = 0 we get H(q) = H(q) — H(q.) =

> H'(q.)(q — q.) for gel,. From (3.9) r’(t)cl, follows, and hence (3.3) yields

F(pi, p2) =2 =H'(q.) (p, — p2)* (. — 1p3 — 3p1 + 4(ps — p2)?) 2
> —LH(q) |p: — po|*- O

The question arises which Lemmas hold for H in the ca.e of a polytropic gas.
The answer depends on x. From (3.6) we obtain H'(q) < 0, but H"(q) = 0 for
1 <% <2and H'(q) < 0 for » > 2. Hence, Lemma 3.2 with Corollary 3.3 and
Lemma 3.4 are valid for both cases of » but with different b(d). On the other hand,
Lemma 3.5, which is a strengthened variant of Lemma 3.4, is only valid for » < 2
(note that % = 1.4 for air).

Application of inequality (3.10) yields the following comparison principle.

Theorem 3.6. Let uy, u, ¢ W"3(Q) satisfy u; < u, on R, and
(3.11) O(uy, h) := fq o(|Vu,|*) Vuy Vh dx £ O(u,, h)

for all h =z 0, he Vy,. Moreover, we suppose that [Vu,|* < (1 — d) g, [Vu,|* <
S(1+9)g. or [Vu,[* < (1 —d)gq,, [Vu,|* <(1 +5)g. ae. on Q for some
d e [0, 1], where § = 6(d) is the function gives in Lemma 3.4 and &{0) = 0. Then
u; £ upyonQif py_(Ry) > 0. Inthe case juy_(R;) = 0 we have u; — u, = const.
on Q.

Proof. a) For uy_(R;) >0 we put w=u, —uy;, Q" = {xeQ|w(x) > 0}
and have w* € V. Using the definition (3.1), and (3.11) with & = w*, we obtain

0= [q(o(|Vuy|?) Vuy = o(|Vuy|?) Vu,) Vw* dx = [o. F(Vuy, Vu,) dx .

410



Application of Lemma 3.4 (or Lemma 3.2 in the case d = 0) with p, = Vu,(x),
P2 = Vu,(x) yields

0= b(0) for [Vu, — Vu,[* dx = b(0) [, [Vw*|* dx.

This inequality implies Vw* = 0 a.e. on Q and finally w < 0 (see the end of part a)
in the proof of Lemma 2.1).

b) Let uy-(R;) = 0. First, by the same argument as in part b) of the proof
of Lemma 2.1 the relation Q(u;, @) = Q(u,, ¢) for all ¢ € W'*(Q) follows. We
proceed as above. Putting ¢ = u; — u, we obtain 0 = [, F(Vu,, Vu,) dx =
= b(0) [, |Vu; — Vu,|* dx, and hence u; — u, = const. on Q. 0

Corollary 3.7. If, in addition, H is assumed convex then the last theorem holds
with §(d) = d for d < min {1, dy} because Lemma 3.5 can be used.

Theorem 3.6 is a generalization of the well known comparison principle for
smooth functions uy,u, [5:p. 207] where the quasilinear differential operator
must be elliptic with respect to only one of the two functions. From our comparison
principle a uniqueness result for the weak problem (1.3) follows immediately.

Theorem 3.8. Let ue V be a solution of (1.3), and |Vul]* £ (1 — d) g, a.e. on Q
for some d [0, d,]. Then there is no other solution of (1.3) in G, with a = (1 +
+ 8(d)) q.. In particular, problem (1.3) has at most one solution in G, .

Proof. Suppose that v € G, is another solution of (1.3). Then we have Q(u, h) =
= Q(v, h) forall h = 0, h € V5, where Remark 2.2 has to be used in the case V = V.
Application of Theorem 3.6 with R; = Sy, and u; = u, u, = v or vice versa, yields
u = v on @ provided uy_;(R;) > 0. In the other case we get u = v + const. By
virtue of the condition in (1.5) this constant must be 0. O

4. SOME CONCLUSIONS AND ESTIMATES FOR THE DIFEFRENCE
OF TWO SOLUTIONS

Throughout this section we assume that in addition to i)—iv) H is a convex func-
tion on [0, (1 + d,) g.] (that means: » < 2 for a polytropic gas (1.2)). Let d e
€ [0, d,] be a given number. Then we put G(d) = G, with a = (1 + d) q..

Definition 4.1. Let ue W"*(Q). Then Q(u) = {xe Q||Vu|> < (1 — d)q,.} de-
notes the elliptic or subsonic region with respect to u in Q. Q(u) = {xe Q| (1 —
—d)q, < |Vul* £ (1 + d)q.} the transonic region, and Q,(u) = {xeQ|(1 +
+ d) g, < |Vu|*} the hyperbolic or supersonic region. u is called elliptic or sub-
sonic in Q if uy(Q\ Q,(u)) = 0, and transonic if py(Q\ Q) u)) = uy(Q,(u)) > 0.

