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SVAZEK 29 (1984) APLIKACE MATEMATIKY CisLo 6

SUBSET SELECTION
OF THE LARGEST LOCATION PARAMETER BASED
ON L-ESTIMATES

JAROSLAV HuUSTY

(Received December 30, 1982)

Consider the problem of selecting a subset containing the largest of several loca-
tion parameters. A robust competitor to the classical Gupta’s selection rule based
on sample means (see [7]), namely a rule based on sample medians, was investigated
by Gupta and Singh ([8]). As a certain generalization of both, a rule based on the
L-estimates of location is proposed here. This rule is strongly monotone as well,
and minimax in the class of all selection rules which satisfy the P*-condition, the risk
being the expected subset size, provided the underlying density has monotone likeli-
hood ratio. The problem of fulfilling the P*-condition is solved explicitly only
asymptotically, under the asymptotic normality of the L-estimates used. However,
after replacing their asymptotic variance by its estimate given in [12], this solution
becomes fully distribution-free.

1. INTRODUCTION

Let 7,,...,m be k = 2 populations with distribution functions F(x — 6,), ...
e F(x = Ok), respectively, where F(x) is assumed to be absolutely continuous with
a density f(x). The populations 7, ..., m, thus differ only by the values 04, ..., 0,
of a location parameter 6, which are unknown. Denoting the population with the -
largest location parameter as the best one, our aim is to select a subset of {n, ... nk}
containing the best population. (If there are more than one population with the largest
location parameter, then any one of them is tagged as the best one.) The decision
(selection) is made on the basis of independent samples Xy, ..., X;, from 7, i =
= 1,..., k, all of the same sample size n. We denote the pooled sample space by
' = {x} = {(X11s ---» X1p» X215 -+ Xz)}. The action space 2 consists of 2* — 1
nonempty subsets & of {mny,...,m}. A selection (decision) rule is a measurable
function 6™ : Z*" x & — [0, 1] with the property

Y 6" (x,#)=1 forall xea*.

Sesdd
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6" (x, &) is the probability of selecting the subset & when x was observed. The
probability of including =; in the selected subset when having observed x,
pi(x) = Y 6"(x, &),
S nied

is the individual selection probability for 7;. As the risk, for the loss considered herein,
depends on 6™ only through the individual selection probabilities, we may regard
two rules with the same individual selection probabilities (for all x) as equivalent
and define the selection rule ™ as a measurable mapping from 2™*" into

[0,1] x ... x[o,1]:

-
k—times

Yx) = (PS(x), - (%)) -

Further, a nonrandomized selection rule may be equivalently defined by k (over-
lapping) subsets of Z*"; if (X4, ..., X,,) falls into the i-th subset, then z; is selected
into &. These subsets are often defined by means of some statistics ¥; = Y(X, ...
.-, X;,) with a distribution depending on 0, (i = 1, ..., k).

We introduce the following usual notations. 0 = (6, ..., Gk) is the vector of the
actual parameter values, Q = {0} the parameter space (k-dimensional Euclidean
space in our case). Yi1; £ ... £ Yy, are the ordered values of the used statistics
Yy, ..., ¥4, 0p7 = ... = Oyqthe ordered values 0y, ..., Oy, mpyy, - -, Ty the correspond-
ing populations and Yy, ..., Y, the corresponding statistics (so that Y;, comes
from mp;).

The selection of any subset & which contains the best population my; is called
a correct selection (CS). For the probability of correct selection we write P{CS/[y/", 8}.
We are interested only in rules with high probability of correct selection, namely
in rules ™ that satisfy the so called P*-condition

inf P{CS/W"), 0} = pP*,
0eQ

where P* is a preassigned fixed number, ]/k < P* < 1. The set of all selection rules
that satisfy the P*-condition is denoted by #4?. Among them, it is further desirable
to use only those selecting small subsets. Therefore, for the loss function (as in some
papers quoted below) we take the number of the selected populations, S = card &.
The risk of a selection rule /™ is then given by the expected subset size E(S/™, ).

