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SVAZEK 29 (1984) APLIKACE MATEMATIKY ČÍSLO 6 

SUBSET SELECTION 
OF THE LARGEST LOCATION PARAMETER BASED 

ON L-ESTIMATES 

JAROSLAV HUSTY 

(Received December 30, 1982) 

Consider the problem of selecting a subset containing the largest of several loca­
tion parameters. A robust competitor to the classical Gupta's selection rule based 
on sample means (see [7]), namely a rule based on sample medians, was investigated 
by Gupta and Singh ([8]). As a certain generalization of both, a rule based on the 
L-estimates of location is proposed here. This rule is strongly monotone as well, 
and minimax in the class of all selection rules which satisfy the P*-condition, the risk 
being the expected subset size, provided the underlying density has monotone likeli­
hood ratio. The problem of fulfilling the P*-condition is solved explicitly only 
asymptotically, under the asymptotic normality of the L-estimates used. However, 
after replacing their asymptotic variance by its estimate given in [12], this solution 
becomes fully distribution-free. 

1. INTRODUCTION 

Let nx,...,nk be k ^ 2 populations with distribution functions F(x — 0X), ... 
..., F(x — 6k), respectively, where F(x) is assumed to be absolutely continuous with 
a density f(x). The populations nx, ...,nk thus differ only by the values 6i, ..., 0k 

of a location parameter 0, which are unknown. Denoting the population with the 
largest location parameter as the best one, our aim is to select a subset of [nx, ... nk} 
containing the best population. (If there are more than one population with the largest 
location parameter, then any one of them is tagged as the best one.) The decision 
(selection) is made on the basis of independent samples Xn, ...,Xin from nh i = 
= 1,..., k, all of the same sample size n. We denote the pooled sample space by 
grkri _. r^j _. | ( x t ! , . . . , x l n , x 2 i , ..., xfcn)}. The action space srf consists of 2k — 1 
nonempty subsets Sf of [nt, ...,nk}. A selection (decision) rule is a measurable 

-* [0, 1] with the property 

£ ð("\x, íŕ) = 1 for all x e ЗCk 
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<5(n)(jc, Sf) is the probability of selecting the subset Sf when x was observed. The 
probability of including 7ri in the selected subset when having observed x, 

^(x)= I 5™(x,<?), 
y-.ineSP 

is the individual selection probability for %{. As the risk, for the loss considered herein, 
depends on 5{n) only through the individual selection probabilities, we may regard 
two rules with the same individual selection probabilities (for all x) as equivalent 
and define the selection rule \\j{n) as a measurable mapping from 3Skn into 
[ 0 , l ] x . . . x [ 0 , l ] ; 

k— times 

^\x) = (W(x),...,W(X)). 

Further, a nonrandomized selection rule may be equivalently defined by k (over­
lapping) subsets of 9Ckn\ if ( l n , ...,Xkn) falls into the i-th subset, then %{is selected 
into Sf. These subsets are often defined by means of some statistics Yt = Y(Xn, ... 
..., Xin) with a distribution depending on 0t (i = 1, . . . , k). 

We introduce the following usual notations. 0 = (0l9 ..., 6k) is the vector of the 
actual parameter values, Q = {0} the parameter space (k-dimensional Euclidean 
space in our case). Yll} :g ... ^ y[/c] are the ordered values of the used statistics 
y1? ..., Yk, #[]L] ^ ... ^ cj[/{] the ordered values 0l9 ..., 6k, 7rE1], ..., nm the correspond­
ing populations and Y(1), ...,Y(k) the corresponding statistics (so that Y(i) comes 
from 71^]). 

