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SVAZEK 28 (1983) APLIKACE MATEMATIKY cisLo 3

IMPROVING THE CONVERGENCE OF ITERATIVE METHODS

JAN ZiTKO

(Received October 1, 1982)

1. INTRODUCTION. FORMULATION OF THE PROBLEM

In the paper [1] an acceleration of the convergence of a sequence {x,},~o, wWhich
is obtained from some convergent iterative process x,;; = Gx,, is investigated.
This process is used for solving an operator equation Ax = b in Hilbert space with
a linear operator A. For two iterations x, and x,_; the author constructs a new
element X, = x, — C,,(X,, - x,,_l) such that for the real constant c, the norm ||7,
= }‘b — AX,|| is minimized.

The aim of this paper it to present a general theoretical investigation of one class
of methods for acceleration of convergence. This class extends essentially the extra-
polation procedure presented in the paper [1]. The computational procedures which
have been developed for iterative solution of operator equations x = Tx + b on the
basis of this theoretical investigation do not require the explicit knowledge of the
spectrum or the spectral radius of the operator. T.

By C” we denote the complex linear space of all column vectors X = (xy, ..., X,)"
with complex components. The superscript T is used for transpose and H for con-
jugate and transpose. The vector ei(n) is the i-th column of the n x n identity matrix I
and

e(n) :_i efn)=(1,1,..., I)T.

i=1

If u,eC", i=1,2,.... s, then (ul, e us) is the matrix with columns u;. By R”"
we denote the real n-dimensional linear space. @(n) denotes the null vector in R"
or C".

Let X be a linear space with inner product (-, *). Let

T:X->X, H:X->X
be linear operators. We will consider the operator equation
(1) x=Tx+b
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and an iterative process
(2) Xp+1 = Txn + b >

where b is a fixed element of X. Starting from an x, € X, form the sequence {x,}s -0
according to the formula (2) and let this sequence be convergent with a limit x*.

Let I > 1, k, my, my, ..., m; be integers and let the inequalities
(3) m>m_;>..>m >my=0,
(4) k> m

be valid. The above presented notational conventions and relations are assumed to be
valid throughout this paper.

The problem to be considered in this paper is that of finding complex numbers
al, ..., o to satisfy

1
(5) S =1,
i=o
! 1
(6) HH(x* — Za(‘-")xk_ml,)H = min ||H(x* — ZB,.xk_m‘,){ ,
i=0 et fi=r
B=(fo....NT

1

where M = C'** is a set of all vectors satisfying the relation Y. B; = 1. (The norm
i=0

is defined by the inner product in a usual way.)

The operator H should be chosen in such a form that it is possible to evaluate
the expression in the norm. One special case is shown at the end of this paper.

We shall show that on the basis of certain assumptions there exists just one vector
a® = (af?, ..., af¥)Te C'*" whose components are solutions to the problem (5), (6)
and we shall give various formulas for the calculation of the o). Moreover, we shall
investigate some relations between the structure of the spectrum of T and the possi-
bilities of constructing the a®. The components of the vector «® will be called
coefficients of extrapolation.

In forthcoming papers we shall investigate the convergence of the coefficients
a® for k — oo. Moreover, we shall present special detailed extrapolation procedures

k

and show that the sequence {y,} constructed by the formula y, = Y afx,_,,. con-
i=0

verges faster to x* than the sequence {x,}. Some remarks concerning the calculation

are to be found at the end of this paper.

2. AUXILIARY THEOREMS
Let

Mkz(HO’:u19'-"ul)s HiEXa [ZO,...,I,
Ne = (vo, Vi, o0 vy), vi€X, i=0,..,s
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be two row vector with elements in X. By N, ® M, we denote the complex (s + 1) x
x (1 + 1) matrix of the form

(HO’ VO)s (/117 VO)’ ] (#t’ vO)
(0 1) (s 72, - (o w0) |

(10> vs)s (15 vs)s « - (1t V)
Further, we put

?) e = xt— = e,
(7) b = (Bo By, )T eCT,
(7) Hy = (e Moy oo Meomy) »
(77) Q=H.@®H,.
Let us observe that the vector a'*) is a minimizing vector of the function f,
®) S(Bos Br--.» 1) = bQib,

where the vector b = (B, ..., B;)" is to be found on the set M.
If A= (a;;); j=1,isann x n complex matrix then Re A and Im A are real n x n
matrices (Re a;;) and (Im a;;); j—; ., and A% isa 2n x 2n real matrix

Re A, —Im A
ImA, ReA/’
Lemma 1. Let vy, ..., v, be n linearly independent elements from X and let us put

Nl = (v17 V25 -ees V,,) s

NZ = (vl — V2, Vo — V3, Vo — vn) .