2. GUPTA-TYPE RULE BASED ON L-ESTIMATES

A Gupta-type selection rule for the location parameter case using some statistics
Y, ..., Y, is defined as follows:

(1) select 7; iff Y, 2 Yy —d (i=1,...,k)
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where d = d(n) > 0 is a constant chosen as small as possible and so that the P*-con-
dition is satisfied. Gupta ([7]) proposed this rule for the normal means case with
sample means X; = Y;. As the sample mean is too sensitive to deviations from
normality, other, more robust rules have also been studied. Lately, Gupta and Singh
([8]) have investigated a rule based on sample medians. A rule y{” based on L-esti-
mates (linear combinations of order statistics) is suggested here. These statistics are
easy to compute and a special case of them, the trimmed mean, may be regarded
as a compromise between the sample mean, optimal for the normal distribution,
and the sample median, robust against deviations from normality. We obtain the
rule Y if we put

Vi=Li = .ZI’UX ilj1
=

into (1), where X ;47 < ... < Xyp,;is the ordered i-th sample. The coefficients 7, ..., 4,

are assumed to be generated by a weight function J(u) = 0,u €(0, 1), [ J(u)du = 1,
through the relation

n
The statistic L; has the distribution function G™(y — 2™ 6,), where i = J;
is supposed to be positive and i=1

Go(y) = n!J-...J}j(.ﬁ:l)‘..f(x,,) dx, ... dx, |

x;<..<xp
Aix;
I2jxjsy

and the corresponding density is g*’(y — 2(9,). Similarly as in (1.11) and (1.12)

of [7] we get

(2) P{CS/ A 0} = P{L(k) 2 Ly — (1/0} = g
=P{L\i)§L(k)+d’ I:I,,k—l/o}:

0

k—1
= | [HG"0 +d + 2005 = 0a)] () dy
It is clear from this expression that the minimum probability of CS is achieved
at any parameter point  with 0;; = 0, and that the minimal value of the constant
d ensuring the P*-condition is determined (at least theoretically) from the equation

o0

(3) P{CSIYL, iy = O} = J [G"(x + &))" g™(y)dy = P*.

-

As mentioned above, CS means the selection of ;. Generally, forany i (1 < i £ k)

© k
(4)  Plselect myfyi”, 0} = | [TIG"(y + d + A" — )] () dy

- r=1
r¥i
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is obtained in the same way as (2). It is now readily seen that " is strongly monotone,
i.e. P{select my/y/{”, 0} is nondecreasing in 0;; (when all other components of @
are fixed) and nonincreasing in ,;, r = i (when all other components of 0 are fixed),
foralli = 1, ..., k. Thus, according to Remark 4.2 in [11], y/{" is also monotone, i.c.

P{select mp, [y, 0} = P{select m,y/y/{", 6]
for all 1 i <r <k and 6 € Q. This, of course, entails also the unbiasedness
of y{™M:

P{select mpy[yi™, 0} = P{select mp,y/yy", 0}

foralll £i < kandfeQ.

3. MAXIMUM VALUE OF THE RISK

Using (4), we obtain for the risk of the rule y{":

k
(5) E(S/y(”, 0) = Y. P{select m;y[yi”, 0} =
i=1
k @O k
= .21 [nl Gy + d + A0y — 0p))] g™ (v) dy -
= - r=
r¥i

To investigate its behaviour, it is desirable that the density g"’(y — A”0) have
monotone likelihood ratio (MLR) in 0. This follows from the MLR-property of the
underlying density f(x — 0), provided the coefficients 4y, ..., 4, are such that all
coefficients between any two positive ones are again positive (see [10]). Then we
come to the following conclusions:

(i) The risk E(S/}”, 0) attains its maximum at any point  with f;; = 0y, and

max E(S[y{, 0) = E(SJUL, Oy = Op) = kP* .