The selection of any subset Sf which contains the best population 7r[/c] is called 
a correct selection (CS). For the probability of correct selection we write P{CS/t/>(,7), 0}. 
We are interested only in rules with high probability of correct selection, namely 
in rules \jAn) that satisfy the so called P*-condition 

inf P{CS/i//(,l), 0} ^ P* , 
OeQ 

where P* is a preassigned fixed number, l/k < P* < 1. The set of all selection rules 
that satisfy the P*-condition is denoted by 0%{p}. Among them, it is further desirable 
to use only those selecting small subsets. Therefore, for the loss function (as in some 
papers quoted below) we take the number of the selected populations, S = card/^. 
The risk of a selection rule i//(n) is then given by the expected subset size E(S/t//(n), 0). 

2. GUPTA-TYPE RULE BASED ON L-ESTIMATES 

A Gupta-type selection rule for the location parameter case using some statistics 
y l5 . . . , Yk is defined as follows: 

(1) select nt iff 7, ^ Ym - d (i = 1, . . . , k) 
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where d = d(n) > 0 is a constant chosen as small as possible and so that the ^ - c o n ­
dition is satisfied. Gupta ([7]) proposed this rule for the normal means case with 
sample means Xt = Yt. As the sample mean is too sensitive to deviations from 
normality, other, more robust rules have also been studied. Lately, Gupta and Singh 
([8]) have investigated a rule based on sample medians. A rule ^L

M) based on L-esti~ 
mates (linear combinations of order statistics) is suggested here. These statistics are 
easy to compute and a special case of them, the trimmed mean, may be regarded 
as a compromise between the sample mean, optimal for the normal distribution, 
and the sample median, robust against deviations from normality. We obtain the 
rule i/!L

n) if we put 
n 

Yi = U = J] \ixnn 
1=i 

into (1), where Kf[1] < .. < Xm is the ordered i-th sample. The coefficients Xx,..., Xn 

are assumed to be generated by a weight function J(u) = 0, u e (0, 1), f<5 J(u) du = 1, 
through the relation 

A; - i J 
n \n + 1 

The statistic Lt has the distribution function G(n)(y - X{n) 0f), where ?Sn) = £ X} 

is supposed to be positive and i = 1 

c< •\y)=n\j... f j ( x j ) . . . j ( x „ ) d x 1 . . . d x „ , 

X! <...<Xn 
IЛjXj g y 

and the corresponding density is g{n\y - tf'%). Similarly as in ( l . l l ) and (1.12) 
of [7] we get 

(2) P{CSMk"),0} = P { L ( / i ) ^ L [ , ] - , / / » } = 

= P{Lv0 <Lm + d, i = 1,..., fc - 1 / 0} = 

[ nV ' f r + d + A«(0W - 0m))] «<">(y) dj. Í 
oo fc-1 

- on » = t 

It is clear from this expression that the minimum probability of CS is achieved 
at any parameter point 0 with 0 m = 0[jt] and that the minimal value of the constant 
d ensuring the P*-condition is determined (at least theoretically) from the equation 

f*co 

(3) P{CS/tf£>, em = 6m} = [G<">(* + d)]"-1 g("\y) dy = P* . 
J — oo 

As mentioned above, CS means the selection of nlkV Generally, for any i (1 g i <; k) 

(4) P{select nm\^\e} = [YlG(nЬ + d + Я ( И )(öco - <W)] ð ( п )W dy 
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is obtained in the same way as (2). It is now readily seen that ^ is strongly monotone, 
i.e. P{select nm\\\j{£\ 0} is nondecreasing in 0[rj (when all other components of 0 
are fixed) and nonincreasing in 0[r], r =j= i (when all other components of 0 are fixed), 
for all i = 1, ..., k. Thus, according to Remark 4.2 in [11], i//^} is also monotone, i.e. 

P{select nirl\itf\ 0} ^ P{select nm\^\ Q} 

for all 1 <; i < r ^ k and 0 e Q. This, of course, entails also the unbiasedness 

o f *£">: 
P{select TTr /̂i//̂ 0, 0} ^ P(select nvq\^

{l\ 0} 

for all 1 < i < k and 0 e Q. 

