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31 (1986) APLIKACE MATEMATIKY No. 3, 190—223

ANALYSIS OF APPROXIMATE SOLUTIONS OF COUPLED
DYNAMICAL THERMOELASTICITY AND RELATED PROBLEMS

JozeF KACUR and ALEXANDER ZENISEK

(Received December 3, 1984)

Summary. The authors study problems of existence and uniqueness of solutions of various
variational formulations of the coupled problem of dynamical thermoelasticity and of the con-
vergence of approximate solutions of these problems.

First, the semidiscrete approximate solution is defined, which is obtained by time discretization
of the original variational problem by Euler’s backward formula. Under certain smoothness
assumptions on the data authors prove existence and uniqueness of the solution and establish
the rate of convergence O(Atuz) of Rothe’s functions in the spaces C(I; W%(Q)) and C(I; L,(£2))
for the displacement components and the temperature, respectively. Regularity of solutions is
discussed.

In Part 2 the authors define the fully discretized solution of the original variational problem
by Euler’s backward formula and the simplest finite elements. Convergence of these approximate
solutions is proved.

In Part 3, the weakest assumptions possible are imposed onto the data, which corresponds
to a different definition of the variational solution. Existence and uniqueness of the variational
solution, as well as convergence of the fully discretized solutions, are proved.

Keywords: Rothe’s method, finite elements, coupled thermoelasticity, coupled consolidation
of clay.

AMS classification: 65 M 20, 65 M 60, 65 N 30.

In the recent years several papers were devoted to the analysis of approximate
solutions of coupled dynamical linear thermoelasticity: in [3] and [14] under the
assumption that the exact solution is sufficiently smooth the rate of convergence
of fully discrete schemes obtained by discretization by finite elements in space and
by finite differences in time is established; schemes generated by various finite ele-
ments and various finite differences are studied. In [1] the rate of convergence for
two semidiscrete schemes obtained by discretization in time is derived under some
regularity assumptions. Besides these papers, in [5] an existence and uniqueness
theorem is introduced.

Our paper completes the preceding investigations in the following directions:
In Section 1 we analyze the simplest semidiscrete scheme (obtained by discretization
in time by the Euler backward method). In Theorem 1 we establish the existence,
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uniqueness and some regularity properties of the solution and prove the strong
convergence of the semidiscrete solution to the exact one in the space C(I; L,(2)).
Our regularity results are stronger than in [5] under the same assumptions con-
cerning the data. In Theorem 2 we prove without any additional regularity assumptions
that the rate of convergence of the semidiscrete solution is O(4¢'/?). In Theorem 3
we present stronger regularity properties in the space variables in the interior of
the domain Q.

In Section 2 we generalize the convergence results of Theorem 1 to the case of
the simplest fully discrete scheme obtained by discretization in space by linear
finite elements and in time by the Euler backward method.

In Section 3 a weaker variational formulation is presented. This formulation
allows us to consider the data of the problem not so smooth as in Sections 1 and 2.
As we cannot obtain results similar those in Theorems 2 and 3 we consider only
a fully discrete scheme. We again prove the existence and uniqueness of the exact
solution; however, the regularity results and convergence results are weaker than in
Theorems 1 and 4.

In Section 4 we mention briefly two related problems: the quasistatical thermo-
elasticity and one of the models of consolidation of clay. The approach and results
of Section 3 can be easily modified to these two cases.

1. ROTHE'S METHOD IN LINEAR THERMOELASTICITY

According to [2], the dynamical two-dimensional problem of coupled linear
thermoelasticity can be formulated in the following way: Let Q be a bounded domain
in the x;, x,-plane with a sufficiently smooth boundary I'. Find a vector u(xy, x,, t)
and a function 9(x,, x,, f) which satisfy the following initial-boundary value problem:

(L.1) 9+ 0=c 9+ cydiva in Q x(0,T]

(1.2) o+ fi=cyi; (i=12) in Qx(0,T]

(1.3) Hxp, Xy 1) = Ip(x1, X)), (X1, X3) €Ty, t>0
(1.4) a9fov + B(9 — g(xy, x5, 1) =0, (x,X3)€T, t>0
(1.5) u(xy, x5, 1) = up(Xy, X2), (X1, x2)€ly,, t>0
(1.6) ov; = piXg, X, 1), i=12, (x;,x)€l,,, t>0
(1.7) 9(xy, X3, 0) = Io(x1, X5) 5 (X1, X2)€Q

(1.8) u(xy, X2, 0) = ug(xy, x3), (X1, X;) € Q

(1.9) i(Xy, X5, 0) = vo(Xps X2) 5 (X1, %) €Q

where B, ¢,, ¢,, ¢, are positive constants, Q(xy, X3, 1), 95(xy, X5), (¥ X2),
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g(xy, x5, 1) and f(xy, X5, 1), up(xy, X3), plxy, X2, 1), !Xy, X5), vo(xy, X,) are given
functions and vectors (their smoothness will be specified later), d/dv is the normal
derivative and where

(1.10) 0i; = 61, 9) = Dijunl () — 298]
(1.11) gif{v) = (v + v;,)[2

(1.12) Dijim = Djitm = Dimij

(1.13) Dijim€iiCim Z Moliji; Vi =¢;€R

with y, = const. > 0. A summation convention over a repeated subscript is adopted.
A comma is employed to denote partial differentiation with respect to spatial co-
ordinates and a dot denotes the derivative with respect to time t. The symbols
Iy, Ty (and similarly I'y,, I',,) denote two open subsets of the boundary such
that mes Iy3 + mes ',y = mes " (mes 'y, + mes I',, = mes I'). The symbol
u(xy, x,, 1) denotes the displacement vector and 9(x,, x,, 1) = T(xy, x,, 1) — T,,
where T(xy, X,, t) is the temperature and T, the temperature for which the material is
stress-free. Thus equation (1.1) is the coupled heat equation and equations (1.2)
are coupled Cauchy’s equations.

In relation (1.10) the symbol « is the coefficient of linear thermal expansion,
d;; is the Kronecker delta and D,;,, are constants depending on the material only.
We shall consider isotropic materials only; in this case

(1'14) Dijkmakm = 635”- , €3 = const. > 0.

We restrict ourselves to the case
ug =0, 9 =0;
in the opposite case we should use the transformations
d=u+iyg, 3=9+3,

where iiy and 35 are appropriate extensions of uy and 95 from I' onto Q.
Let us introduce the spaces

(1.15) V=1{veW,(Q):v =0onT,},
(1.16) W= {weWyQ): w=0on I'y}.
The norm in L,(Q) will be denoted by ||, the norm in Wi(Q) by ||, and the
seminorm by ||k In what follows we shall work in the function spaces of the types

C(I; V), L(I; V), Ly(I; V), where I = [0, T], T < oo, the basic properties of which
can be found in [9] For the sake of brevity we shall use the notation

H=1L,Q), HH=HxH, V*=VxV.

For the vector functions v = (vy, v,) € [W5(Q)]* we shall use the notation ||v], =
= ([lo4]# + ||v2]|7)"/* and similar notation for the seminorm |v);.
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We denote

(v, w), =J vw;ds, (v,w)y = J owds,
I'zu I';s
G(U, W) = j Dijkm 8ij(v) Skm(w) dx = j Dijkmvi.jwk.m dx,
o3 Q

(u, v) = j uvdx, (v, w) = (v,w), D(v,w)= {gradv, grad w).
Q

According to (1.11)—(1.13), we have

(1.17) a(v, v) = C]vlf Yo e [W3(Q)]?
where C is a positive constant independent of v. Further
(1.18) D{w, w) + B(w, w)s = C|w|] Ywew

where C is a positive constant independent of w. Because of a greater simplicity
we do not consider the case f = 0. If f = 0, mes I';, > 0 then inequality (1.18)
remains valid and the case p = 0, I';;, = I" (which does not occur in applications)
can be treated in the same way as the case I',, = I', which is in this paper taken
into account.

Definition 1. The pair u, 9 is a variational solution of problem (1.1)—(1.14)
if the following conditions are satisfied:

a) ue C(I; V?), ueL,(I;V?)n C(I; H?), iie L, (I; H*); u(0) = u,e V% a(0) =
= vy e V?;

b) $e L, (I; W), $eL,(I; H), 30) = 9,¢€ W;
c) the following relations are satisfied:
(1.19) cy(8(1), w) + D(3(1), w) + cy(div a(t), w) + B(8(1), w)s =
= (0(1), w) + Blg(t), w), YweW Vtel\E,
(1.20) eqii(t), v) + a(u(z), v) — c3(3(t), div v) =
= (f(1), v) + (p(1),v), YveV? Vtel\E,

where E,, = I and E, c I are subsets of measure zero depending on w and v,
respectively. The problem defined by a)—c) will be briefly called problem PC - 1
(problem continuous 1).