Remark 4. 2. Let d > 0. Then the differential operator of (1.1) is elliptic with
respect to u in Q,(u), and hyperbolic in Q,(u).
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From Theorem 3.6 some information on the transonic region with respect to
a solution of (1.3) follows.

Theorem 4.3. Let u € G(d) be a solution of (1.3). Then a subset of Q,((u) cannot
be contained in any subdomain Q' = Q for which the Dirichlet problem

(4.1) Joro(|VW|*) Vw Vodx = 0 forall ve W"¥(Q'),
w—u=0 on 0Q,
has a subsonic solution w in Q'.

Proof. We consider the equation (1.3) for ve CJ(2'), extended by 0 outside
of €', and obtain that u is a solution of (4.1). Recalling that |Vu|*> < (1 + d) q.,
|[Vw|]* < (1 — d) g, a.e. on Q' we can apply Theorem 3.6, Corollary 3.7 if we replace
Qby Q' and put Ry = 0Q', Vy, = W¢*(Q'). This yields u = w on Q' and the assertion
follows. (]

Remark 4.4. Roughly speaking, the assertion of Theorem 3.8 is the following one:
If there exists a subsonic solution of (1.3) then we have no transonic one.

Now, we proceed to study the difference of two solutions of the variational ine-
quality (1.6). Lemma 3.2 and Lemma 3.5 allow us to establish a general estimate.

Theorem 4.5. Let u, € K = G(d) be a solution of (1.6) with g = g, 1 = 1, 2. Then
(4.2) fo [Vu; — Vu,|*dx <

= ¢ th ]V“1 - V“z'2 dx + c2”u1 - uzuwl.z(m “91 - gz”LZ(R)
with

(4.3) Q= Qfuy) n Q(u,),
and with positive constants ¢, = ¢3(Q); ¢; = ¢;(d) >0+ 0 if d - 0 + 0.

Proof. a) If g = g, we put v = u, in (1.6), and if g = g, we put v = u,. We
obtain two inequalities which added to (3.1) yield

(4‘4) I.Q F(Vul’ Vuz) dx = fR (91 - gz) (u! - uz) do.

We split up Q = Q,(u;) U Q,(u;) U 2,. On Q,(u,) we can apply Lemma 3.5 and
according to (3.10) we have

F(Vuy, Vuz) = b(0) |V, — Vu,|*.
On Q, Lemma 3.2 gives the estimate
F(Vuy, Vuy) 2 b(d) |Viy — Vu,|* + A(d) [Vu, — Vu,|?.

Since H is convex for g € [0, (1 + do) 4] we have H'(q) < H'((1 + dy) q.) =: ¢o <
< 0. Hence, using Corollary 3.3 we find b(d) = —} max H' > —¢o/6. Finally,

I,
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we obtain
fa P, V) 2~ J ¥ — S s+
+ A(d) .[m |V“1 - Vuzlz dx .

b) We can estimate the right hand side of (4.4) in the following way:

A

HR (91 - 92) (”1 - u2) d"l = ][91 - gz”LZ(m ”“1 - uanZ(R) =
< cllgs = g2 1 = 2]z
with ¢ = ¢(Q) > 0. The last two inequalities together with (4.4) imply (4.2) where
o= =% o 2D S p 1 ayq)» L Hg) =0 ifdm0. O
Co Co Co co

From the estimate (4.2) we are able to derive a result similar to Theorem 3.8,
Remark 4.4.

Theorem 4.6. If there exists a subsonic solution u € K of (1.6) then we have no
other solution in K < G(d). In particular, the variational inequality (1.6) has
at most one solution in K < G, .

Proof. Suppose that veK is another solution of (1.6). Then from (4.2) with
g; = g, = g we obtain
fo|Vu — Vo|* dx < ¢y(d) [q, |Vu — V0| dx = 0.
Here we have used that py(Q,) < py(2,(u)) = 0 because u is assumed to be subsonic.

Hence, V(u — v) = 0 a.e. on Q and finally u = v by virtue of the definitions (1.4),
(1.5) of V. |

If there exist two different solutions of (1.6) with the same boundary data g we
can also use (4.2) to obtain some conclusions.

" Theorem 4.7. Let u,, u, eK < G(d) be two solutions of (1.6), and let Q, be defined
by (4.3). Then

a) uy + u, isonly possible if uy(Q,) > 0.

b) If u; — u, = const. on Q, thenu; = u, on Q,

c) ”Vul - V“zuium) < cy(d) ua(2)) -

Proof. a), b) follow immediately from the inequality (4.2) with g, = g, = g.
¢) The Schwarz inequality and (4.2) yield

(Jo, [Vuy — Vu,|? dx)? < un(R)) fq, |Vu; — Vu,|* dx <
< un(2,) ¢4(d) fq, |Vus — Vu,|* dx . O
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Corollary 4.8. By virtue of H(q,) = 0 we have

i) = (B0 + ) a)= 1@) = % da B+ 9 a). 9e0.1).
0 0

Hence, the right hand side of the inequality in c) of the above theorem is O(d)

if d - 0. Note that py(Q,) remains bounded only if d - 0.

