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SVAZEK 28 (1983) APLIKACE MATEMATIKY CisLo 6

THE FINITE ELEMENT SOLUTION OF SECOND ORDER ELLIPTIC
PROBLEMS WITH THE NEWTON BOUNDARY CONDITION

LiBorR CERMAK

(Received July 7, 1982)

The majority of elliptic model problems for which the convergence of the finite
element method has been analysed is restricted to homogeneous Dirichlet problems
(see e.g. [1], [2], [6], [10], [11]). There arc only a few exceptions when other
boundary conditions have been treated (see e.g. [8], [9], [12]). Zenidek [12] studied
the 2-nd order 2-dimensional elliptic problem with nonhomogeneous Dirichlet,
Neumann as well as Newton boundary conditions and analysed the convergence
in the H! norm.

In this paper the convergence in both the H' and L, norms for the 2-nd order
elliptic problem in the n-dimensional Euclidean space (n = 2) with the Newton
boundary condition is analysed. The discretisation is carricd out by means of
k-regular simplicial isoparametric finite elements (sce [1]. [2]). In Section 1 the
k-regular triangulation is introduced and some properties of the finite element space
are established. In S:ction 2 the problem and its approximate solution are defined
and in Szction 3 the convergence results are obtained.

The technique of proofs uszd in this paper is similar to that of Ciarlet and Raviart
[2] and Nedoma [5], [6].

1. CONSTRUCTION OF THE FINITE ELEMENT SPACE. NOTATION

We consider the k-regular family {K}, of simplicial isoparametric finite elements K
introduced by Ciarlet and Raviart [2]. First of all, we are given
Nic
(a) Aset Zy = {d; ) of N distinct points from R" such that its convex hull K is a

i=1
unit n-simplex.

(b) A finite dimensional svpace jf’K of functions defined on R with dith P, = Ny
such that £y is P-unisolvent. We suppose Py = C**'(K), Py > P,(1). Here
for any integers r =2 0, s = 1, F’,,.(r) is the space of all polynomials of degree <r
in s variables £, ..., %,.

Nic

(c) Aset Zx = U {a, «} of N distinct points from R".

i=1
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Then the simplicial finite element K € {K}, is the image of the set K through the unique
mapping Fy : K — R" which satisfies
Fye (pk)n > FK(di,K) =a;x Vdig < Sx-
We suppose
(d) For all h, the mapping Fy is a C**' — diffcomorphism and there exist constants

¢, i =0,...,k + 1, independent of h, such that for all h:

(t.1). sup max ‘D“ FK(J?)I <ch', 1<i<k+1,

feK |al=i

(1.2) 0 < coh" < |Ji(%)]

where o = (ay, ..., a,) (xl =0 + ... + a, and J(%) is the Jacobian of the

i)
N

mapping F, at the point X e K.

From (1.1) we immeadiately obtain
(1.3) [T (£)] < ehm,

where ¢ is a constant independent of k. Every clement K is associated with the finite
dimensional space Py{dim Py = Ny) of functions

(1'4) Py = ‘ka | K—->R, py = in(Flz])a Vg e pl\} .

The K-interpolate mu of a given function u : K — R is the unique function which
satisfies

(1.5) ngu € Py, mgu(a; ) = u(ang) Va;xeZg.
For a k-regular family {K}, of finitc elomeats the following interpolation theorem is

true (see Ciarlet and Raviart [2], Theorem 2, p. 429).

Lemma 1.1. (¢ he interpolation theorem). Let a k-regular family {K},, of simpli-
cial elements such that P,,(k) < Py be given. Then there exists a constant ¢ in-
dependent of h such that for any integers i,s with 0 £ i <s < k + 1, for any
K e{K}, and for any function u e W*?(K) with p = 1, ps > n, we have

(1.6) 'u - nxuli.p.,\» < ch"‘i||ul[s,,,.,(. O
We are using the usual notation:

W>2(A4) = {u | D*u e L(A), Vla| < s} is the Sobolev space with the norm defined
for,1 < p < o by

s 1/p
len = (8wt were o= ( 2 [ )™
i=0 lal=i ) 4 /
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and for p = o0 by

[o]s.0,4 = max |o]; 4 Where |o]; ., 4 = maxess sup [D* v(x)| .
0<iss A

laj=i xe
Evidently W7(4) = L,(A).
As usual we denote H(A) = W**(A), |4 = |*ls2.00 ||son = |]s.2,4- The
scalar product in the space H(4) is denoted by (-, ), 4.
Now we define the k-regular family {S}, of surface simplicial isoparametric finite
elements S induced by the family {K},. We introduce the notation % = (R -
cor Ryo1s &) = (&, %,). Let S be one of the n + 1 surface (n — 1)-simplexes of the
unit simplex K. Particularly, we will consider the simplex § = K n {%, = 0}. We
can suppose that d; € S for i = 1,..., Ns. If we denote d/ s = G/ 4, i = 1,...,Ng,

Ns
we define £5 = | {d/s}. Let us denote by Pg the restriction of Py to S. Evidently
i=1

Pg = C***(S), Ps o P,_(1). Further we denote by Fg the restriction of Fy to S,

so that F5(£') = Fx(%', 0) for £’ € S. Let us suppose that the set £ is Pg-unisolvent.

Then we define the surface simplicial finite element S as the image of the set S
Ns

through the mapping Fs. We define a; s = Fy(dis), Zs = U {a;s}. From (L.1) it
i=1

follows that for all A

(1.7) sup max |D"' FS()?')I Scehl, i=1,..,k+1,
X'eS |o’|=i
where o = (o;, ..., %), Ia’l =0+ ..+t
For £ € S we define the function
. ds(x)
1.8 Jo(%) =
(1) 9=

where dS(%) and dS’()?) are elements of the surfaces S and S, respectively. Evidently
dS$(%) = d&’. In the sequel we will denote J¢(%', 0) by J¢(%'). Since by the definition
of dS(%),

a(8) = (5 gt o e
we obtain o
(1.9) I) = (X (s o),
where J{"" are the cofactors of Jy. From (1.9) and (1.1) we get
(1.10) |Js(%)] < ch"?

for a constant ¢ independent of . Moreover, there exists a constant ¢ independent
of h such that

(1.11) ch" ™t < |J5(2)] -
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Let us prove (1.11). Suppose the contrary. Then for every ¢, > 0 there exist £, € S
and h,, > 0 such that |J4(%;,) LT As

T, zJ<'">(~ 0)° Kt(~ 0) and

k’( 0)‘ é Clhm

by (1.1), we have l.l,((.\“’, 0)| < neqe,hh,, which contradicts (1.2).