Then the following hold:
1) The elements
) Vi — Vo, Vp = Vi eey Vg — V,
are linearly independent.

2) The matrix N, ® N, is positive definite.
3) The matrix (N, ® N,)* is symmetric and positive definite.

4) The n x n matrix M
M= <N2 g’)
e(n)

is nonsingular.
5) The matrix M is nonsingular.
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Remark. The matrix N, @ N, is an (n — 1) x n matrix.
Proof. Let (y{, ..., 7,_;)" be an arbitrary vector from C"~* and put
(10) (61""’ 511)1- = KT(‘YI»"" Vn—1o — y':—l)T’
where K = (e,(n), e,(n) — ey(n), ..., e,_4(n) — e,_5(n), e,(n)) is a nonsingular

matrix. From the identity

n—1 n
‘ZIY;'(VL' - "i+1) = ZI(S,'V,',

from (10) and from the independence of vy, ..., v, it follows easily that the elements
(9) are linearly independent.

The statements of 2) and 3) are evident.

It is obvious that det M = det (N, ® N,), hence M is nonsingular.

Finally, let M®u = @(2n), where

u
u:( 1 €R2"
U2

with uy, u, € R". Then the vector v = u; + iu, € C" solves the equation Mv = O(n)
and conversely, if v solves the latter equation, then u solves the former one. But M
is nonsingular and therefore M* is nonsingular.

Theorem 1. Let vy, ..., v, be linearly independent elements in X. We put
A=) ® (s oo V)
Let us define for every vector x = (94, ..., 9,)" € C" the function f:

(11) £(94. .. 8,) = xMAx.
Finally, we define the set M :

Mo={(3,,..,9) ecC

S+ ...+ 9,=1}.

Then
1) there exists one and only one vector z = (Cl, e C,,)T € M such that

f(Cls"'aCn): min f(nl""’nn)'

115 sm) Tett

2) For the vector z from 1) we have the formula
(12) z=(e(n)" A 'e(n) ' A e(n).
3) If we denote
\ A= (v = Vo Vg = ) @ (Viseeos V)
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and

()

then the matrix A, is nonsingular and the vector z from 1) which minimizes the
Sfunction f is the solution of the equation

(129 Az =efn).
P]’OOf. PUt B = A(*)s éi = Re 91’3 §i+n = Im ‘91'9 u= (é]’ ey 611)1-9 v = (én+1’ e

cews Eoy)7, Where (94, ..., 3,)T € C" is an arbitrary element. From (11) we obtain

(13) (31 8,) = (4T, V) B (:‘) = F(&1, o Ea),
where :) € R?" and (uT, v7) is evidently its transpose.

Let g4, g, be two real functions of 2n real variables defined by the relations
gl(éjl, ...,62,,) =& + ...+ ¢, -1
92(51, ey 52") =Cppr + oo+ &y
Let 4" be the set of all vectors (¢4, ..., fz,,)T € R?" which satisfy the conditions
(14) 91(C1s s €20) = 0,
(14) 9o s &) = 0.

We have obtained an equivalent problem, i.e., to find a minimum of the function F
on the set A". Using the well known theorem from analysis, we first solve the system

of equations

5

6F(11) + 1 agl(zl) r agz(zl) -0
aéj aéj aii

(16) g:(z)) =0, gy(z)=0

(15)

for j = 1,..., 2n, where we have put z, = (£, &,, ..., &), or equivalently
(17) By + 11 (€ 4 2 (O _ g2,
2 \O9(n) 2 \e(n)
e(n)T (éla LR} én)T = 1 ) e(n)T (én*‘l’ L] 521})“‘ = 0 ’

where r; and r, are multiplicators. Substituting here A = ir, + iir, and z =
= ({y, ..., ()7, where {; = &; + i&;,,, we obtain from (17) an equivalent form

of the equations (17), i.e.
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(18) Az + ). e(n) = O(n),
(18" en)Tz=1.
The system (18), (18') has a unique solution
-1
(19) = —(e(mT AT e(m)t; z= A )

T e(n) A le(n)

which implies that the system (15)and (16) or (17) has a unique solution. Since the
quadratic form

2n 2 a2 2
Z (6 F(11) + ry g gl(fl) + ra a gZ(Zl)) Tjrm = YT BY ]
Jjom=1 aé} afm aé} aCm 661 aém
where y = (14, ..., T5,)' € R?", is positive definite, it follows that z, is the minimum

of the function F on " or equivalently z' is the unique minimum of the function
fon /.