3. MAXIMUM VALUE OF THE RISK 

Using (4), we obtain for the risk of the rule t//L
n): 

(5) E(SW\ 6) = i P{select nMj^\ 6} = 

= 1 [ П G<">0 + á + A<">(0W - Øм))] gM(y) åy . 
-oo r = 1 

r Ф І 

To investigate its behaviour, it is desirable that the density g{n)(y — X{n)8) have 
monotone likelihood ratio (MLR) in 6. This follows from the MLR-property of the 
underlying density f(x — 6), provided the coefficients A-, ..., Xn are such that all 
coefficients between any two positive ones are again positive (see [10]). Then we 
come to the following conclusions: 

(i) The risk E(S\{\J^\ 0) attains its maximum at any point 0 with 6lu = 6m, and 

max E(Sji^\ 0) = E(S]i^{n\ 0 m = 0W) = kP* . 

This is proved in the same way as Theorem 1 (and Corrolary 1) in [7]. 

(ii) The rule ^L" } is minimax in the class 0$} with respect to the risk E(Sj\l/{n\ 0). 

This is a direct consequence of Theorem 3.2 of [4]. 

(iii) It is clear from (i) that the maximum value of E(S\I\J(L\ 0) can be diminished 

only in some subset of Q. If we choose the subset 

(6) C(y*) = {0ea-.elk_n<dm-y*} 

with some y* < 0, we get (see Theorem 1 and Corrolary 2 in [7]) 

(7) max E(S^\ 0) = E(S/̂ <">, 0 m = 6lk. n = 0m ~ y*) = 
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= r [Gin)(y + d + X("Y)Tl 9(n)(y)dy + 
J — 00 

/*00 

+ (k - 1) [Gw(y + d)J~2 G("\y + d - 1("' y*) g("\y) dv . 
J — 00 

The condition 

(8) max E(S/^°- 0) £ 1 + £ 
0eC(y*) 

with given y* > 0 and 8 > 0 can then be used for determining the sample size as the 
smallest n for which (8) is fulfilled. C(y*) is sometimes called the preference zone for 
the risk. 

4. ASYMPTOTIC SOLUTION FOR KNOWN DISTRIBUTION 

Once one can assume the knowledge of F(x) and has chosen some appropriate J(u), 
it should be possible to find G(n\y) (at least numerically for sufficiently many y) 
and to evaluate the integrals in (3) and (7) (see the algorithm given in [5]). But this 
seems to be rather laborious as one would have to do it for various n and d (and k). 
Therefore we give an asymptotic solution of the problem of finding d and n according 
to the requirements (3) and (8), respectively, analogous to that given in [2]. We shall 
also investigate some asymptotic properties of the sequences { I A L ^ ^ I °f selection 
rules of the same type. To be able to do this, we shall use the results of [13], especially 
the asymptotic normality of L-estiinates. We first list conditions on the functions 
J(u) and F(x), some of which will have to be fulfilled: 

(A) J(w) is bounded on (0, 1). 

(B) J(w) is continuous a.e. F_1. 

(C) J(u) = 0 for u e (0, a) and u e (1 — a, 1), where 0 < a < •£-. 

(D) x2 dF(x) < oo. 
J - oo 

(E) lim xfi[l - F(x) + F(-x)~] = 0 for some fi > 0. 
x-*oo 

The following theorem yields the asymptotic solution for d = d(n). 

Theorem 1. Let P* e (l/k, 1) be given and for every n = 1, let d = d(n) be deter­
mined so that (3) holds. Let the conditions (A), (B), (D) or the conditions (A), (B), 
(C), (E) be satisfied. Then 

(9) d(n) = 5 cr(J, F) n~112 + o(n~^2) 

as n -> oo, where 8 is the solution of 

(10) P* = e ,_ 1 (2- 1 / 2 (5 , . . ,2- 1 / 2
< 5) , 
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Qk-i is the distribution function of the (k — i)-dimensional normal distribution 
with zero means, unit variances and covariances \, and 

/•oo /*oo 

(11) a\J, F) = J [F(xj] J [F(y)l [F(min (x, y)) - F(x) F(y)] dx dy . 