Every element S is associated with the finite dimensional space Py (dim Pg = Ns)
of functions

(1.12) Ps = {ps| ps = ps(Fs '), Vpse P} .

The only assumption we need in deriving the surface element S from the element K
is the assumption that the set L is Pg-unisolvent or, which is the same, that the
geometrical shape of the element S is completely determined by the set X.

The S-interpolate ngu of a given function u : S — R is the unique function which
satisfies

(1.13) nsu € Py, msu(a;s) = u(a;s) Va,seZs.

From (1.9}, (1.11) it follows that we can and will suppose

(1.14) ch"™ ' < |Jem(%,0)| -

We denote x = (x, ..., X,—1, X,) = (X', x,), Fs = (Fsys ..., Fsy—1, Fsy) = (Fg. Fs,).
Then J*" is the Jacobian of the mapping Fg. From (1.7) we get

(1.15) sup max |D“' Fy(%')| <
2'eS |a’| =i

We define S’ = Fy(S), J5(%') = J¢™(%,0). S’ is obviously the projection of S into

the hyperplane x, = 0. From (1.1) and (1.14) we obtain that there exists a constant ¢

independent of h such that

i=1,..,k+1.

(1.16) UL |IR)| S et €S

Ns
We denote a} 5 = Fy(d;s), Zs = U {ais}. We associate the element S’ with the finite
i=1

dimensional space P{(dim Pg = N) of functions

(117) P.’9={p:§|S,—)R) p.’?':pAS(Fé»l)a VﬁSEﬁs}-

From the definition of S’, Pg, X5 we deduce that S’ is the k-regular simplicial iso-
parametric finite element (in n — 1 dimensions). The S'-interpolate ngu of a given
function u : S’ — R is the unique function which satisfies

(1.18) ngu e Pg, mu(ajs)=u(ajs) VajseZs.

From Lemma 1.1 we immediately obtain
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Lemma 1.2 (the interpolation theorem). Let a k-regular family {S}4 of surface
simplicial elements such that P, _ (k) = Py be given. Then there exists a constant ¢
independent of h such that for any integers i,s with 0 < i < s <k + 1, for any
Se{S},and for any function ue W*"(S') with p = 1, ps > n — 1, we have

(1.19) 'U - ﬂ;"]i.p,S' . Chki”“”x.p,s' . a
We introduce the function

(1.20) Yo(x) = Fo(Fs '(x')), x'es’.
Differentiating (1.20) we get

a Wi n—1 o »)F o

W) 5 (e o o) ey, 1ot — 1,

0x; J=1 0%;

where J¢7 s the cofactor of Jg (for n = 2 we take J¢'''D = 1). Repeating the dif-
ferentiation and using (1.15), (1.16) we get

(1.21) sup max ‘D“' Us(x)| S e, i=1. L k+1,
x'eS’ |a'| =i
where the constant ¢ does not depend on h. From the definition of the function g
it follows that S = Yg(S").
For any function u defined on S we denote

(1.22) pett(x) = u(x', Ys(x)), x' €S’ .

From the definitions (1.13) and (1.18) of interpolants wgu and mgu and the definition
(1.20) of the function ys we easily obtain for any function u defined on S

(123) ' Ws(nsu) = ng‘(l//su) :

In addition, for n = 3 we introduce the k-regular family {H}, of simplicial iso-
parametric edgzs H induced by the family {S},,. We denote by H one of the n surface
(n — 2)-simplexes of the simplex S and by P,, £, F), the restrictions of Py, L, Fy
to H. We suppose that the set £, is Py-unisolvent. Then the simplicial edge H is
the image of the set A through the mapping F,. The projection H' of the edge H
into the hyperplane x, = 0 is obviously the k-regular surface simplicial element
(in n — 1 dimensions). If we define for &' € A the function
(1.24) Juey =9 (#)

dA(&')

where dH'(£') and dfl()?’) are elements of the edge H' and H, respectively, then
(1.25) ' IR IR S e, ReH,

with a constant ¢ independent of h (compare with (1.10), (1.11)).
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In the sequel, we mean by Q a boundzd domain in R" with a sufficicntly smooth
boundary I'. Following the usual definition of a smooth boundary, sce e.g. [3],
pp. 269 —270, we can suppose that there exist R coordinate systems {x"} = {(x/. ...
... x,)} such that every point of the boundary I' can be described at least in one of
this coordinate systems by an equation

(1.26a) : x, =@ (x"), x"ed".

Here x" = (x7,....,x,_;), 4" is an (n — l)-dimensicnal closed cube and ¢ is

a smooth function on 4". Following the way similar to that of Ciarlet and Raviart[2]

we define a k-regular triangulation 7, of Q. Let Q, be the union of a finite number

of simplicial efements K € {K},,. We denote by I', the boundary of Q,. We say that

a triangulation 7, of Q is k-regular if:

(d) The points a; x of all elements K € Q, belong to @, i.e. 2, € Q VK € Q,.

(b) The geometric shape of any surfaceelement S of any element K € Q,,is completely
determined by those points a; x which belong to S; this means that the surface
elements S of all elements K € Q, belong to a k-regular family {S}, of surface
simplicial isoparametric finite elements.

(c) The points a; g of ali elements S e I’ belong to I', ie. Zge I’ YSe I,

(d) For n = 3 the geometric shape of any edge H of any surface element Se I'; is
completely determined by those points a; ¢ which belong to H; this means that
the edges H of all surface elements S e I', belong to a k-regular family {H}, of
simplicial isoparametric edges.

Let us denote I = {x | x = (x", ¢"(x")), x" e 4}, I'T = {x | x = (x", x}), x" e 4",
x€S < Iy such that Zg n I = {0}}], see Fig. 1.1.