By successive elimination of A in the system (18) and by omitting the last equation
we obtain together with (18’) directly the system (12'). The regularity of A, follows
immediately from Lemma 1. []

3. CONSTRUCTION OF THE NUMBERS o

Let {u,};%~o = X. The notation 6;;u; and éu, will be used for differences
(20) Ol = Uy, = U »
(20 Oy, = Oylly = Up_py_, — Upopny »
where the numbers m; and [ have been defined at the beginning of this paper. Further,
putting
L, = (51”]1:’ OoMls -+ o» 51’1k) >

we can introduce the matrix

s — Lka
k e(l +1)7)°

Let us remark that we have defined #,, H, by formulae (7), (7). A procedure for the
construction of coefficients of extrapolation which we have denoted by ¥ immedia-
tely follows from Theorem 1 and Lemma 1.

Theorem 2. Let X be a linear space with inner product. Let T: X - X, H: X > X
be linear operators. Assume that for x, € X the sequence {x,\ -, obtained from (2)
tends to a limit x*. Assume further that integers 1 > 0, my, ..., m; and k fulfil
the inequalities (3) and (4).

220



If the matrix Q, is positive definite, then there exists one and only one vector
a® = (a?, o, ..., af®)T which solves the problem (5), (6). For the vector a®
we have

(1) a® = (e(n)T Q; " e(n)) ™" Q" e(n)
@r) Sa® = e, (I + 1).

Putting a® = E® + i{® we can write (21°) in the form

(22) St E® _ e (1 + 1)
kEo\g® Ol + 1) ’
Proof. The statement of this theorem is an immediate consequence of Lemma 1
and Theorem 1. []

Example. Let [ = 1, my; = 1. Then the system (21) or (21’) has a solution

oo — _ (’7k—1a VVIQ C gl = (’ho V']k)

0 B 1 - ’
(V’hn V'lk) (Vﬂk, V"Ik)

where

Vi =1 — Me—q -

4. WHEN IS THE MATRIX Q, POSITIVE DEFINITE?

Let us use the notation and assumptions of Sections 1—3; moreover, let X be
Hilbert space, T a bounded linear operator and let H™! exist. The spectrum of T
has the following structure: There exist finite sequences {i,};~-; of positive integers
and {J};=; = C for some integer r > 1 such that each 1, is a pole of the resolvent
operator of order i,

(23) 12| = A

:

Z...2

>0,

AiE A; for i=+j
and
{heo(T), 24, i=1.,r =1 <]|i

For a fixed j e {1, r) let C; be the circumference with center A; and radius ¢; > 0
such that

eclli- il =0} no(n) = ()

Moreover, let K = {ie C||4| = ¢}, where © > #(T) and K¢ = {Ae C| || = oc},
where g is taken such that

(23) {114 £ e} no(T) = o(T) = {4y, ..., 4} .
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Without any loss of generality we can assume that

(24) Bjigo + 0 forall j=1,2,.
and

(25) k >, fnax (i),
where

B, - if (2 = 4) "' R(h T) d2.
2mi J ¢,
From (1), (2) and (7) it follows that

(26) 6 = Theo = —- J' PR T)sodr = = 5 [ #R(G, T)eydr +
K

2mi 2mi j=1 c,

;L *R(A, T)godA = 2 Z( k )Ajf“"“B,-,.eo+i *R(A, T) e, di.
2mi) k. 1 27

j=1i=1 T“Kc

Lemma 2. The vectors Bjig, for j =1,2,...,r and i =1,2,...,i; for every j
are linearly independent.

Proof. The statement of this lemma immediately follows from the definition
by using the relation
B =(T— }.jl) B;,. O

Put
(27) HB;go/ii " = vj;,
(28) H (i f R, T) 5o d/l) — ofk).
2mi J ke

Lemma 3. The vectors vj; for j =1,2,...,r and i = 1,2,...,i; for every j are
linearly independent.