J — 00 J — 00 

R 

Proof. We put Lt = £ kjXiin where Xu = Xtj — 6h so that the variables 

XtJ (i = 1 , . . . , k; j = 1, ..., n) are i.i.d. with the distribution function F(x) and also 
Ll9..., Lk are i.i.d. From (3), we have 

P* = P{n1'2[2a2(J,F)Y1'2(L{i)-L(k)) = 

f£ d(n) n1,2[2a\J, F)]'1'2, i = 1, . . . , k - 1} = 

=. Htl,(d(n) »1 /2[2 ^2(L f ) ] - 1 7 2 , . . - , d(n) n1'2^ a\J, E)]"1'2) = fl£>,(«(».)), 

say. According to the assumptions, the distribution functions H^x converge to 
Qfc_! as n -> oo (see Theorems 1 and 2 or Theorem 5 of [13]) and this convergence 
is uniform in the argument since Qfc_: is continuous. Hence for any n > 0, 

r, = |&- i (a(n)) - H ^ i W " ) ) ! = |fi--i(-<»)) ~ P*\ 

for n sufficiently large. The existence of the limit 

l ime t_ 1(a(n)) = P* 
/t-»O0 

and (10) entail 

(12) lim d(n) n1 /2[2 d2(J, F)]~1/2 = 2~1/2d , 
n-^oo 

which is equivalent to (9). 

Using (9), we get the following selection rule for large n: 

(13) select nt iff L£ = Lm - d\o2(J, F)/n]1/2 . 

The values 5 are tabulated in [3], Table I, for k = 2(1) 10 (the entry t of the table 
must be t = 1) and various P*. o2(J, F) is tabulated in [9] for the case of trimmed 
means and F normal, double exponential, logistic and uniform. 

If we wish the condition (8) with any prescribed e > 0 to be satisfied for large n, 
the sequence {xj/^} should possess the property of the so called risk consistency 
with respect to the preference zones C(y*), y* > 0, i.e. 

(14) lim max E(Sj^\ 0) = 1 
n-»oo OeC(y*) 

for every 7* > 0. This is ensured by the next theorem. 
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Theorem 2. Let the assumptions of Theorem 1 be fulfilled. Then the sequence 
{ij/L

n)} is risk consistent with respect to the system of preference zones {C(y*), y* < 0} 
with C(y*) given by (6). 

Proof . Let Lt have the same meaning as in the proof of Theorem 1. With regard 
to d(n) -» 0, A(n) -> 1, we get for any 0 e C(y*), i = 1,..., k — 1 and n large enough 

P{select nml^\ 0} ^ P{L(I) ^ L(fc) - d(n)/»} g 

^ P{L (0 ^ I(fc) + X(nY - d(n)} ^ P{|L (0 - EL (0 | ^ (A<V ~ d(w))/2 or 

|L(/c) - E I W | £ (l(n)y* - d(it))/2} £ 8 Var ^ / ( A ' V - J(n))2 . 

So we have also 

max P{select niQj^\ 0} ;g 8 Var Lx\(k
(n)y* - d(n))2 

0eC(y*) 

and from lim Var Lx = 0 (see Theorem 1 or 5 of [13]) 
n->oo 

lim max P{select n^jij/^, 0} = 0 , i = 1, . . . , k - 1 . 
/j->oo 0eC(y*) 

The rules are such that 5 ^ 1 ; hence 

1 g lim sup max E(5/^ n ) , 0) g 
H-»OO 0eC(y*) 

fc-1 

S £ l i m m a x ^{select 7in]/^in), 9} + 
i = l n->ao OeC(y*) 

+ lim sup max P{select nmj\l/L
n\ 0} g 1 

n-»oo 0eC(y*) 

and (14) is proved. 

