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1. INTRODUCTION

Let us consider the system
(1) Ax = b

where A4 is a symmetric, positive definite n by n matrix and b is an n-vector. The
biorthogonalization process defined by Hestenes and Stiefel [1] consists of construct-
ing two sequences g, g1, -.-» and hy, hy, ... in the n-dimensional Euclidean space
R, such that

(959) = (4hp h) =0 i+ .

Let x, € R, be arbitrary. Let g; = Ax; — band let gg = hy. Fori=0,1,...,n — 1
we have the following process:

(2) Xiy1 = X; — o;h;,
(3) o = (h"’ g"_)__ — (gi’ gi)
i (Ahi’ hi) (Ahi’ gz) >
(4) Giv1 = ¢; — w;Ah;,
Ah,g ) (g+ ’g' )
3 hi =Y - M hl =49 + Vit Ji+1) hi )
( ) +1 i+t (Ahi, hi) gi+1 (gi,g'.)

and there exists m < n with g(x,,) = 0, i.e., x,, is the solution of (1). The function
f(x) := $xTAx" — bx is a strictly convex quadratic function. Then o; defined by (3)
has the following geometrical interpretation

(6) f(x; — ah;)) = min! for o =a;, = (ki gy)
(Ahi’ hl) ’

ie., (¢i+1, h;) = 0. Because of (6) we say that the biorthogonalization process
(2)—(5) is defined by the minimization principle, i.e., it is a perfect algorithm with
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respect to the step size. Algorithm (2)—(5) was generalized for minimization of
nonquadratic functions by many authors [2, 3, 4]. These algorithms were also based
on exact line searches. Unfortunately, many algorithms of the conjugate gradient
type are sensitive to the exactness of the line searches and this phenomenon may
destroy the global efficiency of these methods. The larger the dimension of the
problem is, the bigger is the influence of this phenomenon. According to the choice
of the recurrent formula for h;,, we obtain various algorithms

(7) hivy = givy + Bihy,

(gi+1sgi+1)
(95 9:)
(gi+l - giagH—l)
i=oGiv 9o h) =y~ v -
ﬁ p(g +1 ) (g,', g,)
_ (gi+] = gingis1)
(gi+l — 9 hi)

The first one is the most sensitive formula with respect to the exactness of the step-
size.

In order to improve the efficiency and the local rate of convergence of conjugate
gradient algorithms several techniques have been suggested [5, 6]. The common
idea of these techniques is the generation of mutually conjugate direction vectors
independently of the step-size used. By help of these vectors it is possible to define
an extra step which then enables us to define the minimum of a quadratic function
without using perfect step-sizes. This extra step is identical toa quasi-Newton step.
In [5] the conjugate direction vectors and the extra step is defined in terms of the
quantities

(g i+1> Si) s,
(gH—l - G Si) v
where s; = x;4; — x,. In [6] the extra step was also defined by help of these terms.
By this approach it is possible to define the conjugate direction vectors and the extra
“step only if all steps are sufficiently inaccurate, i.e., (;+1, si) =+ 0.

In [7] it is shown that by an extra step is is possible also to improve the theoretical
rate of convergence of minimization algorithms. Under some assumptions the rate
of convergence is n-step cubic. But this result holds only for the projection gradient
method because the important assumption is that the conjugate direction vectors are
uniformly linearly independent. In general this is not possible to show for all con-
jugate gradient algorithms.

In the next part a new biorthogonalization process is described which does not
depend on the step-size. The idea of the new biorthogonalization algorithm lies
in the fact that the asymptotically perfect algorithms with the quadratic termination
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property have the same rate of convergence as the perfect algorithms [8, 9]. Therefore
they converge at least n-step quadratically also for a strictly convex quadratic function,
whereas the perfect algorithms are finite. The new algorithm does not use an extra
step and it is devised so as to minimize the total error after n steps if imperfect steps
arc used. It is easy to show that for a quadratic function this occurs if the direction
vectors are mutually conjugate independentiy of the step-sizes used. The stability
of the new algorithm does not depend on the accuracy or inaccuracy of the step-
sizes.

2. THE ALGORITHM
Let x, € R, be arbitrary. Let us denote g; = Ax; — b, where A4 is a symmetric,

positive definite n by n matrix. Set §o = g, = Eo. Let us consider fori = 0,1, 2, ...,
..., n — 1 following biorthogonalization process:

(9) Xiv1 = X; — &iﬁi s
(10) Jiv1 = (gi+1 - gi) - @Lﬂf_‘——f]”g—') Ji»
(i d3)
(U) Hi+1 = gi+1 - —#(gi“ — 9 ‘giﬂ) I;i s
(gH-l - i hi)

where 4, is an arbitrary positive real number.

Theorem 1. Suppose that m is the largest number <n — 1 such that all vectors
ho, hy, ..., h, and gy, g1, ..., g,, constructed according to (2)—(5) are nonzero and

let hy, hy,...,and §o, gy, ... be vectors constructed according to (9)—(11). Then
gi=cg;, hy=ch;, for 0<i<m
where ¢; & 0 is a constant and
Gi=gi=h;=h;=0 forall i>m, with m<n—1.