In Section 3 a weaker variational solution will be defined (see Definition 2).

The existence and uniqueness of the solution of problem PC -1 will be proved
by Rothe’s method. Let us choose an integer n, let us define 4t = T/n and let us set

tp=idt (i=0,1,...,n).
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For a function F(7) let us write
Fi=F(t,), AF'=F' — F'7'  A?F' = AF' — AF'"1!,

In Sections 1 and 2 let us assume

(1.21) Qe AC(I; H), QeL,(I;H)

(1.22) g€ AC(I; Ly(T,y)), g € Ly(I; Ly(T5y))
(1.23) feAC(I; H?), f eLy(I; H?)

(1.24) P AC(L; [Lo(T2)1) s b € La(l; [La(T2)T)

p e Ly(I; [Ly(I2)]7)
and in this section let us define the following semidiscrete problem:

Problem PD-1: Let U° =uy,, U ! = u, — Atv,, O° = 9,. Find U'eV?,
O'eW(i=1,..., n) such that

(1.25) ¢, 4740, w) + D(O%, w) + c,4t™(div AU, w) + B(O', w)y =
= (Q(1:), w) + Blg(t;), w)s = Gw) Ywe W,
(1.26) cadt™H(A2U%, 0) + a(U', v) — ¢5(0%, divy) =
= (f(t.), v) + (p(t), v), = Fi{v) WoeV?2.

Remark 1. In order to avoid the multiplying of equation (1.25) by ¢; and equation
(1.26) by ¢, (when summing them up) we shall assume in the proofs of Lemmas 1—3
that ¢, = ¢35 = 1.

Lemma 1. Let 9, € W, u,, vy € V2. Then there exists a unique solution U'e V2,
©'e W(i =1,...,n) of problem PD -1 where n is an arbitrary integer.

Proof. Let us consider the space Z = V> x W with the norm |y|; = [jv]] +
+ |w||} for y = {v, w} € Z. Let us denote z = {U, @} € Z and let us define a linear
operator A: Z — Z* by means of the bilinear form

[Az, y] = codt™*(U, v) + a(U,v) — (0, divo) +
+ ¢,(0, w) + 4tD(@, w) + (div U, w) + BAH{O, w),.
Setting y = z and using (1.17), (1.18) we obtain (because At is fixed)
(4] = Clo2 Vsez

where C is a positive constant not depending on z € Z. From here, from the bounded-
ness of the bilinear form on Z x Z and from the estimates

P s Clolis lw)] = Clvlis (@4 W)l < Clwlo.
472U — U2, )| < Cloflo, |(divUTL w)| < Clwlo
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where C is a positive constant not depending on y = {v, w}, we obtain the existence
of a solution by means of the Lax-Milgram lemma.

To prove the uniqueness let us assume that there exist two solutions zi =
={U{,0{}, z5 ={Ui, 0} (i=1,...,n). Setting i =1 we obtain from (1.25)
and (1.26) that [A(z} — z}), y] = 0. Setting y = z} — z} wefind z} = z}. Repeating
the consideration successively for i = 2,...,n we obtain z{ =z} (i =1,..., n).
Lemma 1 is proved.

Let us denote for the sake of brevity

Z' = AU|At, S'= AZ|At = A*U'|4*, R' = 40|41,

where i = 1,..., n. In order to obtain convenient a priori estimates we shall need
a smoothness of data and validity of (1.25), (1.26) in the case of i = 0 in the follo-
wing sense: There exist S° e H? and R® € H such that

(1.27)  ¢(R% w) 4+ D(39, W) + c5(div vy, w) + B3¢, W)y = Go(w) Ywe W,
(1.28) c4(S% v) + a(ug, v) — ¢3(9y, divv) = Fo(v) Yve V2.

Remark 2. Relations (2.3), (2.4) (together with (1.21)—(1.24)) are an example of
sufficient conditions for (1.27), (1.28): Using Green’s theorem and relations (1.10),
(1.12), (1.14) we obtain for R°, S° = (89, S3) from (1.27), (1.28):

R® = ¢ '(Q(0) + V295 — ¢y dive,), ST = c; (ol ; + f0))
where of; = 6,;{uo, 3o) (see (1.10)).

Lemma 2. Let relations (1.27), (1.28) hold, let the functions and vectors Q, g, f, p
satisfy conditions (1.21)—(1.24) and let ugy, vy e V* and 9o € W. Then there exists
a positive constant C independent of j, n, At such that

|2l =c. |slosc. [RlosC (1<jsn)
éIHAZ"II% <c, At“élﬂA@i”f <c.

Proof. According to Remark 1, we assume that ¢, = ¢; = 1. Let us set i = j
in (1.25) and then i = j — 1. Setting w = R/ and subtracting the second result
from the first we obtain (in the case j = 1 we use also (1.27))

(1.29) ¢(RY = RI7 RI) + At7'D(467, 407) + (div 4Z7, RY) +

+ 47407 iragy = (G; — Gj=y) (RY).
Repeating this procedure in the case of (1.26) with v = S/ we obtain
(1.30) cy(ST — SN S) + a(Z, 20 — 27 —

— (R, div 4Z%) = (F; — F;_,) (§).
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Summing (1.29) and (1.30) up and using (1.17), (1.18) we easily find
er([RIIS = [R7H5) 13 = 1s7="15) +
b O A0 + K2 — K2 + K42
= 2[(Z, 4Z) + (F; = F;-,) (8)) + (G, — G;-y) (RT)],

where Ky >0, K, > 0. As 2|(Z/, 4Z°)| < |2’|5 4t + ||S7]|5 4t we obtain after
summing from j = 1 to j = k (k < n):

(131 ST + R + K2+ K 3 42 +
+Cart ¥ 40/ < S+l RR +
# Kaloult + 4t (1273 + [ +
+ 2j)::1(Fj — F;_)(8%) + 2j§:(Gj - G;-y) (R,

Using the assumptions (1.21) —(1.24) we can estimate the last two terms on the right-
hand side of (1.31):

~.
I =

(4(0) = plty- 1), b = X (4nl1)} a1, 477), =
— (apla)]an Z), = 3, (4°p(0)] 217, = (apl,)a0. 2°) =

< Ks |6 zacraon + (Kif2) |27 + CIB D) | acran ool +
k k
+ C‘"Z 12771 + At_l,z 147t 4t .oy
wheret;_; = 1 < t;and K; > Odepends on K, and on the constant appearing in the

trace theorem The last term on the right-hand side is bounded by C || ph La(IILa(F2012)
because

A%p(;) = 'rj

tj-2

plr)(t; — t)dt — 2J‘tj—1ji(t) (tj-y — 1) dr.

tj-2

Further, we have
' k 1) 1/2
23 00) - st ) =23 ar[* e il s
Jj= tj-1

k
< + 40X [S705
=
Thus
k k
2Y(F; = Fj-i) () = € + Car g (|27] + [87]5)
j=

i=1
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Similarly we obtain
k k k
23(G; = G ) (R) = C+ At [R5 + Kot ™'} [ 407]
ji=1 j=1 j=1

where 0 < K, < C*. Thus using Gronwall’s lemma we obtain from (1.31) all
assertions of Lemma 2. Lemma 2 is proved.
Let us define Rothe’s functions

U () = U™ + (AU A1) (t — t,y), ti_,
Z,(t) = Z'"Y + (AZ[40) (t — t,_y), ti,
0,(t) = 0" + (40141)(t — t,_,), t,_,

I\

1A

’:.\
II

oo 1)
)
: (i=1,..,n)

IIA
lIA
Il

IIA
IIA

and corresponding step-functions
U()=U", ti_.y<t=t; (i=1,...,n), U(0)=u,,
Z(1)=Z", ti.y<t=t; (i=1,..,n),

0,N=0", 1,y <t=t, (i=1..,n), 6,0 =39,
and let us prove the following lemma:

Lemma 3. There exist functions u(t), 3(t) with the properties ue AC(I; V?),
e AC(I; H)n L,(I; V?), idieL,(I; H*), u(0)=u, u{0)= v, e AC(I;W),
deL,(I; W), (0) = 3, and such that

U, = uin C(I; H*), U, — uin Ly(I; V?),
Z, —uin CI;H?), Z, —u in Ly(I;V?),
Z, —~ii in Ly(I; H*), O, — 9 in C(I; H),
0, — % in L(I; W), 6, -3 in L(I;W),
where {U,},{Z,} and {©,,} are subsequences of {U,},{Z,} and {©,}, respectively.

Proof. The estimates introduced in Lemma 2 imply

(1.32) |Z(1)], = C Viel, |Z/[t)], < C Viel\E,
(1.33) |60 = € Viel, [6,]ium = C.
139 [z -zfes [ 100 - anias

where mes E = 0. Only (1.33), needs an explanation. The relation
t
O,(1) = 0° + j 0,(7) dr
0
together with the last estimate of Lemma 2 implies that

197



1/2

leoll = [o°]. + {s [ oo a =
< [0%): + (1, |40,jar]; 41} < C.