This is proved in the same way as Theorem 1 (and Corrolary 1) in [7].
(ii) The rule y{” is minimax in the class 2§? with respect to the risk E(S/y/™, 0).
This is a direct consequence of Theorem 3.2 of [4].
(iii) It is clear from (i) that the maximum value of E(S[y/{", 6) can be diminished
only in some subset of Q. If we choose the subset

(6) C(y*) = {0eQ: 0y < Opy — ¥}

with some y* < 0, we get (see Theorem 1 and Corrolary 2 in [7])

™) max E(Sye”, 0) = E(SIYL, Oy = Opem1y = Oy ~ v*) =
0cC(y%)
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= J [G(y + d + 2™y~ g™(y) dy +

— w0

+ (k _ I)J [G(n)(y + d)]k—Z G(n)(y +d - Jm ')’*) g(n)(y) d_V .

The condition i
(®) max E(S[y{",0) =1 + ¢

0eC(v%)
with given y* > 0 and & > 0 can then be used for determining the sample size as the
smallest n for which (8) is fulfilled. C(y*) is sometimes called the preference zone for
the risk.

4. ASYMPTOTIC SOLUTION FOR KNOWN DISTRIBUTION

Once one can assume the knowledge of F(x) and has chosen some appropriate J (u),
it should be possible to find G™(y) (at least numerically for sufficiently many y)
and to evaluate the integrals in (3) and (7) (see the algorithm given in [5]). But this
seems to be rather laborious as one would have to do it for various n and d (and k).
Therefore we give an asymptotic solution of the problem of finding d and n according
to the requirements (3) and (8), respectively, analogous to that given in [2]. We shall
also investigate some asymptotic properties of the sequences {w‘;’};le of selection
rules of the same type. To be able to do this, we shall use the results of [ 13], especially
the asymptotic normality of L-estimates. We first list conditions on the functions

J(u) and F(x), some of which will have to be fulfilled:

(A) J(u)is bounded on (0, 1).

(B) J(u)is continuous a.e. F~'.

(C) J)=0forue(0,0)and ue(l — a, 1), where 0 < a < .
(D) j «? dF(x) < .

—

(E) limx[1 — F(x) + F(—x)] = 0 for some B > 0.

x— o0

The following theorem yields the asymptotic solution for d = d(n).

Theorem 1. Let P* € (1/k, 1) be given and for every n = 1, let d = d(n) be deter-
mined so that (3) holds. Let the conditions (A), (B), (D) or the conditions (A), (B),
(C), (E) be satisfied. Then

) d(n) = 6 o(J, F)yn~'2 + o(n=1/2)
as n — oo, where d is the solution of
(10) P* = Q,_,(27125,...,271%5)
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Q-1 is the distribution function of the (k — 1)-dimensional normal distribution
with zero means, unit variances and covariances %, and

(1) (. F) = j j JTF()] ILF()] [F(min (x, ) — F(x) F()] dx dy.

n
Proof. We put L;=) 4;X;;, where X,; = X;; — 0,, so that the variables
Jj=1

Xi;(i=1,...,kj=1,...,n)areiid. with the distribution function F(x) and also
Ly, ..., L, arei.i.d. From (3), we have

P* = P{n'"’[26*(J, F)] "' (L) — L) <
< d(n)n'2[20%(J, F)] "2 i =1, .k — 1} =
= H® (d(n) n'2[2 63(J, FY]712, ..., d(n) n''2[2 6*(J, F)]"2) = H® (a(n)) ,

say. According to the assumptions, the distribution functions H{®, converge to
Q-1 as n — oo (see Theorems 1 and 2 or Theorem 5 of [13]) and this convergence
is uniform in the argument since Q, _; is continuous. Hence for any > 0,

n= [Qk—l(“(")) - H}c"—)l(a("))‘ = le—l(a(”)) - P*‘

for n sufficiently large. The existence of the limit

lim Qk—l(a(n)) = P*
and (10) entail
(12) lim d(n) n1/2[2 o-z(J, F)]-I/Z — -5

n—o
which is equivalent to (9).
Using (9), we get the following selection rule for large n:
(13) select w; iff L; = Ly, — 8[0*(J, F)/n]'/?.