Let us mention that we do not need the MLR-property of g(n)(y ~ X(n)d) for 
the risk consistency of {^L

n)}. 
Under (14), for each s > 0 and each y* > 0 we can find a natural n* such that for 

every n §; n* (8) is fulfilled. We shall denote by n*(y*, s) = n*(y*, e; i/̂ L) the minimal 
n* with this property; here \j/L stands for the whole sequence {^L

n)}. Asymptotical 
considerations about max E(S/t^(n), 0) can be connected either with e -> 0 and y* 

0eC(y*) 

fixed or y* ~> 0 and s fixed. We shall treat the latter case first. 

Lemma 1. Let the assumptions of Theorem 1 be satisfied, let s e (0, kP* — 1) 
be fixed and let g(n)(y — k(n)0) have MLR in 0 (/Or all n) (cf. the remark at the 
beginning of Section 3). Then n*(y*, s; \j/L) is a nonincreasing function of y* and 

(15) lim n*(y*, e; \j/L) = oo , 
y*-»0 

s0 that the numbers {n*(y*, e; \J/L), y* > 0} can be arranged in an increasing 
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sequence {nm}. If we choose for every nm a yW such that n*(y(m\ s; \j/L) — nm, then 

(16) l i m y ( m ) = : 0 . 
m-*oo 

Proof. The obvious monotonicity of n*(y*, g) entails the existence of lim n*(y*, e). 
y*->0 

Assume this limit to be equal to n0 < oo. Then there is y* > 0 such that for every 
y* g y* we have n*(y*, e) = n0, i.e. 1 + e >̂ max E(5/i/>^0>, 0). This maximum 

0eC(y*) 

is a function nondecreasing with y* \ 0 and continuous according to (7). Hence 
we get 

1 + s ^ lim max E(S/^ , o ) , 0) = 
y*->0 0eC(y*) 

= k [G<"°>(y + đXno))]"-1 a(лo)(y)d,> = fcP* 

a contradiction with the assumptions, and (15) is proved. Similarly, {y(m)} is a de­

creasing sequence and lim y(m) > 0 would lead to a contradiction with the risk 

consistency of {^n)}. m"*°° 

Theorem 3. Let the assumptions of Lemma 1 be satisfied. Then 

(17) n*(y*, s; * t ) = (y/y*)2 a 2 (J, f ) + o((y*y2) 

as y* -> 0, where y is the solution of 

(18) 1 + 6 = Q ^ + y ) 2 " 1 / 2 , . . . , ( . + y)2~ 1 / 2 ) + 

+ (fc-l)f2t-1(5 2- 1 / 2 , . . . , ( 5 2 - 1 / 2 , ( ^ - 7 ) 2 - 1 / 2 ) 

and 5, Qfc-i are */?e same as in Theorem 1. 

Proof. We choose a sequence {y(m)} as in Lemma 1. According to (5) and (7) and 

with the same notation as in the proof of Theorem 1 we have 

max E(S/^£Bm), 0) = 
0eC(y<"O) 

= £ P{L(i) ^ L(r) - d(nm), r = 1, . . . , k; r * i/0U] = . „ . „ = 0OT - y<">} = 
i = l 

fc-1 

= Z p{Ar) ~ A o = d(nm)> r = 1, . . . , fc - 1; r 4= i, I(fc) - I ( 0 ^ 
f = i 

^ d(nm) - A'""Vm)} + P{I ( r ) - £ w =_ 4« m ) + A<"»y-\ r = 1, ...,fc - 1} . 