Tos xy=groemy [ xm = oMy

o
/<\

N
)(M/
N
n
AN
Fig. 1.1.
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We can suppose that every element S € I', belongs to any set I If S n I', + {0} we
denote by S” the projection of the element S into the hyperplane x;, = 0. Further
we denote I's = {x |xeI", x"€S"}, see Fig. 1.2. Due to the smoothness of the

‘IU
xm/

S X/I:, = '{1"'0("")

Vs X )

l
!
|
[
[
I
|
!
|
|
|
|

N I

TV X
s)fb .
Fig. 1.2

boundary I and to the assumption (c) in the definition of a k-regular triangulation
there exists a function " defined on 4" such that I'; can be described for all h suf-
ficiently small by the equation

(1.26b) X, = W(x"), x"ed,

see Fig. 1.1. Moreover, Y"(x"") = Y5(x"") tor x'* € 4", where 5 was defined by (1.20).
For a function u defined on I'" and I'; we denote

LU = u(x", @ (x"), xTed
and
pu(x7) = u(x", Y (x"), xTed,

respectively. If it does not lead to an ambiguity we will drop the index r.
A given k-regular triangulation 7, is associated with the finite dimensional space V,
of functions defined by

(1.27) V, = {v|ve H'(Q,), vxe Py, VK € Q,},

436



where vy is the restriction of the function v to the set K. From the definition of the
k-regular triangulation it follows that the functions from the space V, are Lipschitz
continuous in @, i.e. ve V, = ve C*'(Q,).
Next, with any function v defined on Q we may associate its unique interpolate v
which satisfies
o0 =g YK€ Q,.

Similarly, with any function v defined on I' we may associate its unique interpolate
nrv which satisfies
nv =mngv VSel,.

Let W*P(I') denote the Sobolev space of functions defined on the boundary I'
with the norm

R
”vHS.p.f = ( Z
r=1

V|8 p.ar)' P for p < oo,

orV|s,00,47 >

..... R

see Kufner [3], p. 327. As usual we denote H¥(I') = W*X(I), |*|sr = |*|s.2.r-
As Q,e %% (for the definition of domains of this type see e.g. Kufner [3], pp.
269—270), we can define spaces H(I',), i = 0, 1.
For functions v e H(S) and w e H(I',), i = 0, 1, we introduce the norms |v|; s =
= |yvlis and |w]|;r, = (X [4w]7s)"? respectively. We denote
Sel'y

(vs W)o.s = J wwdS, (v, W)or, = j owdly, .
N 'n

Let Q be a sufficiently smooth bounded domain containing Q and @, for all suf-
ficiently small h.

In our paper we will suppose that Py = ﬁ,,(k) so that Pg = P,,_l(k) and P, =
= P,_,(k). This restriction is not essential. It enables us to give simpler proofs.

Let v(x) be any function defined on the element K. Then the function v(F(%)) is
defined on K. We will denote it #(%). In an analogous way we denote d(%') = v(Fs(%’))
for a function v defined on S and (&) = v(Fg(%')) for a function v defined on S'.

In the sequel the constants independent of h will be denoted by ¢. The notation is
generic, i.e. ¢ will not denote the same constant at any two places.

Now we introduce some lemmas.

Lemma 1.3. Let a k-regular triangulation t, of the set Q be given. Let S be any
surface element belonging to I'y. Then for any integersi,swith0 < i <s <k + 1
and for any real p = 1 such that ps > n — 1 we have

(1.28) lo = Vips < e o5 -

The proof follows from Lemma 1.2 as § = ngo. O
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Wedenote by v = (v,, ..., v,)and v, = (v, ..., v,) the unit vectors of the outward
normals to the boundary I" and I, respectively. Then (see Fig. 1.2)

0 Y '
Vi = — V(Vj‘(/')’ (l + ’grad (p|2)* 1/2 N T ?}’,{ (1 + .graa" l/IIZ)—I/Z ,
Xj 0x; ‘ v
(1.29) =t n—1,
oVn = (1 + |grad (p|2)—1/2 , W = (J_ + lgrad ./,[2)71/2. -

From this definition and Lemma 1.3 we easily obtain

Lemma 1.4. Let a k-regular triangulation t, of the demain Q be given. Let S
be any surface element belonging to I',. Then for any integers i,s with 0 <
Si<s=k+ 1 and for any real p = 1 such that ps > n — | we have

(1.30) y

Vi = wiillops £ i s, J=1n. g

Lemma 1.5. (the trace theorem). Let Q € €***. Then for any function ve H'(Q,)
and for all h sufficiently small we have

(1.31) lolo,r = cllv]1 0 - /
The proof follows from the proof of Theorem 1.2, p. 15in [4]. O
Lemma 1.6. Let a k-regular triangulation t, of the domain Q be given. Then

for any function ve H(K) and we H(S') and for any integer i =0,...,k + 1
the following estimates are true:

Ch“;—n+i

(1.32) o] < oflik s
(1.33) o]k < eh™ o]k,
(1.34) [Blis < ch 2 DF o,
(1.35) [wlisr < eh*@ D710 s

Movreover, for i = 1 we can use semi-norms on the right hand sides of these ine-
qualities.

Proof. Incqualitics (1.32) and (1.34) follow from Lemma 1 in [2], p. 427. In-
equali{ies(l.33) and (!.35) can be proved using the method of Ciarlet, see Theorems
4.3.2 and 4.3.3 in [1] pp. 232—-241. 0

Lemma 1.7. (Friedrichs’ inequality). For any function ve H'(Q,) there exists
a constant ¢ (independent of h, v) such that

(1.36) ”0”0,9,. = C(IUII,Q,. + ”UHO,rh)-

The proof can be carried out similarly as in [7], pp. 201 —204. 17
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2. APPROXIMATE SOLUTION OFF THE ELLIPTIC PROBLEM

Let Q be a bounded domain in R" with a sufficiently smooth boundary I'. We study
the elliptic problem :

(2.1) —lu=f(x), xeQ,

Ov

where f(x), a(x), g(x) are sulficicntly smooth functions and

o0 d
) =L (ot 1),
10x; Ox;

ij=

(2.3) 9

n a
Y oag(x)— v;.
ov =1 0

0X;
We suppose that the functions a;(x) are sufficiently smooth and

(2.4) a;(x) = a;{x).
Concerning the differential operator [ we suppose that it is strongly elliptic, 1.¢. there

exists a constant ¢ > 0 such that

(2.5 Yoay(x)E; = ed & VxeQ, (&,...¢&)eR".
ij= i1

Concerning the function a(x) we assume that there exists a constant ¢ > 0 such that
(2.6) alx) 2 e>0 Vxel.