The assertions of Lemma 3 are consequences of (1.32)—(1.34) and can be proved
by standard devices used, e.g., in [6], [7], [8], [16]. Thus some parts of the proof
are only sketched.

A) The relation

(1.35) Uy1) = uo + J"z,,(f) de

implies |U,(1)]y < |uo|s + t"?||Z,||1,cs.v2). This result together with (1.32); and
(1.34), give
(136 0l 5 ¢, [0 s ¢ viel.

Further, we have
[Ut") = U)o = SCr =2 v, el .
0

J Z,/t)dt

t

Thus, owing to the compactness of the imbedding V' H, we can use the generalized
Arzela-Ascoli theorem [9, p. 42] and find that U,, — u in C(I; H?). This result, rela-
tion (1.36), and the compactness theorem imply

(1.37) Un(t) = u(t) in V? Viel.

As |||, is weakly lower semicontinuous relations (1.36), and (1.37) imply [u(f)], <
< liminf |U,(¢)]|, < C Vtel. Thus ue L,(I; V?).

B) Similarly as in the part A) estimates (1.32) and the generalized Arzela-Ascoli
theorem give Z,, — z in C(I; H?). This result, relation (1.32); and the compactness
theorem imply both Z,(t) — z(t) in V?> Vtel and Z,, — z in L,(I; V?). Then also,
according to (1.34), Z,, — z in L,(I; V'?). It remains to prove that z = i: We obtain
from (1.35)

(U,(1), v) = (uo, v) + f;(zm(r), v)de VveV?.

Passing to the limit for m — oo and using the preceding results we find (due to the
density of Vin H)

t
u(t) = u, +‘[ z(t) dt.
0
Thus u e AC(I; V?) and u(0) = u,. Further 4(f) = z{t) almost everywhere in I.
The result @ € L (I; V?) can be proved by the argument introduced at the end of

part A).
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C) Estimate (1.32), and the compactness theorem imply that there exists we
€ L,(I; H?) such that Z,, — w in L,(I; H?). We have

t
<Z,,,(t) - vy — j Z,(7) dr, v) =0 YoeV?.
0
Passing to the limit for m — oo we obtain
t
u(t) = v, +j w(t)dt Vtel.
0

Thus #(0) = v,, 1t € AC(I; H*) and ii(f) = w(t) a.e. in I.
Let v € L,(I; H?). Then, according to (1.32),, we have

HT(L‘z(t), (r)) dt =‘ lim Jr(zm(t), o(1)) a

< lim supJ‘ 1 Zullo o]0 dt = C|v||L,crsm2) -

As LZ(I H?) is dense in Ly(I; H*) we see that i € L, (I; H?).
D) Relation (1.36), and the compactness theorem imply that U,, — w in L,(I; V?).
On the other hand U,, - u in C{I; H?); thus w = u and

(1.38) U,—u in LyI; V?).
Further, we have [AU'|? = 4¢%|Z'|} £ C4t?; hence

(1.39) 10, = U]y = Z au’|3 4t < C[n?

Relations (1.38) and (1.39) imply U,, — u in L,(I; V?).
E) The remaining assertions of Lemma 3, which concern the function 9 and its
derivative 3, can be proved in the same way.

Theorem 1. Let the assumptions of Lemma 2 be satisfied. Then problem PC - 1
has a unique solution u, 3 and we have

U, —u in C(I; HY), Z, 1 in C(I; H?), ©,— 9 in C(I; H),
where {U,}, {Z,} and {©,} are arbitrary sequences of Rothe’s functions.
Proof. A) Let us write relations (1.25), (1.26) in the form
(1.40) ¢1(0,(1), w) + D(O,(1), w) + ¢,(div Z,(t), w) +
+ B(O,(1), w)s = G,(w) YweW ae.in I,

(1.41) el(Z,(1), v) + a(U,(1), v) — ¢3(0,(1), div v) = F,(v)

YoeV? ae.in I,
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where F,(v) = F(v)fort;_, <t < t;(i = 1, ..., m); the functional G,(w) is defined
analogously.
It is not difficult to find that

(L) im [ Fuw) ot = [ 1000 + (610, 9]t

m->owJt’

(1.43) lim J.IHG,,,(W) dt = '[ ::’[(Q(t), w) + Bg(t), w)s] dt,

where 1" < 1" are arbitrary numbers in I. Integrating (1.40) and (1.41) in [¢', t"] = I
and passing to the limit for m — co we obtain by means of Lemma 3 and relations
(1.42), (1.43):

(1.44) j ::’{cl(g(t), W) + D(3(1), w) + ex(div i(e), w) +
+ B(X(), w)s — (Q(1), w) — B(g(1), w)s} dt =0 VYwe W,
(1.45) J :,{04(12(1), o) + a(ul), o) — cx(5(1), div v) —

— (f{(1), ) — (p{t),v),} dt =0 VoeV?*.
As t' < t" are arbitrary we see that u(t), 9(¢) satisfy (1.19) and (1.20), i.e. property c)
of Definition 1 is proved.

B) Functions u(r), 3(¢) and their derivatives satisfy properties a), b) of Definition 1,
as follows from Lemma 3.

C) Now we prove the uniqueness of the solution of problem PC- 1. Let u, =
= v, = f(t) = p{t) = 0, 9o = Q(t) = g(t) = 0. Let us choose w(t)e L,(I; W) and
u(t) € Ly(I; V?) arbitrarily. As the set of all step-functions belonging to L,(I; W)
is dense in L,’I; W) we can find a sequence {w,(1)} <= L,(I; W) of step-functions
such that

w, > w in Ly(I; W).
On the other hand, using (1.44) we can write
t
[/ ets0. 500 + D303, w00 +

+ ¢y(div u(t), w,(7)) + B(3(), W,(1))s} dr = 0.

Passing to the limit for n — oo we obtain
(1.46) J. {e,1(3(z), w(t)) + D((z), w(t)) + ca(div u(z), w(t)) +
0
+ B(3(r), w(x))s} dr = 0 Vwe Ly(I; W).
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Similarly we find
T
(1.47) "‘ {eqlii(z), o(7)) + alu(z), (7)) — e3(9(1), div v{r))} dz = 0
(4]
Ve Ly(I; V?).

Multiplying (1.46) by c; and (1.47) by c,, setting w(t) = 9(7) and v(r) = i(r) we
obtain after summing up

%(:264”1'!(1)”3 + cya(u(t), u(t))2 + %6163”9(0”(2) N
+ ¢ '( ;{D(S(r), (7)) + B(3(x), 9(x)),) dz = 0.

Adding to the both sides the expression [|u(?)||3 we find by virtue of (1.17) and (1.18):

lad)s + [u()lF + [8(A)]s = Clu®)]5 -
We have

o = ol — o) = [ & 1o o =

0

1 t
> f ). i) o = L(nu(r)ug (@) de
The last two inequalities and the Gronwall’s lemma imply
lu@lo =0, [3()]o =0 Vvtel,

thus u =0, 3 =0 ae.inl.

D) The assertion concerning sequences of Rothe’s functions, i.e. that {U,} =
={U,}, {@,} = {0,}, follows from the uniqueness of the solution. Theorem 1
is proved.

Now we prove stronger convergence results without additional regularity as-
sumptions and without changing the assumptions of Theorem 1.

Theorem 2. Let the assumptions of Theorem 1 be satisfied. Then
(U, = tt]en S Kat'?, |2, = i, ney < K42,

16, = 9lcam = Kar'?, |

1/2
0, — Y eoasw) < Kdr'2,
where K is a constant independent of n and At.

Proof. Let us subtract (1.40) and (1.41) with m = s from (1.40) and (1.41) with
m = r, respectively. Let us set v = Z,(1) — Z(1), w = 0,(t) — O(1), let us sum up
the resulting relations and let us integrate over [0, 1] = I. As ¢, = ¢; = 1, according
to Remark 1, we obtain

t
J‘ {04(2,. - Zs7 Zr - Z.\) + (I(U,. - U_s’ Ur - Us) +

0
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+ ¢(0, - 0, 6, — 6) + DO, - O, 6, — 0,) +
+ B(®, — 8,, 6, — 8,),} dr =
- [ - -2y @ - a)@, - B ar.
Adding to the both sides the expression
(1.45) I ;{c4(z, 27— 7, — (2.~ Z) + a(U, — U, = (U, = U, U, — Uy) +

+¢(0, - 0, 0, — 0, — (0, — 0))} dt

we find

(1.49) 1Z(8) = z(1)|5 + [|U(1) — UL0)]} + [©.) — 0,0)]5 +
+[ 18469 - @l ar sk -+ L+ clu - vl +
+C Jt(‘, —F)(Z, - Z)de |+ C f(@, ~G)(8, - B,) de

where C is a positive constant independent of r, s. We have obtained the left-hand
side of (1.49) by integrating and using relations (1.17), (1.18). (In the case mes I'y, = 0
we added to the both sides the term ||U,(t) — U(1)|? before using (1.17).) The first
term on the right-hand side of {1.49) was found by estimating (1.48) by means of
(1.32)—(1.34), (1.39) and the fact that {U,} = {Z,} is a bounded sequence.