The values § are tabulated in [3], Table I, for k = 2(1) 10 (the entry ¢ of the table
must be ¢ = 1) and various P*. ¢?(J, F) is tabulated in [9] for the case of trimmed
means and F normal, double exponential, logistic and uniform.

If we wish the condition (8) with any prescribed & > 0 to be satisfied for large n,
the sequence {y{”} should possess the property of the so called risk consistency
with respect to the preference zones C(y*), p* > 0, i.e.

(14) . lim max E(S[y{, 0) = 1

n—w 0eC(y*)

for every y* > 0. This is ensured by the next theorem.
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Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then the sequence
{l//ﬁ')} is risk consistent with respect to the system of preference zones {C(y*), y* < 0}
with C(y*) given by (6).

Proof. Let L; have the same meaning as in the proof of Theorem 1. With regard
to d(n) - 0, A — 1, we get for any 8 € C(y*), i = 1, ...,k — 1 and n large enough

P{select my/y”, 0} < P{L,, = L, — d(n)/6} <
= P{E(i) 2 E(k) + Ay* —d(n)} < P{IE(«') - EE(i)I = (Ay* ~ d(”))/2 or
|Lgy = ELw| = (A™* — d(n))[2} < 8 Var L,[(A"y* — d(n))*.

So we have also
max P{select m;;;/y{"”, 0} < 8 Var L,[(A"y* — d(n))*

0C(r*)
and from lim Var L, = 0 (see Theorem 1 or 5 of [13])
n— oo
lim max P{select m;/y{, 0} =0, i=1,...k—1.

n->ow GeC(y*)
The rules are such that S = 1; hence

1 < lim sup max E(S[y{,0) <

n-= o 0eC(y¥)

k—1
<Y lim max P{select m;y/y{”, 0} +
i=1 n>ow 0eC(y*)

+ lim sup max P{select my,[y{”, 0} < 1
n— oo 0<C(y*)

and (14) is proved.

Let us mention that we do not need the MLR-property of g™(y — 1) for
the risk consistency of {y/{"}.

Under (14), for each ¢ > 0 and each y* > 0 we can find a natural n* such that for
every n = n* (8) is fulfilled. We shall denote by n*(y*, ¢) = n*(y*, &; ¥, ) the minimal
n* with this property; here ¥, stands for the whole sequence {y/{"}. Asymptotical

considerations about max E(S/y™, 0) can be connected either with & » 0 and y*
0C(3%)
fixed or y* — 0 and ¢ fixed. We shall treat the latter case first.

Lemma 1. Let the assumptions of Theorem 1 be satisfied, let ¢ < (0, kP* — 1)
be fixed and let g™(y — A0) have MLR in 0 (for all n) (cf. the remark at the
beginning of Section 3). Then n*(y*, &; Yy) is a nonincreasing function of y* and

(15) lim n*(y*, & ¢) = o0,

y*=0

so that the numbers {n*(y*, &), y* > 0} can be arranged in an increasing
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sequence {n,,}. If we choose for every n, a y such that n*(y™, &; ) = n,, then

(16) limy™ = 0.

m= oo

Proof. The obvious monotonicity of n*(y*, g) entails the existence of lim n*(y*, e).
y*-0
Assume this limit to be equal to n, < . Then there is y5 > 0 such that for every

y* < ys we have n*(y*, &) = no, i.e. 1+ &> max E(S/y{*,0). This maximum
0eC(y*)
is a function nondecreasing with y* N 0 and continuous according to (7). Hence

we get

1 + ¢ = lim max E(S/y{", 0) =
y*-+0 0eC(y*)

=k f[G("")(y + d(no))] " g"(y) dy = kP*,

a contradiction with the assumptions, and (15) is proved. Similarly, {y™} is a de-
creasing sequence and lim y™ > 0 would lead to a contradiction with the risk
comsistency of {y{}. ™%

Theorem 3. Let the assumptions of Lemma 1 be satisfied. Then
(17) (% 8 9) = (0h*)° a*(J, F) + o((7*)7?)
as y* — 0, where vy is the solution of »
(18) L+e=0Quy((6+9)27"% .., (6+7y)27") +
+ (k= 1)Qu_4(62712,..,6271% (5 — y) 2713
and 8, Q,_, are the same as in Theorem 1.