The variational formulation of the clliptic problem is:

Find a function y € H‘(S.?}. such that

(2.7 b(u, v) = d{v) Vve H(Q),
N\
where : b(u, vy = afu, v) + {(au, v r ,
n u O
(2.8) a(u,v) = ¥ (u,,. o, “’7) ,
it T 0x; 0x;/6.q

d(”) = (f’ Voo + ((la Vo,r -

It is well known that the problem (2.7) has a unique solution, which is sufficiently

smooth if all the data of the problem arc sufficienily smooth.
We extend the funciions a;{(x), f(x} to the larger domain @ so that the conditions
(2.4) and (2.5) arc again satisfied. In this way we obtain funciions 4,,(x), F(x). We

denote
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o a
(2.9) L=3 (mp%x)
(2.10) Loy am L,

ij= 0x;

Now we formulate the following discrete problem:
Find a function u,(x) € ¥} such that

(2.11) by(uy, v) = di(v) VveV,,
where by(uy, v) = ay(uy, v) + (Trau, v)o r, »
z du, 0Ov
(2.12) ay(up,v) = Y (A; 2, — ,
=1 ox; 0x;/o.0,

dy(v) = (£, v)o,0, + (7rd; v)o.r,, -
From the following lemma we deduce that there exists a unique solution of the

problem (2.11):

Lemma 2.1. The bilinear form b,(v, w) is uniformly V=elliptic, i.e. there exists
a constant ¢ (¢ > 0 and independent of h) such that
(2.13) by(v,v) = c|v]} o, VoEV,.

Proof. If we prove that there exists a constant ¢ > 0, independent of 4 and such
that
(2.14) mra(x) 2 ¢>0 Vxel,,

(2.13) follows immediately from (2.12), (2.5), (2.14) and (1.36). For an element Se T,
we get from (1.23) and (1.19)

q,a[s. = yMsa + ,,a’s, — yTs@ = yTga + ¢a|5' - n's(,,,a)

= ,msa + ,,,als, — mg(,a) < ymsa + fq,a — ng(q,a)lo,w,s, <
< ymsa + chl,ay s s
so that
w5 Z a5 = chllaf i r -
Using (2.6) we obtain (2.14) for all h sufficiently small. O

Remark 2.1. The condition (2.6) for a function a(x) can be weakened as follows:

(2.6a) a(x) =2 0 Vxel,
a(x)gc>0 Vxel'*<TI', measI'* £ 0.
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To prove the uniform V-ellipticity of the bilinear form b, we need the following
discrete form of Friedrichs’ inequality:

(2.15) loll1.00 = e(|o]1,0, + [oo.re) -

where I} = {x l x € S where g < I'*} and ¢ does not depend on / and v.

The proof of the inequality (2.15) for n = 2 follows from Zeni3ek’s paper [13],
see Theorem 1 and remarks to it; for n = 3 it will appear elsswhere. O

Since it is practically impossible to evaluate exactly integrals (-, *)o o, and (+, *)o.r,
it is necessary to take into account the approximate integration for their computation.
Following Ciarlet and Raviart [2], we could introduce the numerical isoparametric
integration on both “volume” and surface elements K and S and analyse the obtained
fully discrete problem similarly as Nedoma [6]. As it would be rather a technical
matter we omit the analysis of the numerical integration in this paper and in Remark
3.2 we introduce only the final results.

3. ERROR ESTIMATES

Let us suppose that the solution u(x) of the problem (2.1) belongs to H*() for an
integer s = 2. By the Calderon theorem there exists an extension U of the function u
onto & such that

@1 [Ulca < cfulse-

It is quite natural to take

(3.2) F=—LU.

Evidently F is an extension of the function f. Substituting (3.2) into (2.11) we gef
(33) by(uys v) = —(LU, )0 0, + (714, V)o,r, Vo€V,

* and from the Green theorem we obtain

(3.4) by(U = uy, v) = (iq + nraU — mpq, v) YveV,.
0y 0,

The equation (3.4) is the starting point for the estimate of the discretisation error
u — u,. Before coming to this estimate we give some lemmas.

Lemma 3.1. Let U € W' *(Q). Then
(3'5) “«’U - tltU“(’,p,S' = Cth“U”Looﬁ (meas S’)l/p :

Proof. Using the Cauchy inequality we obtain for p < oo
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U = 18 50 = [ 106, 9(<) = U6, T 6 =

= f ' l;é% u(x', é(x’)):r [o(x) — y(x)]Pdx’ < |(p - ;/;[{;M,S, [U[|,, meas S .

n

Hence and from (1.28) we get (3.5) for p < 0. (3.5) for p = oo is obtainzd similarly.

O

Lemma 3.2. Let 1, be a k-regular triangulation of the domain Q with 2(k + 1) >

> n. Let Ue H**3(Q) and 0U|év + aU = q on I'. Then there exists a constant ¢
(independent of h and U) such that

(3.6)

ou
5— + nralU — 7pq

< H[Ulrsn-
Vi

0,

Proof. For any element S € I', we have

(3.7) [Q[_] + nraU — nrq]
oLV

[ = ] - [ =]
9 1.
d (2

From (2. 3) 10) we infer

[)-15..-

3

=
=1

i

U
6__ + nral — mpq

v,

0,S

0,8’

<
0,5’

I!/\

MWM—JWWJ+WM‘Mm>

" ou ! ou
[ 2 Aivii }“ I: 2 iy "‘]
ylii=1 6.Xi olij=1 5x,~
][]
v 0x; 0 0% J0,00,57
oU
[A,-j 0‘} ’w"hj - w"jl’o,S'> '
[ Xi

Hence, from (3.5), the Sobolev lemma and (1.30) we get

oNg

oL OV o9 Illos
From the Sobolev lemma, (1.23), (1.19) and (3.5) we see that

(3.9) ; ”w[”raU] - [aU]”o s = ”v//”sA-//U - wAwU‘lo,S' +

+ oAU = 44,U0s < | (b4) = oAlo,s +

+ JoAfos [oU = wUlo.ws = ch**Y|palliss s [Ufis2,a - (

<
0,5’