The second term on the right-hand side of (1.49) can be estimated as follows:

00 = 00l = [ 09 - 00,20 - 7o) e <

=100 - vl + 1260 - 260} e =

1

= o2+ )+ [0 - 0l + 1) - 20

r

according to the Cauchy inequality and estimate (1.34),.

Now we estimate the remaining two terms on the right-hand side of (1.49). Let
us write f,(1) = f(t;) and p,(t) = p(t;), t,;_y <t < t; (i = 1,...,r). Denoting 4 =
= L,(I; H?), B = Ly(I; [L,(I';,)]*) we have

[~ Ry 2~ 2y e = [0 - 209, 2, - 2] ar +
+ 100 - 209, 2~ 2 ax = 1 = a7 - 2+

202



+ Cp. = Bl |Z = Zi| oy < CUT = flla +

# 1 =2l = ol o = 2} s K (24 )

because

7. = 11 =5 1 = st ai =

n ti

ti 2 n ti - 5
-3 f] Hoaslar <5 {j Nf(s)]|0ds} o<
i= ti-q t 0 = P .

5 R I N CLE TRV R T

1 = pl5 < 45]5-

=K 1+} .
r S

Thus relation (1.49) and Gronwall’s lemma imply the first three assertions of Theorem
2. Moreover, we see that [|®, — @3 < K(1/r + 1/s), where M = L,(I; W).
This relation and (1.34), imply

and similarly

In the same way we obtain

j (G, — G.) (B, — 8,) dr

0

16, = 0.l = |6, = Ol + [6, — B.]x +
+18, = O, = K(1Jr + 152
Theorem 2 is proved.

A priori estimates of Lemma 2 enable us to prove stronger regularity properties
of u(t), 9(¢) in space variables.

Theorem 3. Let the assumptions of Theorem 1 be satisfied. Then u e L (I; V* N
SO [7 0(Q)]7) and S e L(I; WA Wy, (Q)).

Proof. If we CP(Q), v e [C(RQ)]? then relations (1.40) and (1.41) can be written
in the form

(1.50) D(B,(1), w) = (A1), w) Viel YweCo(@),
(1.51) a(Tfi) o) = (Bfi)v) Viel Yoe[CHQ]
where

A1) = 0,(t) — ¢;R,(t) — ¢, divZ(1),
R()=R', ti_y<t=t, (i=1,..,n)
B,(t) = f,(t) — cs grad ©,(1) — ¢, Z,(t) .

>
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We have, according to (1.21), (1.23), Lemma 2 and (1.33),,

(15) [4o < ¢, B s C vier
and, according to (1.33); and (1.36),,

(1.53) 18,0, < C, T <C viel.
Further, using the methods of the proof of Lemma 3 we can find
(1.54) USt) = u(t) in [Wy(Q"]* Viel,
(1.55) 0,(t) =~ §t) in WyQ*) Viel

where Q* is an arbitrary subdomain of Q.

According to (1.50) and (1.51), &,(¢) and U,(¢) (¢ is fixed) are weak solutions of
certain linear boundary value elliptic problems (in the interior of Q). The regularity
results (see [11, Chapter 4, § 1]) imply 8,(t) € W3 1,(Q), U,(t) € [W3 1,(2)]* and the
estimates
(1'56) ”@n(t)”Z,Q’ C(Q,) (”@n(t)nl + ”An(t)llo) = C<Q’) >
(1.57) 10020 = (@) ([T)]: + [BAD)]o) = C(2)

where Q' is an arbitrary subdomain of @ such that @' < Q and C(') is a constant
depending on ©Q'. The symbol ||+ |, o denotes the norm in the space W3(2').

Relations (1.54)—(1.57) imply
U,(1) = ult) in [WHQ)]* Vtel,
0,(t) =~ 9{1) in W3Q) Viel.

IIA

IIA

Thus passing to the limit for n — oo in (1.56) and (1.57) we obtain
[90)]2.0 = C(2), [u(d)]20- = C(2) Veel.

This result together with Lemma 3 proves Theorem 3.

2. CONVERGENCE OF FINITE ELEMENT ROTHE’S FUNCTIONS

In this section we consider in addition discretization in space by the finite element
method. We restrict ourselves to triangulations which cover the domain Q exactly.
This means that in the case of a curved boundary I’ triangles along the boundary
have one curved side which is part of I'. These triangles are called ideal curved
triangles.

With every triangulation J we associate three parameters

h = max hy, h=minhg, o = min g
KeT KeT KeT
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where /i, is the length of the greatest side and wy the magnitude of the smallest
angle of the triangle having the same vertices as K. We choose a sequence {7},
of triangulations which satisfy the following conditions:
limh,=0, hfh,Z¢co>0, w,2Z0,>0 Vn
n— o
where ¢, and w, are constants independent of n.
On every triagulation 4, we choose a finite dimensional space X, with the fol-
lowing properties:
a) X, = C%Q);
b) every function v € X, is uniquely determined by its values v(P,), P, being the
nodal points of 7, (i.e. the vertices of K € 7,);
¢) the restriction of ve X, to a triangle K € 7, with straight sides is a linear
function.
Let us note that the definition of the restriction of v € X, to an ideal curved tri-
angle K is given in [12].
For every n we define two subspaces of X,

V,=X,nV ={veX,:v=0o0nTI,},
W,=X,nW={weX,: w=0on I'y}.

Our starting point is the following completely discrete problem:

Problem PD-2: Let U°, U 'eV;} and ©°e W, be given and let At = T]r,

n

where r is an integer. Find U'e V} and ©' e W, (i = 1, ..., r) such that
(2.1) ¢, 417407, w) + D(@%, w) + c,4t™Y(div AU, w) + B(O, w), =
= (Q(t,), w) + B(g(t), w)s YweW,,
(2.2) At 3(4%U%, v) + a(U', v) — ¢5(0', divv) =
= (f(t,),v) + (p(t,), v), VveV;.
Lemma 4. There exists a unique solution U’, @' (i =1,..., r) of problem PD - 2.

Proof. As (2.1), (2.2) represent a system of linear algebraic equations for the
values ©(P,), U(P,) it is sufficient to prove the uniqueness. Let U° = U™! = 0,
0° =0 and Q(t) =g(t) =0, f(t;) =p(t) =0 (i=1,...,r). In the case i =1
we set w = @'in(2.1) and v = U’ in (2.2), multiply (2.1) by 4t and sum the obtained
equations up (we again assume ¢, = ¢3 = 1). We get

¢,|@]2 + 41{D(6%, %) + B(€', ©')} + c,dt™2|U|3 + a(U, U) = 0.

Thus U' =0, ©® = 0 (i = 1), according to (1.17) and (1.18). In the case i > 1
let us assume that we have proved U/ = 0, @/ = 0, where j < i. Repeating the
preceding consideration we obtain that U’ = 0, @' = 0. Lemma 4 is proved.
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In this section we shall assume
(2.3) Qe WA W3Q), useV>n[Wi(Q)]*, voeV?n [W3Q)],
09
(24) [ﬁso + J} — 89(0), oo 0)v;| = pi0).
I'2a

av T2y

Assumptions (2.3) enable us to define 8°, U%, U™ in the simplest and most natural
way, assumptions (2.3) and (2.4) enable us to give a discrete analogy of (1.27),
(1.18) and to define 40°/4t and 4*U°[/At* which are bounded in the L,-norm by
a constant independent of W, and V,, respectively.

Let us set
(2.5) 0°=19,, U'=TLu,, U *'=U°—- dtlp,

where I,we W, and I,ve V? are W,-interpolate and V7 -interpolate of a function
w e Wand of a vector v € V2, respectively. This means that

(Lw) (P) = w(Py), (I,0) (P) = v(Py)

for all nodal points P, in . Using standard interpolation theorems (see, e.g., [12],
[13]) we can see that
(2-6) “'90 - 111‘90"1 = Chnngouz s ““0 - Inuolll = Ch,,”uoﬂz s

”UO - In1’0”1 =< Ch,,"v0"2 >

where C is a constant independent of n, u,, v, and 3.
We define 40°/4t € W, and 42U°[41* € V}} by the relations

(2.7) ¢,(40°[4t, w) + D(1,99, w) + ¢5(div Ive, w) + B(I,%0, W) =
= (Q(0), w) + B(g(0), w)s YweW,,
(2.8) c(42U°[ 482, v) + a(Iuq, v) — c5(1,9, div v) =

= (£(0), v) + (p(0),v), VveV}.
As AU°[At = I, relations (2.7), (2.8) are relations (2.1), (2.2) written for i = 0.