Each vector (nm
/2[2 o2(J, E)]-1/2 (L ( r ) - Leo), r = 1, . . . , fc; r + i), i = 1, . . . , fc, 

has the same distribution function H{
k"™\, which tends to <2t_ t (uniformly) for nm -» oo. 
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Simplifying the notation by putting 

a(nm)=nH2[2o2(J,F)Y^d(nm), 

bm =n:j2[2o>(J,F)y^^/™\ 

cm = (nm - iy<2[2<T2(J,F)Yl<> A<"»-> r (M), 

we can write with regard to the choice of y(m) 

(k - 1) H£rl(a(nm)9...9 a(nm), a(nm) - bm) + H??l(a(nm) + bm9..., a(nm) + bm) = 

= 1 + a < (fc - 1) H ^ f 1}(a(nm - 1), ..., a(nm - 1), a(nm - 1) - cm) + 

+ H f r f X)(a(nm - 1) + cm , . . . , a(nm - l) + cm). 

The uniform convergence of H(
k"™l to Qk-\ yields 

(fc - 1) Qfc-iOK-O- ••-, fl(wm)» aK>) " fcm) + 

+ G k - i W O + &,».•••> «(wm) + bm) _S 1 + £ + kr\, 

( f c - l ) e * - i W » « - l ) , . . . , f l ( n m - 1), 

fl(w« ~ 1) ~ Cm) + e*_i(a(nm - 1) + cm, ..., a(nm - 1) + cm) > 1 + e - kr\ 

for any ?/ > 0 and nm sufficiently large (i.e. for all m sufficiently large). Denoting 
the function of two variables on the left hand sides of these inequalities by Q, we get 

lim sup Q(a(nm), bm) g 1 + e , 
m-> oo 

lim inf Q(a(nm - 1), cm) = 1 + e . 
m-*oo 

Qfc_! as a continuous distribution function is uniformly continuous, hence so is 
also Q. Further Q is increasing in the first variable, and decreasing in the second 
one when both have the same sign (this can be easily proved by using formula (1.3) 
of [6] for Qk-i and differentiating Q with respect to the second variable). As {a(nm)} 
is convergent (see (12)), we may write 

1 + e :g <2(lim inf a(nm — 1), lim sup cm) = 

= Q(lim a(nm), lim sup bm) ^ 6(lim sup a(nm), lim inf bm) g 1 + e , 

which entails the existence of lim bm and 
m -> oo 

g(lim a(nm), lim bm) = 1 + s . 

Comparing this with (12) and (18) and recalling that X("m) -> 1 we obtain 

lim nli2im\2 a2(J, F)]~1/2 = y 2~"2 . 
m-*oo 
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The arbitrariness of the choice of the sequence {y(m)} implies 

(19) lim n*(y*, e; fa). (y*)2 = y2 a2(J, F) , 
y*-*0 

which is equivalent to (17). 

Theorem 3 yields the asymptotic solution for n*(y*, e; \j/L). A combination of (19) 
with (12) gives 

lim d(n*(y*, e; \I/L))\y* = d\y 
y*-»0 

or 
d(n*(y*, e; i/,L)) = 5y*\y + o(y*). 

That is, if we use the selection rule 

(20) select nt iff L, ^ Lm - 5y*\y 

with the sample size approximately determined by 

(21) n » (yjy*)2 a2(J, F) , 

the P*-condition and the condition (8) are (under the assumptions of Theorem 3) 
approximately satisfied for small y*. 

Theorem 3 enables us also to determine the asymptotic relative efficiency (ARE) 
of the rule \j/L with respect to Gupta's means rule for y* -> 0 and e fixed, the ARE 
of a rule \j/2 with respect to a rule ij/1 being in this case defined as 

lim g!fe!iiili), 
7*->o n*(y*9 e; i//2) 

Theorem 4. Let the conditions (A), (B), (D) be satisfied, e e (0, kP* — 1) and 
for all n let g(n)(y — X(n)6) as well as the density of the sample means have MLR 
in 6 (cf. the remark at the beginning of Section 3). Then the ARE of the rule \j/L 

relative to Gupta's rule for 7* -» 0 and e fixed is 

<22> e-«=4B} 
(and hence does not depend on e), where ff2(F) = o"2(l, F) is the variance of the 
distribution F. 