Proof. According to the definition §, = go. For i = 1 from (2)—(5) we obtain

Ahg,
(12) 91 = go — tgAh = —oq (Ahy — (4ho. go) 90)
(gOs gO)
and
(13) hy =g, — (Aho, 9,) h

) (Aho, ho) o
From (9)—(11) we have
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(14) Gy = —dgAhy — QQM go = — 8o (Ahg — (Aho, g0) 50)
(90: 90) (90» 90)
Since g1 — 9o = _ioAho and ,10 = ]10 = !70 = g,.
According to (12) and (14) we obtain
(]5) gl = 191 with cy = &0/050’

and from (11) according to (15)

(Ahg, c191) (Aho, gl)
2 hy =c¢
(Ahe, ho) @1 = (Aho, ho) o) -
From (16), (13) we then have

(16) hy = c,9, —

hy = c;h, .
Suppose that

gi=c¢;g;, hy=ch; for je{0,1,...,m—1}.
Then according to (2)—(5) we have

(17) Im = Gm-1 — Cxm—lAhm—l = Ty (Ahm—l - w

Im=1) »
(gm—l’ gm—l) '

(Ahm 1> gm) ,

(18) hm =9m —
(Ahm l’ T — l)

From (9)—1(1) we obtain

gm = —i,,,—;Aﬁm—l - (_am:lAhm:l’QmAI) ~m—1 =
(gm-—b gm—l)
= m 1 (Ahm 1 M ~m 1)
(gm 1> gm 1)
~ Ahm— > Ym—
= = %y—1Cm—1 (_Ahm—] - (‘M gm*l)

(gm—ls gm—l)
\
since g,, — Im-1 = _inr—lAl”n—l‘

According to (17) we have
G = Cufm With ¢y = (Gpe1/0tm—1) Cm—1 >
so that from (11), (18)
= cplty -
Let gm+1 = 0. Then according to (4) we obtain

g"l = amAhm
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so that
~ — Al — (—-oc,jAh:,,, Gom) G =
(grm gm)

— —&mAl:;m + & (Aﬁmﬁ Cmgm)

m mIm —
(Coms CmTm)
= —a,c,Ah, + d,c.Ah, = 0.

Let §,,.; = 0. Then according to (10),

(19) 0 = Ah,, — (—Aﬁm’ fm) G = (Al — Al 9) oy
Gms Gom) (7
According to (19) we obtain
0= Im M Ahm =Y9m — (X”,Ah m>
(Ah,, 9,)
i.e., according to (4),
gm+1 = 0 .
The vectors §o, G4, ---» §,» are orthogonal to each other, and since they are nonzero,

their total number cannot exceed n. According to (11) and (5) for m < n — 1 and
for all i > m

gi:gi—_—;i:hi:()‘

Corollary. According to Theorem 1 for o; = &, the biorthogonalization process
(9)—(11) is equivalent to the biorthogonalization process (2)—(5).

3. APPLICATION

Suppose that f: R, = R, is strictly convex and twice continuously differentiable
and satisfies

limf(x) = +o.

[lx]| =0

Let us denote the gradient g; = g(x;). The algorithm for minimization of f(x) is
defined as follows:

(20) Algorithm

Step 0. Select x, € R,. If g = 0, stop, else set i = 0 and go to Step 1.
Step 1. Set g, = g; = h,.
Step 2. Compute

Xiv1 = X; — o;h;
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such that
(gi+1, hi) = ”i(gi’ hz)

where |u,~| S <1 and

'ﬂ,| é min {ﬁ’ c”gil}’ ¢ > 0.
Step 3. If 9,41 = 0, stop, else go to Step 4.
Step 4. If i = —1 mod nthenset i =i + 1 and go to Step 1, else set
Jiv1 = (gi+1 - gi) - gg—'it;—‘;gzg_l)g;
(gi’ gi)

Step 5. If §;+; = Othenseti = i + 1 and go to Step 1, else set

iy = Giog — (Gix1 — 9 Gis1) h,
(gi+1 — Ji hi)

set i =i+ 1 and go to Step 2.

Algorithm (20) uses restarts. The method does not use an extra step and is devised
so as to eliminate the zigzagging phenomenon if an imperfect step-size is used. An
extra step after n regular steps is interesting if this step improves the theoretical rate
of convergence. The need for a step along a special direction every n iterations is
avoided by forcing the linear search to become more accurate as the solution is
approached.

4. CONCLUSION

In this paper a new biorthogonalization process is defined. All known perfect
conjugate gradient algorithms use exact line searches in order to obtain mutually
conjugate directions. The inexactness of the line searches destroys the conjugacy
of the directions generated and thereby the global efficiency of these methods. In
- order to eliminate this influence of the inexactness of the line searches a new biortho-
gonalization process is defined which does not depend on the step-size used. In the
perfect case the new biorthogonalization process is equivalent to the cg-algorithms
of Hestenes and Stiefel. The stability of the new algorithm does not depend on the
accuracy or inaccuracy of the step sizes.
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Sthrn -
IMPERFEKTNY ALGORITMUS ZDRUZENYCH GRADIENTOV
FRIDRICH SLOBODA
V ¢ldnku je popisany novy biortogonalizaény algoritmus, ktory nezdvisi od dizky
kroku. Algoritmus je navrhnuty za tcfetom minimalizdcie chyby spOsobenej ne-
presnou realizdciou kroku. Vidsina doteraz zndmych algoritmov zdruZenych smerov

je citlivd na presnost realizdcie perfektného kroku.

Author’s address: Dr. Fridrich Sloboda, CSc., Ustav technickej kybernetiky SAV, Duabravskd
cesta 1, 842 37 Bratislava.

432



		webmaster@dml.cz
	2020-07-02T04:39:12+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