Lemma 5. The solutions of both relations (2.7) and (2.8) exist and are unique
and satisfy
(29) [46°[4t]|, < C, [4*U°/4*|, = C

where C is a constant independent of n.

Proof. A) Existence and uniqueness: Similarly as in the proof of Lemma 4 it is
sufficient to prove the uniqueness. Let the data 1,9, Iuo, 1,0, Q(0), g(0), £(0), p(0)
be equal to zero. Then relations (2.7) and (2.8) reduce to

(40°/4t,w) =0 YweW,, (4°U°[4t*,0) =0 YoeV].
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Setting w = 40°[4t, v = A*U°[At*> we see that 40°[At = 0, A*U°[At* = 0.
B) Estimates (2.9): According to (2.7), we have
(2.10) ¢;](40°[4t, w)| £ [D(9o — L9, w)| + B|(90 — 1,80, )| +
+ [B(g(0) — 80, w)s — D(80, w)| + |(Q(0), w)| +
+ e2|(div (vo — L), w)| + c2|(div v, w)] .
The inequality (a consequence of [13, (106) and (153)])
(2.11) hwli = Clwlo VweX,,

where the constant C does not depend on w and n, estimates (2.6) and the trace
theorem imply

D(90 = Lo, w)| = [90 = Lo[+ [w]s = C[[82 |w]o »
(9% — 180 whs| = C[[%0 = L[+ [w]s = C|90]5 [wlo -
Using Green’s theorem and assumption (2.4); we find
B6(0) — Bor )y — D(Foy )] = (9200, )] = 196l Il

The last three terms on the right-hand side of (2.10) are bounded by C(||Q(0)[, +
+ |vo|l2) [|w]o- Inserting all these results into (2.10) and setting w = 40°/4t we
obtain the first estimate (2.9). The second estimate (2.9) can be obtained similarly.
Lemma 5 is proved.
Let {4t,},%, be an arbitrary sequence with the properties
lim A1, = 0, r, = T/At, = integer .
Let us set r = r,, 4t = At, in problem PD -2 and let ©, U’ (i = 1, ..., r,) be the
corresponding solution of PD -2. We define the finite element Rothe’s functions

0,(t) = 071 + (40[4t,) (t — t,=y), ti-; St=t;,

U(t) = U1 + (4U4t,) (t — ti=y), tiog Sttt
Z(t) =Z"" +(4Z'[4t,) (t — t,-y), tioy St 4,

where i = 1,...,r, and Z/ = AU’[4t,, and the corresponding step —functions
6,N=0", t,_,<t=t (i=1..,r), 6,0)=06°,
U =U", t,.,<t=<t; (i=1,..,1), U0 =0°,
L..,r,).

Similarly as in [16] the functions ©,(1), U,(f), Z,(t) are called the finite element
Rothe’s functions in order to stress the discretization in space.

Z(H) =Z", ti., <ttt (i

207



Owing to Lemma 5 we can prove the following lemma (the proof follows the same
lines as those of Lemmas 1 and 3 and thus it is omitted):

Lemma 6. Let the initial data 9, ug, vy satisfy (2.3), (2.4) and let the functions
Q. g and the vectors f, p satisfy conditions (1.21)—(1.24). Then there exist a vector
u(t) and a function 9(t) with the properties

ue AC(I; V?), ue AC(I; H*)n L (I; V?), idieL,(I; H?),
Se AC(I; W), deL(I; W),

u(0) = ug, u(0) =vy, 90) =9
and such that

U,—-uin C(I;H*), U, —u in Ly,{I;V?),
Z, —uin C(I;H?), Z, —u in Ly(I;V?),
Z, —ii in Ly(I; H?), ©,, — 93 in C(I; H),
6, —~ 9 in Ly(I; W), ©,—=3% in L(I: W),
where {m} is a subsequence of {n} and {U,},{Z,} and {©,} are arbitrary sequences
of finite element Rothe’s functions.
Theorem 4. Let the assumptions of Lemma 6 be satisfied. Then we have
U,-uin C(I;H?*), Z,—u in C(I;H?*), ©,- 9 in C(I;H),

where {U,}, {Z,} and {©,} are arbitrary sequences of finite element Rothe’s func-
tions and u, 3 is the solution of problem PC - 1.

Proof. It suffices to prove that the limit functions from Lemma 6 and their
derivatives satisfy equations (1.19), (1.20).

Let us choose we W, ve V? arbitrarily and let {w,}, w,e W, and {0,}, v,€ V3
be such sequences that

(2.12) lim |w, — w[; =0, lim |, — |, =0.

n- oo

The existence of such sequences follows from the interpolation properties of functions
belonging to X, and can be proved by using the same cons;deratlons as in [17] or
[4, pp. 134—135]. According to (2.1), (2.2), we can write

¢1(On(t), W) + D(B,(8), W) + ca(div Z,(1), w,,) +
+ ﬂ(@m(t), Wads = (On(8)s W) + B(@n1)s W)y
Z,(1), vm) + a(U,(1), ) = €3(8y(8), div v,,) =
= (ful(?); Vm) + (Pul?), 0m)s ae.inl,
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where Q,(f) = Q(t), ti_y <t=t; (i=1,....r,) and G,(1), f,(t) and p,(f) are
defined in the same way.

Integrating the last two relations over [t’, t”] < I, where t' < t” are arbitrary
numbers, and passing to the limit for n — co we obtain (due to Lemma 6 and (2.12))
equations (1.19) and (1.20). Theorem 4 is proved.

3. WEAKER VARIATIONAL FORMULATION

Assumptions (1.27), (1.28) or (2.3), (2.4) are not very often satisfied in applications.
In this section we consider a more realistic situation:

(3.1) Y9eH, useV?*, v,eH>.

Thus the second requirement in (3.1) is the only restrictive assumption. As the initial
data are not so smooth as in the two preceding sections we obtain a less regular
solution. Here our weak solution will be in the sense of the following definition:

Definition 2. A pair u(t), 9(t) is a weak (variational) solution of problem (1.1) to
(1.14) iff
a) ue AC(I; H*) n L, (I; V?), it € Ly(I; H?), u(0) = u,, € Ly(I; W);
b) the following relations are satisfied:

02 [T wii)ar = e (o0, 900) = e, (0) -
—c J. :(div u(t), (1)) dt — ea(div uo, w(0)) +
y j :(9@), w(i)s dt = j :(Q(t), W) dt +
+ 8 (a0 ot Yo7,
(33) [atut. o0 a1 - 9, s 1 -
- e, 0) =<, | (306, div o) dt =
- (100,50 + G- DT as voe

where
F, = {ve Ly(I; W): y € Lo(I; H), o(T) = 0},
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F, = {ve L(I; V*): v e Ly(I; H?), v(T) = 0} .
The problem defined by a), b) will be briefly called problem PC -2.

We shall use the same finite element spaces V, and W, as in Section 2. We make
only one restriction concerning the sequence {9' .} of triangulations:

(3.4) h, = h,,y Vn.

Requirement (3.4) is easy to satisfy.

Lemma 7. There exist sequences {uo,}, {von}, {S0a}, Where ug, € V7, vy, € V2,
Y, € W,, such that

(3.5) lim u, — uofy =0,

(3.6) lim |9, — [0 = 0, lim ||vg, — voflo = 0.

Proof. The proof of (3.5) is the same as the proof of (2.12),. We prove (3.6);:
Let {sk} be an arbitrary sequence with the properties ¢, > 0, & > &4, limg, = 0.
As C§(Q) is dense in H = L,(Q) we can find a sequence {w, } = C3’(2) such that
[90 — e lo < &/2. In wiew of the well known interpolation properties of the finite
element spaces W,, we have

[wee = Lwello = Chilwa]

where I,w,, € W, is the interpolate of w,,_in W,. Thus, according to (3.4) and the
property lim h, = 0, there exists n, such that

[We, = LweJlo S &f2 nzn,.
Hence
“90 - I,,waku0 <g VYnzn.

Thus we can construct a sequence {9,,} satisfying (3.6), in the following way: We
set 9o, = I, W, €W, and in the case n, <j < my( we set So; = Iw, € W,
The construction of a sequence {v,,} satisfying (3.6), is similar. Lemma 7 is proved.