0,5’

lyvaillo.s +

+

0,0,S"

(3.8) <

< ch(meas S')'/? ||U

|k+3,f§ .
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From (1.23) and (1.19) we conclude

lomra = odllos = [75(o0) = olos = h*gafisrs -
Substituting from (3.8), (3.9) and from the last inequality into (3.7), summing over

all elements S € I', and using the trace theorem we obtain

= Chk(HU”k+3,ﬁ + Hqu+1,I‘) = Chk|iU"k+3,ﬁ' a

0,I'n

0
u + nraU — mpq
Vi

Let us denote in the usual way

(3.10) [wl-1,r, = sup M

veHY(I'y) “U]|1,rh

Lemma 3.3. Let 1, be a k-regular triangulation of the domain Q with 2(k + 1) >
>n. Let Ue H**3(Q) and dU[dv + aU = q on I. Then there exists a constant ¢
(independent of h and U) such that

(3.11) S U s s

ou
— + nyaU — 7q
0 —1,In

Vi

Proof. We cover the boundary I" by the set {y"}X_; of mutually disjoint pieces
7" < I'" with sufficiently smooth boundaries dy". We denote by 6" the projection of y"
into the hyperplane x}, = 0, i.e. §" = {x”]l (x", ¢"(x") € 7"} Further, we denote

h}"-

R v
We see that I', = (J y;. Hence and from (1.21) we get for any function v e H'(I',)

r=1

"

ro__ 7
8 = {x

x"eS" where SeT}, and S" & + {0}}, 7 =

r=1

(3.12) |<5(—] + nralU — mpq, v)
0,I'n

Vi

(?E + nralU — nrq> vdy,',‘ =
¥

vy

j { l:@_U + nral — n,-q] - [Qg +aU — qjl o0 /(1 + |grad yr|?) dx”
1) s Lyl OV oL OV

ou oU
< Z o {W[a‘h] (ﬂr[ o :I} w0 /(1 + |grad W

plmraU] = ,[aU]||o5r +

R
:Z <
Z =

2)dx'" +

Y
0,007 f {[wrlll0,5,r -

+ cri{

yrltrd — ord

Similarly as in Lemma 3.2 we obtain the estimates

(3.13)

prlmraU] = [aU]llg 50 < ch**!

S AU s

!,/,r(l k+ 1,8,

lyrmra = ora

0,05
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If we prove the inequality

A [ o
o onr Lyr h o Vv

= ChHIHU”H:s,ﬂ

(3.14) 2dx"| £

urU|| 1,60 >

then (3.11) will follow from (3.12), (3.13), (3.14) and (3.10).

In the proof of the inequality (3.14) we drop the index r. Then using (2.3) and
(2.10) we get for S' €,

(3.15) J { [a_u] - [?g]} o1+ |grad y|?) dx’ =
s (ylLovs oL OV
=J‘ i { [Aij iU‘jI - [Aij 8_U:|} WVhi o0 V(1 + Igrad ‘Mz) dx’ +
s =1 ( 0x; 0 0x;

+ L jz"v_, {il w[Au g‘g] (4¥h; — ¢vj)} LV + ]grad '/’lz) dx’ .

s j=1 (i= i

From (3.5) and (1.21) we obtain

2 {Au‘@ - Au@g Wiyt /(1 + [grad y[?) dx| <
s =1 (yb 7 0x; o 0x;

i i,

(3.16)

< ch | Urs a(meas )12 [ ,0]lo.s -

Let us denote

(3.17) zi(x") = .Zl [Aii %’({I (x'), x'€d,, j=1,....n.

4

Then (3.15), (3.16) and (3.17) imply
J. { I:Qg:l - [a—U:I} w0/ (1 + |grad y|?) dx’
s Lyl OVa oL OV
< ch"“||U||k+3,ﬁs;$ (meas S')"2 ||,0o.s +
+ )
i=1

Since due to (1.21) and (1.31) (we choose v = 1) we have

(3.18) <

f (¥ = ov)) 25 90 /(1 + [grad y|?) dx’
On

(3.19)  meas§, < cmeasy, < cmeas I, < cmeas Q, < cmeas @ < ¢,

we obtain using the Cauchy inequality

(.20 X (maas S) [yolos < clyofon-
S’eon
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Then (3.]8) and (3.20) implies that to prove (3.14) it suffices to prove the inequality

(3.21)

j (Vi = ov5) 290 (1 + |grad y[?) dx'| < e MU |5 5 [u0] 160
on

j=1,..,n.

In proving (3.21) we restrict overselves to the case j < n (for j = n, (3.21) can be
proved similarly).
Let us denote

(322)  @(x') = (1 + |grad o(x')|*)"/?, ¥(x') = (1 + |grad y(x')?)"/2.

Then from (1.29) we obtain after simple calculations

(3.23) Whi — Vi = — Wy (— ¢ ¢—1> =
0x; Ox;
0 _ op .. _nclb g 0
— L W- v+ Loty e+ )Y L (Y- o)L (Y + o).

0x; 0x; i=1 0x; 0x;
Hence
(3.24) J' (yvaj — ov) 2j 0 /(1 + |grad w,z) dx’ =

s

=f {__a—. V—9)+ 9 A ?’)—,"i i(l//_ (p)ﬁ(l/, i q’)} 2, 0 .
s 0x; 0x; i=1 0x; 0x;

J

Let us first consider the case n = 2. For the end points ag < bg of the interval S’
we have ¢(ag) = Y(as), ¢(bs) = y(bg). Applying the integration by parts to the right
hand side of the equation (3.24) we obtain (we drop the index j and write " instead
of d/dx and x instead of x')

[ v mzv sy -
[0 =0+ U -+ oy 0@ 1) |
+ J‘s'(lﬁ — ) (z yv) dx —L,(‘/’ —o)[o(¢ + ¥y @ (® + ¥) Lz 0] dx =
= L(w — ¢)(z yv) dx - L(w —0)[¢'(¢ + ¥y & (D + ¥) Lz 0] dx.

Since by (1.28) and (3.22)

@ +y)y o (o + lp)wlnl,oc,s’ = C“‘P”z,m,s' sc,
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we get using the Cauchy inequality, (1.28) and (3.17)

O (RPN [T Y N X S I
s
< B Uy 5 a(meas S')2 o] s -

Summing over all elements S € §, and applying the Cauchy inequality and (3.19)
we see that we have proved (3.21) for n = 2.