The proof is obvious. [J

From (24), (27), (28) we have
(29) M = He, = 21 Z < )i;vﬁ + v(k) .

J i=1

Let " be the set of all pairs (j, i) forj = 1,2,...,rand i = 1,2,..., i, for every

Jj. Let
W pe = L{0j,nexr - »

i.e., the linear space generated by all the vectors vy, j=1,...,r; i=1,..., i,
except v,,. Denote
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W = L{vji}nex
and put for every (J, i)
W =W, ®@WN.

It is easy to see that diim #}; = 1 and if

(30) Wii=L{ws}, (wieX),

then

(31 : (vji wji) # 0.

Denote

(32) t=Yi;(=card X).
i=1

Lemma 4. Put y, = n, — v(k). If m; < t and k — m; > max (i}), then the vectors
Vis Vimys -+ Vi—m, are linearly tndependenl <2

Proof. For some B,,..., , from C ]etZﬁiyk—m,- = 0. Then we have for the
scalar products i=0

(33) (igl:oﬁiyk—m,-s qu) =0

for every pair (p, q) € . Using (29), (30) and (31) we obtain from (33)

1
(34) W (q _';’) homimart g,

i=0

If
]
(39) 38l >0,

we can assume without any loss of generality that 8, + 0. Then (34) implies that the
polynomial P defined by

P(z) = Boz* + By ™™ + ... + BFT™

r
 hask — m; + Y i; = k — m; + troots. Butt > m,and k — m; + ¢ > kand there-
s=1

fore (35) does not hold. []
Order the set A in the following finite sequence:

(i), (1,4 = 1), (1,1),
(36) (2.12), (20, = 1), ... (2. 1),

(r. i), (r, i, = 1), . (r, 1)

This ordering of pairs will be observed throughout this paper.
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Let the symbol ¢(k) denote a vector from C' whose p-th component is (i I_( 1) %,

where the pair (j, i) lies at the p-th place in the sequence (36). For a positive integer
v < k the symbol &, , denotes the subspace in X generated by the vectors v(k),
v(k = 1),...,v(k — v), where these vectors are defined by (28). For {, € &, , the
symbol d(,) denotes a vector from C' with components of the form

(37) (G W) (V50 w3)

where w;; are defined by (30).

Our aim is to prove that the vectors #, Hy—m,» - --» Hx—m, are linearly independent
for all k = k, for some k.

Lemma 5. Let p(z) be a polynomial and p > 0 an integer. Let j € {1, r>. Construct
a sequence (t,} = C' for k > max (i;) + p in the following way:
)

T = p(k) 274 d(%)
where {, € &, , and the components of d(;) have the form (37). Then

limt, = O(1).

k=

Proof. For an integer n € €0, i) let the symbol f,(k, n) denote the scalar product
(v(k — n), w,,), where (p, g) lies at the s-th place in the sequence (36). We have defined

-ETJ‘lk‘"R(A,T)sOdl).
C

27i

vw_@=H<
Let us estimate

(3) oK) 37 1,0 )] =
_ 1 _
< ”qu“ . |p(k)| A5 "[ . HH” S 2moc . 057" . max HR(/L TH . ”so || .
T [A]=ec

According to the assumption (23'), oc < |4;|. The estimate (38) yields
lim p(k) 27 * f,(k,n) = 0.
k=

The rest is obvious. []

Theorem 3. Let m; < t. There exist an integer k, such that the vectors N> Nk=m,> - -
<oy Ny—m, are linearly independent for all k = k.

Proof. The ¢ x (I + 1) matrix
(39) . F. = (c(k), e(k — my), ..., c(k — my))
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has the rank [ + 1 for all k = max (i;) + m; + 1 = k,. This statement follows
from Lemma 4. 0

The s-th row of the matrix F, has the form

(40) k k= nmy\ o, k—m\ iem
__12 P M i1 A,

where the pair (j, i) lies at the s-th place in the sequence (36). Since F,, has a maximal

rank, it follows that there exists a nonsingular matrix G{.> with rows of the form
(40) for I + 1 pairs

(41‘) (Pm ‘10) (P1> ‘I1 (Pza ‘11)

from the set . Let a pair (p;, q;) be the s-th term in the sequence (36). Let for
k g kl’

(42) iﬂ”k mi = Y

where f; € C. Then

(43) (.goﬂi”k-mo qu) =0

for any pair (p, ) from the set (41). Using (29), (30), (31) and (37) we obtain from (43)

(44) 'io [(q, ”;>z'f "toe (1) d(Ck)] =0,

where {, € &, -
Let G, be the matrix of the system (44), G = G, — G{" and

(45) G = GV . diag (1,5, ..., 45, .