For some numerical values of (22) see Table in [9]. 
The case e -> 0, y* fixed, is similar, though we do not get so detailed results. Let 

us suppose that the assumptions of Theorem 1 are satisfied and the functions 
g(n)(y — k(n)Q) have MLR in 6. n*(y*, ^; ij/L) is obviously a monotone function of e, but 
it may be bounded. For instance, if F and hence also G(n) have a finite support [a, b] 
and X(nY > b - a + d(n), it follows from (7) that max E(S/^in)

9 0) = 1. Of course, 
0eC(y*) 
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n*(y*9 g- xj/L) is unbounded when (7) is a strictly monotone function of y*. As the 
boundedness of n*(y*, e; ij/L) apparently implies that 7* was chosen unnecessarily 
large, this case is of no practical interest and we may assume 

lim rc*(y*, s; ij/L) = 00 , 
£~*0 

though we do not have a general boundary for 7* like for s in Lemma 1. We do not 
get an analogue of Theorem 3, either. We may only argue that the approximate 
equality (for small e) 

max E(S/^£"*(yV)), 0) « 1 + e 
0eC(y*) 

implies (see the proof of Theorem 3) 

2(2-1/2O\ [>*(y*, 8)/2 o-2(J, F)]1/2 A ( n * ( y V V) « 1 + s , 

hence 

n*(y*, s; <K) « (y(s)/y*)2 o-2(J, F) 

where y(e) is the solution of (18) for 7. So we obtain practically the same solution 
as in the case s fixed, y* -> 0 (see (20) and (21)). Also the ARE (defined here as 

l im " * ( ? * » ' ^ i ) , 
e-o w*(y*, e; »>2) 

of the rule \[/L relative to the means rule does not depend on 7* and is again equal 
to (22). This is not true generally, for any two rules; cf. [1], formula (4.22). 

5. ASYMPTOTIC SOLUTION FOR UNKNOWN DISTRIBUTION 

As we have seen, even the asymptotic solution for d(n) and n*(y*, e; \j/L) depends 
on the underlying distribution, namely, through a2(J, F). This disadvantage can be 
avoided by replacing G2(J, F) by its estimate proposed by Sen in [12] (a suggestion 
of J. Jureckova in a personal communication). Then of course the question arises 
whether and in what sense the asymptotic results remain valid. 

According to Sen, one gets an estimate of a2(J, F) from the i-th sample XiU ..., Xin 

by putting the corresponding empirical distribution function F(/° into (11) instead 
of F: 

a2 = v2(j,F?)) = 
/•oo /*oo 

J p f X * ) ] J[Ff\y)] [ i f >(min (x, y)) - Ff\x) Ff(y)] dx dy = 
J — 00 J — 00 

= ~ "Z " l J Q J Q [« • min (j, I) - jl] (XiU+l, - Xim) (Xill+., - Xm). 

407 



Being translation invariant, the variables a2, . . . , a2 are identically and independently 
distributed so that we may take 

i k 

&2(J, F) = a2
n) = - £ a2 

for an estimate of o2(j, F). For its use to our purpose, the following property is of 
great importance: 

(F) Of converges to G2(J, F) in probability as n -> oo. 

Sen in [12], Theorem 4.3, gives (rather unpleasant) conditions for the almost sure 
convergence of his estimate to a2(J, F). In case that J(u) trims the extremes (condi­
tion (C)) the almost sure convergence and hence also (F) follows immediately from 
the Glivenko theorem. (F) obviously implies the convergence of a2

n) to cr2(J, F) in 
probability. 

Let the sample size n be given. If we replace o2(j, F) by 62
n) in (13) we get the follow­

ing selection rule $L
n): 

(23) select ni iff L{ ^ Lm - d(afn)jn)1/2 . 

The next theorem shows that it is really possible to use this rule (for large n). 