As to the functions f(¢), Q(t), g(f) and p(t) let us assume less than in Sections 1
and 2:

(3.7) feLy(I; H*), QelLyI;H), geLy(I;Ly(I,y)),

(33) pe AC(I; [Lo(I'2.)]?) s b€ Lo(l; [Lo(T30)]%)

Let us set 41, = T|r,, r, being an integer (r,,; > r, Vn) and let us define

(3.9) rie 1" rar, Qi=ir 0dt, gi=iJ.” g dt
at, 44, at, )., nd iy

where t; = t] = idt,andi = 1, ..., r,. Now we can formulate the following discrete
problem:
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Problem PD -3: Let the functions f, Q, g and p satisfy assumptions (3.7) and
(3.8), respectively. Let U° = uq, € V2, U™ = u,, — At,,, € V2 and 0° = 9, € W,,
where oy, vo, and o, were introduced in Lemma 7. Find U'e V], O@'e W, (i =
=1,...,r,) such that

(3.10)  ¢,41, (407, w) + D(O', w) + c 4t '(div AU, w) + B(O, w)y =
= (@4 w) + Blg', W)y WweW,,
(3.11) gt X (42U, v) + a(U%, v) — ¢5(@%, div o) = (f',v) + (p(t), v), VoeV;.

The proof of existence and uniqueness of the solution of problem PD -3 is the
same as the proof of Lemma 4.

Using the solution ©'e W,, U'e V; (i = 1,...,r,) of PD-3 we define the fol-
lowing finite element Rothe’s function U,() and step-functions U,(t), 8,(1):
61 u=v+2% 0y, 0 =

n

IIA

o(i=1..,r),

(3.13) U =U, 1], <t<t (i=1,..,1),
(3.14) o,t)y=0", ', <t=<t (i=1,..,r).

IIA

Lemma 8. Let the initial data 9, ug, vy satisfy (3.1) and let f, Q, g and p satisfy
(3.7) and (3.8), respectively. Then there exist functions u(t), 9(t) with the properties
ue AC(I; H*) n L(I; V?), i e Ly(I; H?), u(0) = u,, 9€Ly(I; W) and such that

(3.15) U,—uin C(I; H?), U, —u in Ly(I;V?),
(3.16) U, —u in Ly(I; H*), @, — 3 in Ly(I; W)

where {m} is a subsequence of {n} and {U,},{U,} and {®,} are sequences of functions
(3.12)—(3.14).

Proof. Let us assume ¢, = ¢; = | (see Remark 1). We multiply (3.10) by 4t,,
set w = @' in (3.10) and v = AU in (3.11), add (3.10) and (3.11) up and sum the
result from i = 1to i = j, where j < r,. We obtain

¢, 3(46%, 0') + 41,3 {D(6', ') + B(6', 0)} +

Jj j i
+ cadt, 2y (42U, AUY) + Y a(U', 4UY) = 4t, ), (Q', ') +
i=1 i=1 i=1
I Y i
+ 4t,BY (g%, )y + Y (f', AU') + Zl(p(ti), AUY), .
i=1 i=1 i=
Adding to the both sides the expression Y (U', 4U’), using the relation (4b', b’) =
i=1
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= (b, b)))2 — (b'™1, b'™1)[2 + (4b', Ab))[2 and inequalities (1.17), (1.18) we get

(3.7) 1ao'l; + 10,3 40705 + o, 3 0 +

2 J
+ %‘342
1

0 i=

AUY A2UH|?

+ G,||U7|} +
" AL

+ 1cy

[

AUO 2

n

J
+ &% Jav 5 ojefi + |

+ nwuz) +

n |0

+41,5.(05 00 + 48T (¢ 0, + (7 407 +
g(p\t,) AU) +g U, AU)
As 6% + U163 + V%[ = [90n]3 + [0l + Juonll < € we can find
(3.18) RH&gC+C{DW%M+£MM&+ﬂW%m+
# max (03 + [ 1ol o} + 4,003 el +
ks

where R.H.S. denotes the right-hand side of (3.17) and 4 = Ly(I'y5), B = [Ly(I'2,)]*
The proof of (3.18) follows from the estimates

Jj J ti 1/2
#,%0,0) <% (an[" ol ar) oty =

. j .
+ 1G,||U7||1 + CAt".Z,{“U'”f

<ot [lloksar+ s, 3 fo'T
5400 5 |71 dr, + 3 vt ar,
SVtsas g 5 ([) o) =
s 5[ af wpa- e

(6. 40, = (o), U = (0(), U°) = %, (40(e1..). U, <
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Ap(t,+1)

< € max [p(0)] (|0} + o) + Cat, ¥ || 1. .

B

AP\ .+1)|

AIZI

1o, j Il at + 40,3 [V

AU!

g U', 4UY) < At,,z {"U I + H

The term containing (g‘, © )s can be estimated similarly as the term depending
on (Q}, ).

Using the discrete form of Gronwall’s lemma we obtain from (3.17) and (3.18):

AUf

(3.19) [whse, |0 sc. lolsc tsisn,
(3:20) Slavfisc, a3 ofisc (1sjsr).
i=1 i=1

Estimates (3.19), (3.20) and relations (3.12)—(3.14) imply:
v = ¢ viel, |U|nam =C,

[[100 — vz e = cln. Jouduiam = -

The last estimate immediately implies assertion (3.15), with 3 € L,(I; W). The other
three estimates together with (3.5) imply the remaining assertions of Lemma 8.
The proof is almost the same as that of Lemma 3, parts A), B) and D). Details are
omitted. Lemma 8 is proved.

The proof of the following lemma can be found in [10].

Lemma 9. The space C'(I; W3(Q)) is dense in C'(I; W(Q)) and the sets &, =
={weC(L; Wi(Q)n W): w(T) = 0} and &, = {ve C'(I; [W3(Q)]> n V?): v(T) =
= 0} are dense in the sets &, and & ,, respectively, where & | and & , are defined
in Definition 2.

Now we are ready to prove the main results of this section:

Theorem 5. Let the assumptions of Lemma 8 be satisfied. Then the solution of
problem PC - 2 exists and is unique and we have

U,-u in CU;H?), U,—~1u in Ly(I;H?), ©,— 9 in Ly(I; W)

where {U,} and {@,} are arbitrary sequences of functions (3.12) and (3.14),
respectively, and u, 3 is the solution of PC - 2.
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Proof. A) First we prove that the limit functions u, $ from Lemma 8 and their
derivatives satisfy relations (3.2), (3.3). Let w*e &, v* e ¥,, the sets &,, &,
being defined in Lemma 9, and let us set

t; ti

; 1 . 1
3.21 w = — w¥(s)ds, v'=-— *(s) ds .
(3.21) yr J (s) oy v*(s) ds

ndti- nd ti-g

In (3.21) and in the sequel we omit the superscript n at the symbol ;. Let I,w' e W,
and I,v' e V} be the interpolates of w' and v’, respectively. Let us set w = I,w' in
(3.10) and v = I,v" in (3.11) and let us sum from i = 1 to i = r,. After summing by
parts and multiplying by 4t, we obtain (in (3.22), (3.23) and in what follows we write r
instead of r,):

(3.22) ._jlp(@f, Lw)) 4, + ¢(6", W) — ¢y(Som Iw?) —
- clr_i(é)i, A(Lw'*1)[4t,) At, + c,(div U™, Lw") —

— cy(div ug,, Iw') — cz:i:(div U', A(ILw'* 1) 4t,) At, +

+ B3 (0% 1wty = T (041,01 + Blg', I} i,
(23) T alUL 10 dty + AU LAty = eslvon 1) =

r—1
— ¢4 3. (AU At,, A(Ip'* 1Y)/ 4t,) At, —
i=1

— 3 (0%, div Ip)) At, = ¥ (fi, L") 41, + ¥ (plt)), L"), 4t, .
=1 i i=1

i=1

Let us define the following step-functions:
w(t)=w', te(ti_t] (i=1,..,7);

o(t) =0, te(ti-pt] (i=1,..,7);
g1) = aw't4at,, te(tiot]] (i=1,...,r=1), q()=0, te(t,_,,T];
z,(t) = dv'*ar,, te(tiot] (i=1...r=1), () =0, te(t,_,T].
As w* € &, and v* € &, it is not difficult to see that
(3.24) w, > w* in L(I; W), ©,—v* in Ly(I;V?),
(3.25) g, » W*in Ly(I; W), Z,— * in Ly(I; V?).

As an example let us prove (3.25);. We have

(10 - seopa= [ pozan+
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r—1 t
+ 2,

i=1Jt;—1

472 j :_l{w*(s T+ AL) — wH(s)} ds — (1)

The first term tends to zero if 4t, — 0. The second term can be written in the form,
according to Taylor’s theorem,

i=1gti-1

det.
1

At,,_1 (w*(s) — Ww¥(1)) ds

ti-1

where § depends on s € [;_y, t;] and belongs to [#;_, ti+1:|. As I is a closed interval
we have

[w*3) — w*O)ls £ 1> S€[ticys tive], teltionty] (i=1,...r—1)

where #, — 0 if A4t, > 0. Thus the second term is bounded by n2T. This proves
(3.25);.