Proof. We choose a sequence {y"™} as in Lemma 1. According to (5) and (7) and
with the same notation as in the proof of Theorem 1 we have

max E(S/y{", 0) =

0eC(y(m))

P{Liy = Ly — d(ny)sr = 1, ..o ks 7 % if0py = Oy 1y = Opg — 7™} =

Ma-

]

1
k—1

=YP{L, - Ly=<dmn,),r=1,...k—1Lr+i Ly— L=<
i=1
< d(n,) — 2"y™} + P{L,, — Ly, < d(n,) + A", r = 1,..,k — 1}.

Each vector (n)/*[20%(J, F)]""* (L, — Lw), r=1,...kr+1i), i=1,...k,
has the same distribution function H{™), which tends to Q, _, (uniformly) for n,, — co.
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Simplifying the notation by putting
a(n,,) = n,/*[26*(J, F)]" ' d(n,,),
b,, 11,1”/2[2 a*(J, F)]~ 12 J{m) )
¢ = (n, — 1)"2[26%(J, F)]7 /2 Al D ptm) |

m

I

we can write with regard to the choice of y™

(k - l) HI((n—ml)(a(nm)’ M a(nm)’ a(nm) - bm) + HI(\'"-ZHI)(a("m) + bnn AR a(nm) + bm) é
<t +e<(k=1)H" "a(n, —1),...,a(n, — 1), a(n, — 1) = ¢,) +
+ H D(a(n, — 1) + ¢y ..oy an, — 1) + ¢,) -
The uniform convergence of H") to Q,_, yields
(k = 1) Qu-s(a(my). . a(n,). aln,) — b,) +
+ Qk»l(a(nm) + bmﬂ A1 a(nm) + bm) é 1 + &+ kV] 5>
(k - 1) Qk—l(a(nm - l)a DR a(nm - 1)9
a(n,, — 1) — ¢,) + Ox—v(a(n,, — 1) + ¢, ..y a(n, — 1) + ¢,) > 1 + & — kn

for any n > 0 and n,, sufficiently large (i.e. for all m sufficiently large). Denoting
the function of two variables on the left hand sides of these inequalities by Q, we get

lim sup Q(a(n,), b,) =1+,
liminf Q(a(n,, — 1),¢,) = 1 + €.

Qy-: as a continuous distribution function is uniformly continuous, hence so is
also Q. Further Q is increasing in the first variable, and decreasing in the second
one when both have the same sign (this can be easily proved by using formula (1.3)
of [6] for Q,—, and differentiating Q with respect to the second variable). As {a(n,,)}
is convergent (see (12)), we may write

1 + & < Q(lim inf a(n,, — 1), limsup ¢,,) =
= Q(lim a(n,,), lim sup b,,) < Q(lim sup a(n,), liminf b,) £ 1 + ¢,

which entails the existence of lim b,, and

Q(lim a(n,,),limb,) =1 + ¢.
Comparing this with (12) and (18) and recalling that A" — 1 we obtain
lim n)/?y™[2 6*(J, F)]7 /% = y271/2,

m= oo
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The arbitrariness of the choice of the sequence {y"™} implies
(19) lim n*(y*, & ) - (%) = y* *(J, F)

y*=0
which is equivalent to (17).

Theorem 3 yields the asymptotic solution for n*(y*, & ). A combination of (19)
with (12) gives
llm d(n*(y* & W) y* = oy
or
d(n*(y*, 8 Y1) = &y*[y + o(y*) -

That is, if we use the selection rule
(20) select m; iff L; = Ly — &y*[y

with the sample size approximately determined by

(21) n =~ (y/y*)? 6*(J, F),
the P*-condition and the condition (8) are (under the assumptions of Theorem 3)
approximately satisfied for small y*.