To prove the inequality (3.21) for n > 2 we apply the Green theorem to the right
hand side of the inequality (3.24). Then we get

j ,('/’v"j — )z (1 + [grad y[?) dx’ =

=J [ - (p)vs,+§—"’q> 6+ ) Izvsl(l/, (p)——(tﬁ+(p):| L 0d(aS) +

J

(s(w—q))—(z ) dx’ -

-

J‘(l//_ ':_ aa [;‘P¢> Yo + %) 16_((p+n//)z“,,v]dx

whére vg = (vgy, ..., vs,_ 1) is the unit vector of the outward normal to the boundary
dS'. Similarly as in the proof of the inequality (3.21) for n = 2 we obtain

Y| -9 %(2, o) dx’ —

S’edn J 57
n—1 a (P . L
N -0Y 2o @) L@+ o)z x| <
s i=1 0x; | 0x; ox;
< ch* | Ulirs 0 [l0] 1,00 -
Therefore, to get (3.21) for n > 2 it suffices to prove the inequality
(3.25) Y [ red@s) s om0l n ol
S’edn J o5

where yg is the function defined on S’ by the equation
(3.26)

3l0) 0 d

R R A L R G R o | P
0x; Ox;  Ox;
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and where ds/0x; denotes the trace of the function dy[dx; on 0S’ and ¥y =
1+ Z(a.,bs/ax) )'/2. Obviously

(3:27) 3 waes)-3 ¥ J Vo dH' .

as S'eby H'edS"’

We divide the sum ). ) into thesum )} ? = ) over the boundary edges and the

S'edp H'edS’ H' H'eddp

1 B .
sum 3! =Y Y — %% over the remaining inside edges. Then we have
H' S’edn, H'edS’ H'

(3.28)]

5% | e

S’edép H'edS’

< Z’f Vs dH" +
7E

Let us denote |[v]ou = (fur > dH')""%, (0] 0,05, = (Jos, V> d(85,))"%, [v]|0.06 =
= (55 v* d(05))"/* and estimate the terms on the right hand side of the inequality
(3.28).

}:Bj ysdH'| .
.

H

1. The error estimate of the term |Y' [y ys dH'|. The integral [5. ys dH' over the
&
inside edge H' appears in the sum Y ' once as a contribution from the element S,
&

and for the second time as a contribution from the element S”. where H' = S’, n S__.
Therefore

(3.29) Z"[ ysdH' = ZLJ (s, + ys.)dH',
H Jgr H' )y

where Z’ denotes the sum over all inside edges H' € { U 85’ — 83,}. Since vs,; =
S’edn

= —vg_; and since the functions ¢, ¥, z; and ,v are continuous on §,, it follows
from (3.26) that

a B n—1 , ,
(3.30) sz (s, + vs_) dH' = z;f W= 0) 22 2, 001 vy 0 dH
H )y 0x; i=1
where

s, s 1
(331) o = <ax. +6x->((p+ w,)! <6x, ax>(q>+ e )t

1 1

The term ; can be rewritten in the form

;= Ws, _ s, (@ + ¥s) ' + a—l//ii+@ X
0x; 0x; 0x; 0x;

» Z <6lps_ 5'//s+> <5l//s~ n 5‘//s+) (@ + Vs,) t (® + ¥s ) ! (Ps, + ¥s) L.

X; 0x; 0x; 0x;
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Using (1.28) we obtain

s, _ Ws_
0x; 0x;

J

_ 6(//s+_£(g n %_&ps_ <
0x; 0x; 0x; 0x; -
é llp - <pll,oo,S+' + I'}b - (pll,oo,s—.’ é Chk .
Hence and from (1.28) we get
(3-32) lodlomn S ch*, i=1,...n—1.

Then from (3.30), (1.28), (3.17), (3.32) and from the Cauchy inequality we have

(.39 |3 f (35, + 15 AH| £ WU 5 (meas ) e
.

From (1.25), the trace theorem and (1.34) we conclude

(3.34) lyolls.n < b= 2|0]5.0 < ch"2[8] 35 < ch™ [yl s, -

If we take ,v = 1 then obviously

(3.35) meas H' < ch™ meas S, .

Substituting from (3.34) and (3.35) into (3.33) and using the Cauchy inequality,
(3.19) and (3.29) we get the ne=ded estimate:

(3.36)

le Vs dH" = CthHU||k+2,ﬂ ”.pvﬂl,«s;.-
a )y

2. The error estimate of the term |Y* [, ys dH'|.
£

From (3.26), (1.28), (3.17) and the Cauchy inequality we easily obtain

f Vs dH’|| < h U s 2.0 (meas H)'2 [yofo.n -
"
so that, using Cauchy’s inequality, we have

(3.37)

s f ysdH'l < I |U 5. (meas 36,17 [yo]o.zn, -
H’ H'

If we prove that there exists a constant ¢ independent of & such that

(3.38) [Wllo.2on < c|W|s.5, YweH(5,),

then from (3.37), (3.38) and (3.19) we have
ZBJ Vs dH/
H’ H'

and (3.25) follows from (3.28) and (3.36). So let us prove (3.38).

=< C,’lk+1|IU”k+2,fl “.,,0“1,5;.
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Let the edge H' < 85, see Fig. 3.1. Then there exists an element S’ € d, such that
H' < 3S’. Due to the smoothness of the boundary 80 we can choose the coordinate
system (X, ..., X,—3, X,—) = (x", X,-;) in such a way that the part 5* of the

|
| H; P Xy T O
|
1

) "
H, X

Fig. 3.1.

boundary dd containing 65 N S’ is described in this coordinate system by an equation
X,—1 = H(x") for x" € A*. We can and will suppose that if x' = (x", x,_,) € and
x" € A% then x,_, < §(x"), see Fig. 3.1. We construct the set {S;}!_, of elements S
with the following properties:

1) S, =5 .
2) Si€dy, i=1,...,1I; i
3) S;ed;

.4) Siand S;,, have a common “face” H; = Sin S, ,i=1,...,1 — 1;

I
5) NS; + {0}.
i=1

Let us denote by H; one of the “faces” of the element S; which can be described by
the equation x,_; = n(x”) for x" € Hj such that

0 "
0X; n(x )

i

sup

x"eHp"

Sc, i=1,...

n—2,

where Hj is the projection of the element H; into the hyperplane x,_; = 0. The
existence of such a face H; follows from the regularity assumptions (1.15), (1.16)
of the element S;.
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Further, we denote
S = {(" xa1) | ¥ € HY, n(x") < %,y £ 9(x")},
053 = (", %) | X" € Hpy 30y = ()}
see Fig. 3.1. Then it is possible to prove the inequalities
(3.39) [Wlome = ellwlowm + Plis)> i=1,.01,
(3.40) Wlo.ar = e(IWlossnr + ]1.0) 5
where Hy = H. The proof will be gtiven later.