Po ® " *p1

Since det G’ is a polynomial in k and det G + 0, there exists an integer k, Z k,
such that det G{> =+ 0 for all k > k,. Put

det G =y, k™ + 7, K7  + ...+ 9,

where y,, + 0. Then (45) yields

1 no—1
(46) det GV = (T] 4) k™ l:) + 2 7 ]
j=0

k"() J
Developing det G,, we have

2

(@) deG=daG 4 Y det(gF(K) o gF0).
nottord1 =R g = 1)
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where
giV(k) = GV el + 1) and gP(k) =GP e(l + 1).

Lemma 5 immediately implies that

lim [k" ’1 A5 )" det (g5(k), ..., gV (k)] = 0

k— o

for every (&, ..., &) + (1,1,...,1). From (46) and (47) we have

det G, _konzm[y,,ﬂJr Z k"o -

2

+ (k"°H A Y da (ggfw(k),...,ggfv(k)]
O L

and therefore there exists k, > k, such that the for all k = k,, det G, + 0. Hence

the system (42) has only the trivial solution for all k = ko . O
Now, we can formulate the main theorem.

Theorem 4. Let X be a Hilbert space, Te[X], He[X] and let H™ ' exist. We
suppose that for x, € X the sequence {x,}:> obtained from (2) tends to a limit x*.
Let integers 1> 0, r > 1 mg, my, ..., m; fulfil the inequalities (3) and (4),m, < t.
Let 4, ..., 4, be poles of R(, T) of order iy, ..., i,, respectively, and

]z 2]z .2 4] > |
forany Aeo(T), % Aj,j=1,...,r. Let 4; & A; for i # j, |A,| > 0 and (24) hold.
Then there exists an integer ko, > max (i;) + m, such that for all k = k, the
)

matrix Q, is positive definite. Therefore, for every k = k, there exists one and only
one vector a® = (af, ..., o) such that (5) and (6) are valid. The numbers o{*

are given by the formulae (21) or (21). O
The statements of this main theorem follow from previous assertions.

5. REMARKS FOR CALCULATION

Detailed extrapolation procedures will be published in forthcoming papers. Here
we shall make only a few remarks with a sample example. In practical calculation
of coefficients of extrapolation we may proceed according to Theorem 2 (or Theorem
4). We usually take [ = 1, 2 or 3. It is convenient to put m; = in(i = 1, ...,1) and
H =1 — T" for some integer n. In this case #, = X4, — X, and the relation

(48) Merr = Ty
holds. Now we present one extrapolation procedure for acceleration of the iterative
process (2).
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1) Take an integer k; > (I + 1) n and put k := k;.
2) Evaluate Xy, X,, ..., X,—(,—1), according to (2) and a corresponding vector

Nic— -
3) Evaluate #y—jy41> Mi—+2- ---» N according to (48) (in what follows we need

only 1y, Mi—1=1ym> + > Mic—n> ’1k) and
xk_(l¥341)n = Xk—(l—-s)n + nk—(l—s)n for s = ], ooy I—-1.
4) Form a matrix Q, or S, and solve the system
Q™ = — Je(l + 1
AL BTN}
5) Calculate

(k)

(
Yk = 0o )

(k
D e R ] )xk_,,, ,
Xk+n = Xi + U

and the vectors 9y 1, - -, Hxtn-

6) Put k + n — k and repeat this procedure from step 4).

In another paper it will be proved that the sequence {y;, +5}czo converges faster
to x* than the sequence {Xy, ;) %o

As an example we consider a model problem. Let a rectangle Q = ABCD in the
plane be given. Suppose the coordinates of the points A, B, C, D are A = (X, Yo)s
B=(Xy+1,Y0)s D = (Xo» Yar+1), C = (Xy+1>Ym+1). Moreover, assume that a uni-
form mesh exists with the mesh size h such that

Xyog =X+ (N +1)h, yyrr=Yo+ M+ 1)h.
Consider now the equation
(49) —Au =0 on Q,
u(x,y) =0 on Q).