Theorem 3 enables us also to determine the asymptotic relative efficiency (ARE)

of the rule y; with respect to Gupta’s means rule for y* — 0 and ¢ fixed, the ARE
of a rule , with respect to a rule ¥/, being in this case defined as

m n*(y*, & ¢,) _
ye-0 n¥(y%, &5 1,)

Theorem 4. Let the conditions (A), (B), (D) be satisfied, &€ (0, kP* —1) and
for all n let g"(y — 2™0) as well as the density of the sample means have MLR
in 0 (cf. the remark at the beginning of Section 3). Then the ARE of the rule Y,
relative to Gupta’s rule for y* — 0 and ¢ fixed is

_ o(F)
(22) e, o(F) = 20, P

(and hence does not depend on ), where ¢*(F) = o*(1, F) is the variance of the
distribution F.

For some numerical values of (22) see Table in [9].

The case ¢ — 0, y* fixed, is similar, though we do not get so detailed results. Let
us suppose that the assumptions of Theorem 1 are satisfied and the functions
g"(y—4™0) have MLR in 0. n*(y*, &; ) is obviously a monotone function of ¢, but
it may be bounded. For instance, if F and hence also G™ have a finite support [a, b]
and A™y* > b — a + d(n), it follows from (7) that max E(S/y{", ) = 1. Of course,

0eC(y*)
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n*(y*, & ) is unbounded when (7) is a strictly monotone functicn of y*. As the
boundedness of n*(y*, &; l//L) apparently implies that y* was chosen unnecessarily
large, this case is of no practical interest and we may assume

]]m "*(V*, &5 l//L) = 0,

=0
though we do not have a general boundary for y* like for ¢ in Lemma 1. We do not
get an analogue of Theorem 3, either. We may only argue that the approximate
equality (for small ¢)

max E(S[y 0", 0) ~ 1 + ¢
0eC(y*)

implies (see the proof of Theorem 3)

Q(2_1/25’ [ﬂ*('}'*, 8)/2 0,2(‘]’ F)]I/Z )‘("’(Y*,S))y*) ~1+c¢ S
hence
n*(v*, & ¥.) = (1(e)y*)* a*(J, F)

where y(g) is the solution of (18) for y. So we obtain practically the same solution
as in the case ¢ fixed, y* — 0 (see (20) and (21)). Also the ARE (defined here as

lim n—*(}i"‘s; .pl) s
>0 n¥(y*, 5 ,)

of the rule ¥, relative to the means rule does not depend on y* and is again equal
to (22). This is not true generally, for any two rules; cf. [1], formula (4.22).

5. ASYMPTOTIC SOLUTION FOR UNKNOWN DISTRIBUTION

As we have seen, even the asymptotic solution for d(n) and n*(y*, &; ¥,) depends
on the underlying distribution, namely, through ¢*(J, F). This disadvantage can be
avoided by replacing ¢*(J, F) by its estimate proposed by Sen in [12] (a suggestion
of J. Jureckovd in a personal communication). Then of course the question arises
whether and in what sense the asymptotic results remain valid.

According to Sen, one gets an estimate of ¢*(J, F) from the i-th sample X, ..., X,
by putting the corresponding empirical distribution function F{” into (11) instead
of F:

13

- f j JEFO(] STFO()] [F i (e, 1) — () ()] dx dy =

67 = o}(J, F") =

1 "il "il J <J—) J <£> [n.min(j, 1) = jI] (Xigj+ 17 — Xigyy) Kigpe 1 — Xign) -

n? =1 1/=1 n
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Being translation invariant, the variables 63, ..., 87 are identically and independently
distributed so that we may take

6*(J,F) = 65, =

k
Y, of
i=1

|-

for an estimate of ¢*(J, F). For its use to our purpose, the following property is of
great importance:

(F) &7 converges to o*(J, F) in probability as n — oo.

Sen in [12], Theorem 4.3, gives (rather unpleasant) conditions for the almost sure
convergence of his estimate to ¢*(J, F). In case that J(u) trims the extremes (condi-
tion (C)) the almost sure convergence and hence also (F) follows immediately from
the Glivenko theorem. (F) obviously implies the convergence of &, to o?(J, F) in
probability.