If we denote by S} the set 6 U U S}, then (3.39) and (3.40) yields
i=1

13

[Wlom = e(lwlo.can + P¥]5m)

where we have uszd the fact that I does not depend on h (it follows from the regularity
property (1.16) of the elements S’). Summing over all elements H' € 35, we get

[Wlo.en = c([wllo,e5 + [w]1.5.) »
where we have used the regularity of the elements S’ again. Hence and from the trace
theorem the inequality (3.38) follows.
The proof of the inequality (3.39).

Let H;, A,_, be the images of H}, H,_, in the mapping F. It can be easily proved
that

1938, < e(|#]5,0, + W

Hence, from (1.25) and (1.34) we get

1s)

w6, < ch* 2|05,y < b 2(| 05,0, + [P1) <
< (| wle e + hlwlis)
which proves (3.39).
The proof of the inequality (3.40).
For every point x” € Hf we have

W, 1) = W, 9(x)) + j i

8(x") 0Xn—1

w(x", 7)dt.
Squaring, using Cauchy’s inequality and integrating over the set H} we obtain

J. w(x”, n(x")dx" < ¢ (j. wi(x", 9(x")) dx” +
Hp” Hp”

LCON ) 2
'[ I: w(x", ‘c)] dt
9(x") 0%, 4

+ I
Hy"

d) < o[ W20 + [¥200)-
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Since by our assumption ]grad ry(x”)l < ¢ Vx" € Hj, (3.40) follows from the last
two inequalities.
Then (3.38) is true and the lemma is proved. O

Remark 3.1. Let us consider the general Newton type boundary condition

g(u(x)) = q(x), xer,
where

g(v) = o + Y a,(x) D™
0V |e|=1

with functions a, and ¢ sufficiently smooth on I'. Let us denote

v

gi(v) = — + Y mra,Dv, q4v) =g .
v, la)=t

Then arguing similarly as in Lemmas 3.2, 3.3 we can prove that there exists a con-

stant ¢ (independent of h and w) such that the inequality

l9s(w) = aul|-ir < B | Wis38, i=0,1

holds for any function we H**3(() satisfying the boundary condition g(w) = g
on I. O

Lemma 3.4. Let 1, be a k-regular triangulation of the domain Q with 2(k +1) >
> n. Let Ye H¥Q) and 8Y|dv + aY =0 on I'. Then there exists a constant c
(independent of h and Y) such that

(3.41) < ch*02[Y] 2.

8_Y + nraY
a 0,I'n

Vi

The proof is similar to the proof of Lemma 3.2. Therefore we leave it to the
reader. O

Lemma 3.5. To every function Ye H'(Q) there exists a mollifier Y* € H'(Q) with
i = 1 such that

(3:42) |Y = Y5 < ch'™¥|Y]ia,
|Y"

<s=s1,

~

0
sa S ch'|Y]g, ISs<i.

The proof follows from Theorem 2 in [9], p. 93 and from the inequality (19) in
[10], p. 237.

Now we are able to formulate and to prove the main result of this paper, namely
the estimate of the discretization error u — u,, in the H' and L, norms.
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Theorem 3.1. Let u be the solution of the elliptic problem (2.1) with sufficiently
smooth functions f, a;;, a, q satisfying the conditions (2.4), (2.5) and (2.6). Let 1,
be a k-regular (2(k + l) > n) triangulation of the domain Q with sufficiently
smooth boundary T'. Then the discrete problem (2.11) has a unique solution u,
and there exists a constant ¢ (independenr of h and U) such that

(3.43) [u = usls .0n0, < ch*|ufiis0.

(3.44) u - upllo.0non < B s 3,0 -

Proof. The existence and uniqueness of the solution u, follows from the fact
that u,, is the solution of the linear system of equations with a positive definite matrix.

Let U be the extension of the function u introduced at the beginning of this section,
see (3.1). Let v € V. Then

(3.45) U= wlion=[U =00 + o= ulia.-

From (1.36) and (2.5), (2.6) we have

(346) [v — w0, < cllv = wlia, + o = wlor) < cbilv = wy v = u,).
Using (3.4), the continuity assumption, Cauchy’s inequality and (1.31) we get

by(v — up v — u,) = b(U — uy,, v —uy) + by(v — U, v — u,) <

c[
— + nraU — npq

§C<GU

ov,,

IIA

+ [0 = Ulia[o = w10, +
Vi

(QQ + npaU — npq, v — u,,)
0 0.In

+w~vmnw—Mh@§

+w—ﬂmow—mmw

0,y

Hence and from (3.45), (3.46) we obtain the abstract error estimate

w—wmmg4

ou
— + npaU — nipq
vy,

T inf U - v||1,9h).

0,l'n veVy
Choosing v = moU and using (1.6), (3.6) we immediately get
(3.47) U = w10, < ch*|U|xs3.8-

Hence and from (3.1) we get (3.43).

We prove now the inequality (3.44) by means of the technique similar to that used
by Ciarlet and Raviart [2] and Nedoma [6]. Let us denote

. U-u, for xeQ,,
0 for xe@ - Q,.