Theorem 5. Let P* e (l/k, 1) be given and let d be the solution of (10). Let the 
conditions (A), (B), (D), (F) or the conditions (A), (B), (C), (E) be fulfilled. Then 
the sequence of selection rules {xj/^} defined by (23) satisfies asymptotically the 
P*-condition, i.e. 

lim inf P{CS/iyyL"
), 0} -= P* . 

n-+cc OeQ 

Proof. Using the notation of the proof of Theorem 1, we have 

P{CS/#">,0} = P{L(i) ~ L(k) ^ d(a2
(n)ln) + A<»>(0ra - 0 [ ( ]), 

i = \,...,k - 1 / 0 } . 

As neither Lf nor d2
(n) depend on 0, the infimumof P{CS/^(

L"), 0} over Q is achieved 
for 0[j] = 0[*]. Thus we may write 

infP{CS/$">,0} = 
OeQ 

= P{[a2(J, F)\oln)Y>2 n^2[2 a2(J, F)]~^2 (L(i) - L(k)) S 2'^S , 

i = l , . . . , k - 1} . 

The proof is completed with help of Cramer's lemma recalling that o2(J, F)/#(n) 

tends to 1 in probability. 
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Notice that for the case of given n we have a one-sample asymptotically distribu­
tion-free selection rule. This corresponds in a certain sense to Gupta's one-sample 
normal means rule under common unknown variances (see [7], Section 4). 

If we also wish to control the expected size of the selected subset, we must use a two-
sample rule as we have first to estimate the needed sample size n*(y*9 s) with help 
of an estimate of O2(J, F). The procedure is as follows: We take samples Xn, ..., Xim 

of a sample size m from ni9i = 1, ..., k, and use them to estimate cr2(J, F): G2(J, F) = 
= G2

mY We put this estimate into the approximate formula (21) to get the sample 
size that ensures (asymptotically) (8): 

(24) n « (ľ/ľ*)2 
'(m) 

We put n = max (m, h) and, in the case n > m, take further samples Xim + U ..., Xin 

from ni9 i = 1, ..., fc. The decision is made according to (20), where the statistics 
are computed from the pooled samples XiU ..., Xim9 ..., Xin. 

Since the decision rule is the same as in the case of known o2(J9 F), the only problem 
that arises here is the question of the sense of the approximate equality in (24). 

Theorem 6. Let the assumptions of Theorem 5 be satisfied and let gin)(y — X(n)9) 
have MLR in 0 for all n. Then 

(25) n*(y*9 e; i/VL) = (yfr*)2 62
m) + oP((y*y2) for y* -> 0 and m -* co . 

Proof. We may write 

[n*(y*9 e; <//L) - (y\y*)2 <7(
2
m)] (y*)2 = 

= n*(y*9 e; </>L) . (?*)2 - y2 a2(J, F) + [G2(J, F) - a2
m)] y2 , 

where the first difference tends to zero for y* —> 0 and the second one tends to zero 
in probability for m ~> oo. 
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S o u h r n 

SELEKCE PODMNOŽINY 
S NEJVĚTŠÍM PARAMETREM POLOHY ZALOŽENÁ NA L-ODHADECH 

JAROSLAV HUSTÝ 

Uvažuje se problém selekce podmnožiny populací obsahující populaci s největším 
parametrem polohy. Jakožto zobecnění selekčních pravidel založených na výběro­
vém průměru a na výběrovém mediánu se navrhuje pravidlo založené na L-odhadu 
polohy. Toto pravidlo je silně monotónní a minimaxové, vezmeme-li za rizikovou 
funkci očekávaný rozsah podmnožiny, a jestliže základní hustota má monotónní 
věrohodnostní poměr. Problém splnění P*-podmínky je explicitně vyřešen pouze 
asymptoticky, jestliže užité L-odhady jsou asymptoticky normální. Nicméně nahra-
díme-li jejich asymptotický rozptyl odhadem, řešení již nebude záviset na distribuci. 

Author,s address: RNDr. Jaroslav Hustý, CSc, Matematický ústav ČSAV, Žitná 25, 115 67 
Praha 1. 
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