Let the sample size n be given. If we replace 6(J, F) by 6, in (13) we get the follow-
ing selection rule §/{":

(23) select 7, iff  L; = Ly — 8(85,[n)"/* .

The next theorem shows that it is really possible to use this rule (for large n).
Theorem 5. Let P* € (1/k, 1) be given and let & be the solution of (10). Let the

conditions (A), (B), (D), (F) or the conditions (A), (B), (C), (E) be fulfilled. Then

the sequence of selection rules {J/‘,f')} defined by (23) satisfies asymptotically the

P*-condition, i.e.
lim inf P{CS[{/{", 8} = P*.
n—>ow Qe
Proof. Using the notation of the proof of Theorem 1, we have
P{CSIYL’, 0} = P{Ly;) — Lyy = 8(67n/n) + 2(0pg — Op) »
i=1,...,k—1/0}.

As neither L; nor &, depend on 0, the infimum of P{CS/y/{", 6} over Q is achieved
for ;17 = Oy Thus we may write

inf P{CS/y{", 0} =
0cQ2

= P{[e(J, F)loty ]2 n'2[202(J, I (L — L) <2772,
i=1,..,k—1}.

The proof is completed with help of Cramér’s lemma recalling that ¢*(J, F)[6,,
tends to 1 in probability.
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A

Notice that for the case of given n we have a one-sample asymptotically distribu-
tion-free selection rule. This corresponds in a certain sense to Gupta’s one-sample
normal means rule under common unknown variances (see [7], Section 4).

If we also wish to control the expected size of the selected subset, we must use a two-
sample rule as we have first to estimate the needed sample size n*(y*, a) with help
of an estimate of ¢*(J, F). The procedure is as follows: We take samples X, ..., X,
of a sample size m from 7, i = 1, ..., k, and use them to estimate ¢*(J, F): 6*(J, F) =
= 67,,- We put this estimate into the approximate formula (21) to get the sample
size that ensures (asymptotically) (8):

(24) i~ (y/y*)2 6(2,,,) .

We put n = max (m, ﬁ) and, in the case n > m, take further samples X, 1, ..., X;y
from x;, i = 1,..., k. The decision is made according to (20), where the statistics
are computed from the pooled samples X, ..o, Xips -+ or Xine

Since the decision rule is the same as in the case of known G'Z(J, F), the only problem
that arises here is the question of the sense of the approximate equality in (24).

Theorem 6. Let the assumptions of Theorem 5 be satisfied and let g™(y — A™0)
have MLR in 0 for all n. Then

(25j n*(*y*, & ‘//L) = (V/)’*)Z Gimy + 01’((7*)72) for y* >0 and m - oo.
Proof. We may write
[n*(r* & 9) = (™) 660 (%) =
= s ) (7 — 7 0 F) + [ F) = 6] 7

where the first difference tends to zero for y* — 0 and the second one tends to zero
in probability for m — co.
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Souhrn

SELEKCE PODMNOZINY
S NEJVETSIM PARAMETREM POLOHY ZALOZENA NA L-ODHADECH

JArROsLAV HuUSTY

Uvazuje se problém selekce podmnoziny populaci obsahujici populaci s nejvétsim
parametrem polohy. JakoZto zobecnéni selekénich pravidel zaloZenych na vybéro-
vém priuméru a na vybé€rovém medidnu se navrhuje pravidio zaloZené na L-odhadu
polohy. Toto pravidlo je silné monotonni a minimaxové, vezmeme-li za rizikovou
funkci ofekdvany rozsah podmnoziny, a jestlize zdkladni hustota md monotdnni
vérohodnostni pomér. Problém splnéni P*-podminky je explicitné vyfeSen pouze
asymptoticky, jestlize uzité L-odhady jsou asymptoticky normdlni. Nicméné nahra-
dime-li jejich asymptoticky rozptyl odhadem, feSeni jiz nebude zdviset na distribuci.

Author’s address: RNDr. Jaroslav Husty, CSc., Matematicky ustav CSAYV, Zitna 25, 115 67
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