Using the step-functions W,(2), 5,(t), g,(t), z,(t) let us write relations (3.22) and
(3.23) in the following form:

(326) [ 2@, 5ty 0t + ci0r.w) = e0omw) -
— e [[@0. a0) a + e v -
— ep(div gy W) — €, j :(div U,(1), 3,(1)) dt +
+ﬂJ‘ (0,(1), w,(1))s dt + {21)/@' Iw' — wi) At, + ¢,(0", Lw" — w") —

— ¢1(Su Iw* — w') — ¢4 _Zl(@i, I(Aw'*1[At,) — Aw'*[At,) At, +
=
+ cp(div U, Iw" — W) — ¢,(div ug,, Lw' — w') —

_— z(div UL T(Aw'* 1 At) — Aw'*Y]At,) At, +

r

+ B2 (05 Iw! — w4t} —f (0.(2), (1)) dt + BJ (@.(1), w,(1))s dt +
+{Z(Q' ILw — wi) At, + ﬂZ(g Iw' — w), 4t} ,
(3.27) J a(T, (1), 5,(0) dt + co(AU", '] A1,) — calvg v") —

e, j :(U,,(t), z(0) dt — ¢ J:(@,,(t),div 5,(1) dt +
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+ 1Y a(U, Ly' — v')dt + c,(4U", 1(v"]4t,) — v'[4t,) —

i=1

r—1
— ¢, Y (AU|At,, (40" [At,) — Av'*1|At,) At, —
i=1
= cylvoy Lot — v') — ¢3 Y (O, div (Ip' — v)) 4t} =
i=1
T T
=f@@ﬁw»ﬂ+fmmmMLM+
0 0

+ (L0 = o) + (p(t), Lot — o)} 4t
where o »
01 =0", te(ti-nt], G()=4g", te(tiopt],
W) =11, te(ti-nt], P)=pt), te(tiop,t]] (i=1,..,7).
Assumptions (3.7) and (3.8) imply
(3.28) 0, Q in Ly(I; H), §,— g in Ly(I; Ly(I'5)),
(3.29) fu—= fin Ly(I; H*), p,— p in Ly(I; [Ly(I2,)]%) -

We prove, for example, (3.29),: As C(I; H?) is dense in L,(I; H*) we can find a se-
quence {f®} = C(I; H?) such that || f® — f|, — 0, where we denote 4 = L,(I; H?).
For every k let us define the step-functions

f‘,:"’@):Ar,,"J" fO(s)ds, te(tioy,ty], i=1,..,r.

ti-

t

We have
170 = fla S = TP + |7 = O + [/ = fla-

It is easy to see that

R P L P ¥ P e

where for every k, n) — 0 if At, — 0. The first inequality follows immediately from
the definition of the functions f,(t), f{(f). The proof of the second inequality is the
same as that of (3.24). Let us choose ¢ > 0 and let k be such an integer
that | f* — f], < &/3. Then there exists such N that n®T*/? < ¢3 Vn = N. This
means that for every ¢ > 0 we can find N such that |[f, — f||, <& V¥n 2 N and
(3.29), is proved.

To be able to prove (3.38) and (3.39) we shall need also the following relations:

(3.30) |w' = Lwi[|, £ Ch, max |w*(x, 1)],,
tel
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(3.31) [4w'*t]At, — I(Aw'*!]At)|l; £ Ch, max |Ww*(x, 1)], ,
tel
(3.32) [v = Ly'||; £ Ch, max |Jv¥(x, 1], ,
tel
(3.33) [4vi+t]At, — 1(4v'*4L,)]|, £ Ch, max ||o*(x, 1)],
tel

which follow from the finite element interpolation theorems. For example,
ti

At; J- w¥(x, s) ds
ti—1

T
< Ch, At;'j [w*(x, s)|2 ds £ Ch, max [|w*(x, t)|,
ti—-1 tel

[w' — Lwi], < Ch,|w|, = Ch, <

2

w2 AL, — L(Aw' [ 4L,)|, < Ch,|4w 4L, =

= Ch, 4t * =

2

J:H{w*(x, s) — w¥(x, s — 4t,)} ds

< Ch, max |Ww*(x, 1)|, .
tel

Finally, we shall need:

(3.34) lim (4U", v'/4t,) = lim ||w"]|, = lim ||v"]|, = 0,

(3.35) lim [jw' — w*(0)||; = lim |jv* — v*(0)|, = 0,

(3.36) [v[4t, — 1(v]At,)]|, £ Ch, max |o*(x, 1), .
tel

Let us prove these relations. As v*(x, T) = 0 we have

v[4at, = At,,"z-"
where § = T — §(T — s), 6 €(0, 1). Thus
(3.37) [v[4t,]); < max |o*(x, 1), (j =0,1,2).
\ tel

' [o*(x, s) — v¥(x, T)] ds = 41, ? qu (s = T)o*(x, 8) ds

ty -

Estimates (3.19), and (3.37) imply (3.34);. Relation (3.36) follows from the finite
element interpolation theorem and (3.37). Relation (3.34), follows from the estimates

J ,T._l[w*("’ 5) = w¥(x, T)] ds

=

[wll; = 40" ,

J

T
< Ar,,_‘J‘ |s = T1]. [¥*(x, 3)]; ds < 41, ma:x ¥ (x, 1)[|;
tr—1 te

and relation (3.35) follows from

<

[w! = w¥0)[|; = 4t,"

[[19 = o s

i
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< max ||w*(s) — w*(0)|; (0=j<2).

se[0,11]
Relations (3.34); and (3.35), can be proved in the same way.

Passing to the limit for m — oo in relations (3.26), (3.27), which are considered
only for the subsequence {m} of the sequence {n}, we obtain, according to (3.5),
(3.6), (3.15), (3.16), (3.19), (3.24), (3.25), (3.28)—(3.36):

(38 [ oo, w0 ar = e, [ (000, 50) @1 = ex(30,w(0) -
—e I:(div (i), W4 (0)) dt — ea{div o, wH(0)) +
+ ﬁﬂ(é‘(t), w(t))g dt = LT(Q(t), w(t)) dt + ﬂﬂ(g(t), wH(f)) df Vw* e &y,
039) [ au o) ot = e[ (a0, 0) 1 = eulon 070 -
= o[ 000, v o) = [ 00, 0%0) + G0 O] 0t Vere 5.

Relations (3.38), (3.39) together with Lemma 9 imply relations (3.2), (3.3).

B) Property a) is proved in Lemma 8.

C) Now we prove the uniqueness of the solution. As the problem is linear it
suffices to prove that the homogeneous problem

(3.40) j :D(S(t), w(®) d — ¢, f :(9@), W(1)) dt —
- czﬂ(div u(t), w(1)) dt + ﬁf:(s(t), WD)y dt = 0 Ve F,

(3.41) j:a(u(t), o)) dt — c4'[:(1't(t), o)) dt —

—¢3 J‘>T(3(t), divo(t))dt =0 YveZ,,
(3.42) u(0) = 0
has only the trivial solution 9() = 0, u(t) = 0.

Let us set

(3.43) &(1) = j ;s(f) dr,

let us choose s € I arbitrarily and let us define
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(3.44)

(3.45)

_,,
(=)

IA

IIA
“

i) = <f LR

0 if s<t£T,

‘ .
o) = <Lu(r) dr if 0Zt<s
0 if s<t<ZT.

It is evident that w e &, v,€ & ,.

According to (3.42)—(3.45), we have

(3.46)

(3.47)
(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

'[TD(S(t), wy(t)) dt = JSD(S(t), wy(f)) dt =
- j D), w0) dr = j " (et w) e -

= [t 90 0t = D) w85) = D(E0) w00) -

-~ [oten. ety o = - [[ i, .
f :(9(‘)’ W(1)) dt = ﬁ(é(t), &) dr = 3e(s)]3
f :(d” u(t), (1)) dt = — f:(div u(t), &(1)) dt ,

60wt = [ & e mi -

) f (&0 fo)edt = - ﬁ@m, HOIE

[Fatut. 00y ar = [ afos w0y as -
=3[t v at = = Jato0). 0000,

[t a0 = [0,y ot = 1ol

'[T(S(t), div vt)) dt = 4( (% (&(2), div v(1)) dt —

0
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- J. (&(1), div o,(r)) dt = — f (&(r), div u(r)) dt .
0 0

Let us set w = w, in (3.40) and v = v, in (3.41) and let us express the integrals
appearing in (3.40) and (3.41) by means of (3.46) —(3.52). Then let us add the resulting
relations up (for simplicity we assume ¢, = ¢; = 1). We obtain

(359 |/ oot o) + et oy an +

+ $a(0,(0), 00)) + deal[u(s)[5 + dese(s)]G = 0.
As s eI is arbitrary relations (3.53), (1.17) imply
[é@lo = [us)o =0 Vsel.

Thus (t) = 0, u(t) = 0 almost everywhere in I and the uniqueness of the solution
is proved.