452



Let y be a solution of the homogeneous Newton problem
(3.48) —ly=z inQ,
% +ay=0 onl.
If I' is smooth enough then y € H*(Q) and
(3-49) 1¥]2.0 = el 2[00 = ¢[zo.a = €[] 0.0 -

Using the Calderon theorem we extend the function y from Q onto Q. In this way
we obtain a function Ye H*(Q) such that

1Y]28 < ¢fy]20-
Therefore, (3.49) implies

(3.50) [¥]2.2 = ¢lz]o.c.-

By simple calculation we get
(3.51) Iz[13.2. =j z(z + LY) dx —J zLYdx .
Q2,-Q Qn

Our aim is to bound both terms on the right hand side of the inequality (3.51) by
ch** 1| U||x+3.8]2]|0.0,- The Cauchy inequality and (3.50) give

(3.52)

[ v max] < telomeallona + [17lon o) 2

= CHZI)O,Qh-Q(HZ“O,Q;‘ + ” Y“z,gh) = C”ZHO.Q—QPI “ZHO,Q;x‘
Let the element K € Q, have a non empty intersection K* = K n (2, — Q) with the

set 2, — Q. For a point x = (x', x,) € K* we have

z(x) = z(x', x,) = z(x', Y(x')) + JW % z(x', 1) dr .

w(x)
Squaring and using Cauchy’s inequality we obtain

Xn 2
Z*(x) < ¢ (d,zz(x) + Y(x')| J [ﬁ 2(x', r)] dr) .
v LOT
Integrating over K* and using (1.28) we get

W(x")
Fliwse([ || Aan
s 1 g
) = o 2
+ J' J. n lll(x')lj |:—— z(x', r:\ dr dx, > <
5 1d o(x") v L0t

< oy = llo.ws(luzlts + [V = @lows 216 =
< o235 + [T k) -

N

dx" +

453



Summing over all elements K* and making use of (1.31) and (3.47) we see that
[213,00-0 < ch®**1|U|743,4- Hence and from (3.52) we have

[ z(z + LY) dx

Jo-Q

(3.53) < PO, alz]o 0 -

The Green theorem yields
(3.54) — f zZLYdx = a,(z, Y) — <z, g) = bz, Y) — <a_1[ + mray, z> .
o ovi/orn v, 0.In

Let Y" be the mollifier satisfying (3.42) with some i = k + 1. Then

(3.55) bi(z, Y) = by(z, Y = Y") + by(z, Y — noY") + by(z, mpY").

From (3.47), (3.42) and (3.50) we get

(3:56)  |bi(z. Y = Y| £ c|z]i.0, [ Y = Y100 £ B U0 | V]2 <
< el Ufiis.a 2]o.0, -

Similarly (3.47), (1.6), (3.42) and (3.50) yield

(3.57) bz, Y — moY")| < cf|z] 10, | Y = 70Y"]y 0, <

< D |Ulirsa [ Verr.0, = B Uaa [Y]20 <

< U ees 2] 0.0, -

(3-4), (3.11) and (3.10) give

(3.58) |b,(z, o Y")| = <

U
<é— + nraU — mpq, nQY")
v, 0,1

< U s 7Y, -
Using (1.23) we obtain for an element S € I,
(3.59) lymo Y15 = [ums¥']l1s = |76, ¥")]15 = l7s(o Y s =
= nv’Yh”I,S' + erh - ﬂ:?(th)“l,S’ :

Let % = [3(n +3)]. Then 2(x —1)>n—1, x — 1 <k + 1 and consequently
from (1.19) we have

”«)Yh - n-;(th)Hl,S’ = Chx—z‘byh”x*l,s’ .

Hence, from (3.59), the trace theorem, (3.42) and (3.50) we get

[mY" i, = X luma¥'[is < ¢ 3 ([, Y'[Ts + B2, Y31 5) <
Sel'y Sel'n

= |V + RO ) S [V + B2 Y2 ,) <

< o[ ¥]ia = cf2]5 .0, -
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This inequality together with (3.58) gives

(3.60) |b,,(z, nQY”)I =< ch"“”U“kH,,—2 HZ“O.Q" .
Applying the Cauchy inequality, (1.31), (3.41), (3.47) and (3.50) we obtain
(3.61) |<6—Y + nraY, z) < “ii_Y + maY|  zfor, £

v, 0, vy 0,

< ch®DRY]50]z]1 0, = VU5 0 2] 0.0

Then from (3.54), (3.55), (3.56), (3.57), (3.60) and (3.61) we get

(362) || strad s et lesalelos,

and (3.44) follows from (3.51), (3.53), (3.62) and (3.1). O

Remark 3.2. Let us use the isoparametric numerical integration, see [2], [6],
for approximate computation of the integrals (+, *)o x and (-, ')O,S appearing in the
forms by, d,, see (2.12). We obtain new forms By, D, and solve the problem

(3.63) By(U,, v) = D,(v) YveV,.

Let the quadrature formula on the reference set K be of degree dy = max 1,2k — 2)
and let the quadrature formula on the reference set S be of degree dg > 2k — 1 with
positive weights and with the Pg-unisolvent set of integration nodes. Then under

the hypotheses of Theorem 3.1 we have

(3.64) lu = Uil1 000, = ch*|uliis.es
(3.65) ”u - U,,”o,gngh < ch"“”u k3.0 -
We leave the proof of this assertion to the reader. - O

Remark 3.3. Starting from the results contained in Theorem 3.1 we can analyse
the parabolic problem

(3.66) p(x) %K +1w=f(x,1), xeQ, te(0,T],
t

Zl-l— alx)w = q(x, 1), xeQ, te(0,T],
v
w(x, 0) = wo(x), xeQ

and following Nedoma’s paper [6] we can obtain the optimal estimate of the dis-
cretisation error in the L, norm. O

Remark 3.4.1t is possible to discretize the problem (2.1) by means of k-regular
quadrilateral isoparametric finite elements (see e.g. [1], [2]) and to prove results
analogous to those given in Theorem 3.1. O
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Souhrn

RESENI ELIPTICKYCH PROBLEMU DRUHEHO RADU
S NEWTONOVOU OKRAJOVOU PODMINKOU
METODOU KONECNYCH PRVKU

LiBor CERMAK
V préci se analyzuje konvergence pfiblizného feseni eliptického problému druhého
fddu s Newtonovou okrajovou podminkou v n-rozmérné ohrani¢né oblasti (n = 2)

ziskaného metodou koneénych prvka. Pouzivaji se simplicidlni izoparametrické

elementy. Jsou dokdzdny odhady diskretizaéni chyby a to jak v H! tak i v L,
norme.
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