By the five point difference approximation of (49) we obtain the system of linear
algebraic equations
~(50) Ax=0.
Let us expres

A=D-L-U

and rewrite the system (50) in the form

x=%,x,

«

where
Z,=(D —wL) ' (wU + (1 — w)D).



For the initial approximation x, we choose
x, = (1, 1,..., l)T

We take M = 20, N = 30, w = 1-5 and compare the sequence {x,} obtained from
the S.O.R. iteration (X,,; = £,x,) with the sequence {y,} obtained from {x,} by
using the extrapolation procedure described in this part. We take [ = 3, n = 6.
In both cases we compare norms of the error vectors.

Table
k S.O.R. iterations Extrapolated
1terations
32 073632.1072 050524 . 1073
56 0-22313.10 2 0-26337.107°
92 036119 .10 3 0-20895 .10 8
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Souhrn
URYCHLENI KONVERGENCE ITERACNICH METOD
JAN ZiTKO

Necht X je linedrni prostor se skaldrnim soucinem. Necht T: X > X a H: X » X
jsou linedrni operdtory. UvaZujme operdtorovou rovnici

(1) x=Tx+b
a iteracni proces
(2 Xpp1 = Tx, + b

Predpoklddejme, Z7¢ pro poldteini vektor x, posloupnost {x,}:%, sestrojend
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podle predpisu (2) konverguje k vektoru x*. Necht I > 1, k, mg, my, ..., m; jsou celd
Cisla spliiujici nerovnosti

(3) my>m_;>...>m >my=0,
4) k> m,.

V této prdci je studovdn problém sestrojit &isla of, ..., of spliiujici podminky

(5)

o =1,

M~

0

i
1

]
(6) HH(X* - Z“(ik)xk-m.-)h = min HH(X* - Zﬂixk—m.-)‘
i=0 (Bos.. B TeM i=0

5

1
kde M <= C,,, je mnoZina viech vektort (Bo, By, ..., f;)" splitujicich relaci Y B; = 1.
i=0

Norma je definovdna pomoci skaldrniho sou¢inu obvyklym zpisobem. Operdtor H
je volen tak, aby bylo moZné vy&islit vyraz v norm& ve vztahu (6).

V prdci je ukdzdno, Ze za jistvch predpokladii existuje prévé jeden vektor (ocﬁ)"’,

Lo Te CY jehoz slozky Fedi problém (5) a (6) a jsou uvedeny riizné postupy
na jeho vypocet. Kromé toho je studovdna souvislost mezi strukturou spektra
operdtoru T a moznosti konstrukce &isel o, které nazyvame koeficienty extrapolace.
Vysledek je formulovdn ve V&t& 4 (Theorem 4). Prdce je zakonfena numerickym
experimentem. UvaZujeme feSeni Laplaceovy rovnice na obdélniku. Obvyklou
pétibodovou diferencni aproximaci obdrzime soustavu linedrnich algebraickych
rovnic. Pro sif, kterou jsme zvolili v pfikladu, md matice soustavy fdd 600. Tuto
soustavu feSime iteracni metodou S.O.R. K posloupnosti iteraci, kterou obdrzime
uzitim metody S.O.R. pro @ = 1,5 a po&te¢ni aproximaci x, = (1, 1, ..., 1)T pak
sestrojime posloupnost {y,} pro vybrand k, kde

1
(7) Yk = Z a(ik)xk—m. .
i=0

Volime H =1 — T%, | = 3, m; = 6i a srovhdvdme normy ||xk - x*|| a Hyk - x*“
Tabulka na konci ¢ldnku reprezentuje Ciselné tyto normy pro nékolik vybranych
iteraci.

V &ldnku, ktery ndsleduje vysetiime konvergenci Gisel ol pro k — co. Tate
Cisla jsme nazvali koeficienty extrapolace. Dédle ukdZeme obecné, Ze posloupnost
{y,} definovand vztahem (7) konverguje k x* rychleji nez posloupnost {x,} sestrojend
podle (2).

Author’s address: RNDr. Jan Zitke CSc., Katedra numerické matematiky na MFF UK,
Malostranské namésti 25, 118 00 Praha 1.
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