Inequality (4.2) and Theorem 4.7 show that Q,, defined by (4.3), is the crucial
subset of Q when we study the difference of two solutions uy, u,. The behaviour
of u; — u, on Q, determines in a sense its behaviour on the whole of Q. Now, let us
consider varying boundary data.

Theorem 4.9. Let u, ug € K < G(d) be solutions of (1.6) with boundary data g,
and g,, respectively. Moreover, suppose that |g — go| 12z < & and py(2,(uy)) < &
for some & > 0. Then |ju — uy|y1,20) < Ce* with C = C(d, Q) > 0.

Proof. We put u, = u, u, = uy, g, = g and g, = g, in (4.2), and obtain
Jo |V = Vuol* dx < ¢ (o, (|Vu| + [Vuo|)? dx)'/ ([o |[Vu — Vu|? dx)!/2 +
+ 63lg = gollram [u = towiriey =
S 2ce(( + d) g)'? + c2) e|u = uollwiro -

Here we have used that uy(Q,) < uy(2,(uo)) < & by virtue of (4.3). The definition
of V and the Schwarz inequality imply

[u = uo|frioie £ es(fo [Vu — Vuo|? dx)? <

< ey uy(Q) [o |Vu = Vuo|* dx < cuefu — uo|lwi,2ay - O

Corollary 4.10. If uy is subsonic then under the assumptions of the above theorem
we /zave“u - uoﬂwl,z(m < C“g - goﬂiﬁﬁm- That means: the solutions u of (1.6)
depend continuously on the boundary data g at g,,.

The last corollary shows that the subsonic solutions of (1.6) are stable with respect
to varying boundary data in the class of all possible solutions from K = G(d). Let
us give some concluding remarks: The assertions of this section can similarly derived
for non-convex H (that means: % > 2 for a polytropic gas (1.2)). Thereby the function
8(d) given in Lemma 3.4 has to be used. Most of our theorems were formulated for
solutions of the variational inequality (1.6). It is clear that they are also valid for the
solutions of the weak problem (1.3) because each solution of (1.3) from G(d) is
a solution of (1.6) with K = G(d). Moreover, for the solutions of (1.3) we are able
to prove a modification of Theorem 4.7b).

Theorem 4.11. Let uy, u, € G(d) be two solutions of (1.3), and let the boundary
0Q, of Q,, defined by (4.3), be Lipschitz-continuous. If us = t on 02, N Q then
u; = u,on 2\Q,
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Proof. Let @ = Q\Q, and V' = {ve W"}(Q)|v =10 on Q' n(QuUS)) in
trace sense}. For v e V', extended by 0 outside of @', the relation (1.3) together with
Remark 2.2 implies

Jor o(|Vuy|?) Vu, Ve dx = [ 00 godo, [=1,2.

Since u, — u, € V' it is possible to put v = u; — u,, and subtraction of the two
relations yields [, F(Vu,, Vu,) dx = 0. Recalling that Q" = Q,(u,) U Q,(u,) we can
apply Lemma 3.5 on Q. From (3.10) we obtain F(Vu,, Vu,) = b(0) |Vu; — Vu,|*,

hence V(u; — u,) = 0 a.e. on Q. By virtueof u; — u, =00ondQ' N Q =02, Q
we have u; = u, on Q. O
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Souhrn

O NEKTERYCH VLASTNOSTECH RESENI PROBLEMU TRANSONICKEHO
POTENCIALNIHO PROUDENI]

HANS-PETER GITTEL
V ¢lanku se studuji feSeni problému transonického potentialniho proudéni ve slabé formé
nebo ve tvaru variani nerovnosti. S pouZitim zobecnénych metod, dobfe znadmych pro eliptické

parcialni diferencialni rovnice druh¢ho tadu jsou odvozeny nékteré vlastnosti t&chto feSeni.
Dale je dokazan princip maxima, srovnavaci princip a ngkteré jejich dasledky.
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Pezrome

O HEKOTOPEIX CBOMCTBAX PEWIEHUS 3AJAUU CBEPX3BYKOBOI'O
TITOTEHUMOHAJIBHOT' O ITOTOKA

HANSs-PETER GITTEL

B craTbe W3yyalOTCS PELICHUS 3aJa4Y¥ CBEPX3BYKOBOrO IIOTEHLMAJBHOTO NOTOKA B Caboi
¢opme unu B hopMe BapraLiMOHHOrO HepaBeHcTBa. ITpy noMomu 0600UIeHHBIX METOA0B, XOPOIIO
M3BECTHBIX JIUISl JUIMIITUYECKMX YPABHEHHI B YaCTHBIX NPOU3BOAHBIX BTOPOTO INOPSIIKA, BHIBEJACHBI
HEKOTOpbIE CBOMCTBA 3THX PEWICHHH M JOKA3aHbl TPUHLUMII MaKCUMyMma, TIPHHLMIT CPaBHEHUS
¥ HEKOTODbIE UX CIIEICTBYSL.
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