D) The fact that the sequences {U,}, {©,} can be arbitrary follows from the uni-
queness of the solution. Theorem 5 is proved.

4. THREE SPECIAL (DEGENERATE) CASES

Problem (1.1)—(1.14) includes formally three special (or degenerate) cases. We
obtain them if we set ¢; = 0, or ¢, = 0, or ¢; = ¢, = 0. In the case ¢; = 0 we do
not prescribe initial condition (1.7) and in the case ¢, = 0 initial conditions (1.8),
(1.9) are substituted by the initial condition

(4.1) (div u) (x4, x2,0) = @(xq, x3), (x5, x2)€Q

where ¢(x,, x,) is a given function.

The physical meaning of the case ¢; = 0, ¢, > 0 is unknown; thus we shall not
discuss this situation. Problem (1.1)—(1.7), (4.1), (1.10)—(1.14) (when ¢, > O,
¢4 = 0) describes the quasistatical thermoeleasticity.

Problem (1.1)—(1.6), (4.1) (when ¢; = ¢, = 0) is one of the models of consolida-
tion of clay. In this case boundary condition (1.4) has a modificated form

(4-2) 89/6v = g(xl, xz,t), (xl,xz)erzs, t>0
and relation (1.10) is changed to
(4'3) 0ij = aij(u’ ‘9) = Dijim 6km(“) — 99;;.

Thus ¢; = 1. The function 3 has the meaning of pore water pressure in this case.
(For more detail, see [15].)

We call these three cases degenerate because it is impossible to repeat (or modify)
the considerations from Sections 1 and 2. The reason is simple: Considerations intro-
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duced in Section 1 are based on the assumption that there exist functions S° e H?,
R® € H which satisfy (1.27) and (1.28). In the case ¢, = ¢, = 0 we must substitute
this assumption by the following one: There exist functions 9, € W, u, e V2, U™ ! e V2,
where U~ ! depends on 4t,, such that

(4.4 divuy, = ¢,
(4.5) D(90, W) + 2467 (div (g — U™1), w) = Go(w) Ywe W,
(4.6) afug, v) — (90, div v) = Fo(v) VYve V?

where Go(w) = (Q(0), w) + (¢(0), w)s and Fo(v) is the same as in (1.28). There is no
reasonable physical situation where these conditions can be satisfied. (Even in the
simplest and most frequent case ¢ = 0, which expresses the assumption that the
pore water is incompressible, we are not able to succeed: we can set u, = 0; then
assuming (2.4), we obtain from (4.6)

(4.7) grad 9, = f(0) in HZ2.

Requirement (4.7) restricts essentially the choice of f. For example, as $, € W the
quite natural datum f(x, 1) = const. is eliminated.)

In the case ¢; > 0, ¢, = 0 assumptions (1.27), (1.28) must be substituted by the
following assumption: There exist functions R® € H, uye V2, U~ € V2, where U ™!
depends on 4t,, such that relations (4.4), (4.6) and

(4.8) ¢;(R% w) + D(36, w) + 04t '(div (ug — U™Y), w) =
= (Q(0), w) + (9(0),w) VweW

are satisfied. In this case 9, € Wis a given function appearing in the initial condition
(1.7). Requirements (4.4), (4.6), (4.8) again essentially restrict the choice of data.

On the contrary, the weaker variational formulation is quite appropriate for the
cases ¢; = ¢4, = 0 and ¢; > 0, ¢, = 0 and all considerations from Section 3 can be
easily modified. We mention here briefly the case ¢; = ¢, = 0.

We restrict our considerations to functions ¢ with the following property: To
a given ¢ € H there exists such a vector u, € V> n [W3(Q)]* that condition (4.4)
is satisfied. (In the case ¢ = 0, which is most important for applications, we can set
uy =0.)

Inspecting the proofs from Section 3 we see that we can prove the following

result: Let ¢; = ¢, = 0, let mes I'y, > 0, mes I';g > 0 and let the assumptions of
Lemma 8 be satisfied. Then the solution of PC - 2 exists and is unique and we have

U, —uin Ly(I; V), 8,9 in Ly(I; W)

where u, 9 is the solution of PC-2 and {U,} and {®,} are arbitrary sequences of
functions (3.13) and (3.14), respectively, which are generated by the unique solution
of PD - 3.
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Let us note that the variational problem considered in [15] is a special case of
the problem from Definition 2.
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Souhrn

ANALYZA PRIBLIZNYCH RESENi SDRUZENE DYNAMICKE
TERMOELASTICITY A PRIBUZNYCH PROBLEMU

JozeF KAGUR a ALEXANDER ZENISEK
V ¢lanku jsou studovany otazky existence a jednoznad&nosti feSeni riznych variaénich formu-

laci sdruzeného problému dynamické termoelasticity a konvergence ptibliznych FeSeni téchto
problému.
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V &asti 1 je definovano semidiskrétni priblizné feSeni, které je ziskdno Casovou diskretizaci
variaéniho problému z definice 1 pomoci Eulerovy zpétné formule. Za pfedpokladu, Ze data
jsou dostateéné hladka (viz (1.21)—(1.24) a (1.27), (1.28)) je dokazana existence a jednoznanost
feSeni (véta 1) a rychlost konvergence O(4¢'/?) Rotheho funkci v prostoru C(I; W 1(2)) pro slozky
posunuti a v prostoru C(I; L,(£2)) pro teplotu (véta 2); regularnost feSeni je studovana ve vétach
1a3.

V ¢&asti 2 je definovano pln€ diskretizované feSeni variaéniho problému z definice 1 pomoci
Eulerovy zpétné formule a nejjednodusSich koneénych prvki. Konvergence tohoto priblizného
feSeni je dokazana ve vété 4.

V &asti 3 jsou na data poloZeny co moZna nejslabsi poZadavky. Tomu odpovida jina definice
variadniho FeSeni. Ve v&t€ 5 je dokazana existence a jednoznaénost tohoto ¥eSeni a konvergence
plné diskretizovaného reseni.

Pe3ome

AHAJIV3 MPUBJIVKEHHBIX PEIMEHUI COITPSDKEHHOM JIVMHAMUYECKOM
TEPMODJIACTUYHOCTU U POJICTBEHHBIX ITPOBJIEM

Jozer KACUR a ALEXANDER ZENSEK

B craThe M3yyaroTCA BONPOCHI CYLIECTBOBAHMS M €AMHCTBEHHOCTH DPEIIEHMI pa3iIMYHbIX Bapua-
LIHOHHBIX (POPMYJIMPOBOK CONPSKEHHON NMPOOIEMBI TUHAMHYECKOM TEPMOITACTUYHOCTH U CXOIH-
MOCTB TIPHOIMKEHHBIX PEIIEHUIA STHX IIPOOIEM.

B uactu 1 onpeneneno nosiy JuckpeTHoOe NprHOIMKEHHOS PeleH)e, KOTOPOe MOJIy4eHO BPEMEHHOM
JUCKpeTH3alneil BapualMoOHHOM Mpo0bieMbl W3 onpeaesienus | mpu omonm oopaTHO GopMyIIbl
Oitnepa. I1pu npeanosoxeHnn, YTo JaHHbIE 4OCTaTOYHO raaku (em. (1.21)—(1.24) u (1.27), (1.28),
OKa3aHbl CyIICCTBOBAHWE M €IMHCTBEHHOCTh pelieHus (Teopema 1) M CKOPOCTH CXOIMMOCTH
O(At” 2) dbynkumit Pors B npocrpanctee C(I; W. 5(!2)) JTS KOMIIOHEHT CMEIIIEHU U B IPOCTPAHCTBE
C(I; Ly(R2)) nns Temnepatypsl (TeopeMa 2). PeryIapHOCTH pellenuii u3y4yeHa B Teopemax 1 u 3.

B wactu 2 ompeaesieHO MOMHOCTBIO JAUCKPETH3UPOBAHHOE DELICHHE BapHALMOHHON mpoOsIEeMBI
u3 onpenesnenust 1 nmpu nomoniu oOpaTHoit Gopmy bt Ditiepa ¥ IPOCTEMIIUX KOHEYHBIX ITIEMEHTOB.
CXOIMMOCTB 3TOrO NpUbIMKESHHOTO PELICHUs 10Ka3aHa B TeopeMe 4.

B yacTu 3 Ha naHHble HAKIAABIBAIOTCH KaK MOXHO crabeiiine ycaoBus. 9TOMY COOTBETCTBYET
apyrasi GopMyJIMpoBKa BapHaMOHHOTO peilieHusi. B TeopeMe 5 Toxa3aHbl CyINECTBOBAHUE M €IMH-
CTBEHHOCTB 3TOTO PEUIeHHs M CXOJMMOCTDb HOJHOCTHIO AUCKPETH3HPOBAHHOTO PEIICHUSI.
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