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SVAZEK 25 (1980) APLI KACE M ATE M ATI KY ČÍSLO 2 

CONTACT PROBLEM OF TWO ELASTIC BODIES - Part II 

VLADIMI'R JANOVSKY, PETR PROCHAZKA 

(Received September 1, 1977) 

INTRODUCTION 

A special class of contact problems was formulated in Part I of this paper, see [4]. 
One discrete version was also proposed and its numerical solution by means of 
p, A-Algorithm was discussed. Convergence of the algorithm to the "discrete" 
solution was proved. 

The aim of Part I has been the analysis concerning the convergence of the "discrete" 
solution to the solution of the "continuous" problem. Part II is divided into the fol­
lowing chapters: 

4. Convergence 
5. Smooth approximation of K 
6. Approximation properties of the spaces V(p) 

Appendix. 

Chapter 4 answers the question of convergence under certain assumptions. These 
assumptions are discussed in Chapters 5 and 6. In Appendix one remark to [6], 
Theorem 7.2 on page 112 is made. 

4. CONVERGENCE 

In this chapter we investigate convergence of the solution u(p) of Problem (2A) to 
the solution u of Problem (1.2). 

4.1. Assumptions 

We shall start with a definition of the linear interpolation along F. 

Definition 4.1. Let p be an integer and let the partition T(P) = {T,- p};LPi Of F be 
that given in Definition 2.2. Also, let w be a real function of T and X e F (i.e. assume 
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that there exists t ^ e ^ sucn tnat x e Ti,P'-> see Fi9- 3)- Then the value (L(p)w) (X) 
of the function ISP^W at the point X is defined as follows: 

(L(p)w) (X) = M N i i P ) + (meas ri>p - t) w(N,_1?p)) (meas r ^ ) " 1 , 

where {Nt p} is given in Definition 2.2, and t is the Lebesgue measure of the 

arcN i - i^KLe. t = f dG; 
J ( N i - i . p , X ) 

see Fig. 3. 

Fig. 3. 

R e m a r k 4.1. It can be shown that 

I(p)(L(p)w) = (L(p)w) do-. 

We introduce the following assumptions: 

(A) For any w e K there exists a sequence {w£}£e(0>i) such that w£ = [wj £, w 2 e ] e K, 

w'£>£ e E(Q') , w;;£ e £((2") for i = 1, 2 

and 

we -> w in V for e -> 0+ . 

The symbol E(G) denotes the space of all infinitely differentiate functions on a do­

main G which can be continuously extended to the closure G of G. 

(Al) If w G V, w = [w l5 w2], w- e F(Q'), w" e E(Q") for i = 1, 2 then there exists 
a sequence {w(p)}P°=1 such that w(p) e V(p), w(p) -> w in Vfor p -> + oo, 

[w(p)]v = [w]v on N(p) for each p . 

(A2) Let {w(p)} be a sequence of w(p) e V(p). Then there exists a constant C such that 

| ry>] , - LW[w«]v||t2(n ^ cp-v2|ww|| 
for each integer p. 
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R e m a r k 4.2. The meaning of the assumptions made in this chapter will be discus­

sed in detail in Chapters 5 and 6. Assumption (A) will be justified under certain 

conditions concerning smoothness of both boundaries dQ' and dQ" (see Chapter 5). 

Assumptions (Al) and (A2) will be justified provided that the asymptotic behaviour 

(as p -» -f oo) of the partitions Q{p) has the usual characteristics. In assumption (A2) 

the parameter p~ l plays the role of the asymptotic "mesh" size estimate. 

4.2. Convergence of displacements 

We consider a sequence {u(p)^L1}, where u{p) solves Problem (2.1) for a given in­

teger p. 

Let Tx and T2 be the splitting operators from Definition 1.4. (Recall the role of 

F° <=. T in the definition of T2.) 

Lemma 4.1. If F0 cz F is chosen in such a way that either q0 > 0 or q0 < 0 

then there exists a constant C such that either 

{T2u
(p))l й Cp-^ITи^l 

or 
~(T2u^)2 ^ Cp~V2\\Txu^\\ 

for any integer p. 

Proof. Consider the case q0 > 0 (the proof for the case q0 < 0 is the same). Since 

[u ( p ) ] v ^ 0 on N(p\ it is L(/,)[u(p)]v ^ 0 on F (linear interpolation of nonpositive 

values on N(p)), i.e. 

' ( p ) ] v dO S 0 . 
J To 

Hence 

lo ľ IПи< 
JT0 

(T2u<">)2 S q0 [ [H ( p ) ] v d(T - q0 f L<">[u<")]vdff ^ 
J r0 J r0 

^qo(mcasr0y<ij[u^l-&lu^ljL2(n. 

In accordance with the assumption (A2) we can estimate 

(T2u<">)2 5, CoP^i2\\u^\ . 

However, it is evidently 

|M<")|| =g C i d T H ^ I + ||T2H<">||) = C.dlTrU^I + C3|(T2U<»)2|) . 

Hence, combining the two inequalities, we easily derive that 

(T2u<»)2 [1 - C4p~1'2 . sgn(T2«<">)2] ^ Cjp-^iTXI , 
i.e. 

(T^^l ^ C p - 1 / 2 | | i > ( p ) | | . 
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Lemma 4.2. If ||u(p)|| -> +co then J(u(p)) -> + oo for p -> +00 . 

Proof . First we realise that 

J(u(p)) = A(T,u(p), T{u
(p)) - V f F.. (7\u(p))i dx, dx2 -

ÌQ 

I Fi. ( F i U ^ i åc - í F2 . (F2u(p))2' dxx dx2 

Ti J ß" 

According to Lemma 1.2, we estimate 

(4.1) J(u(p)) ^ CUT.u^ll2 - C.HFiU^H - (F2u
(/,))2 

We assume that 

F2 dxj dx2 > 0 

F2dx^ dx2 . 2 u л i 
ß" 

L /D" 

(the case " < " can be investigated in the same way; the case " = " is excluded, see 
(2.2)). In the definition of T1? T2 we choose F0 such that q0 > 0; see Definition 1.4. 
Hence, according to (4.1) and Lemma 4.1, we can estimate 

(4.2) j(u(p)) ^ CiiFy^i2 - C.iiFxu^n - cxp-t,2\Typ)\. 
If \\u(p)\\ -> +00 then either 

(i) \\TlU
(p)\\ -> +00 

or 

(ii) ||F2u(p)|| -* +00 and the sequence { H ^ u ^ l j } ^ ! is bounded. 
In the case (i) we have J(u(p)) -> + 00 immediately as a consequence of (4.2). In the 
case (ii) we easily derive that |(F2u (p))2 | -> +00 . Taking into account Lemma 4.1 
(with q0 > 0), we conclude that 

(T2u
(p))2 J F2 dx, dx2 -> - c o . 

JQ" 

Hence, in accordance with (4.1), we obtain J(u(p)) -• +00 . 

Theorem 4.1. The sequence {u(p)} is bounded in the space V. 

P r o o f is easy consequence of Lemma 4.2 and the fact that J(u^)) < 0 for any 
integer p (see (2.1) for w = 0). 

Theorem 4.2. There exists u e Vand a subsequence {u(p)}peM, where M c: {1,2 , . . .} , 
such that 

u(p) -> u (weakly) in V 

[u(p)]v -> [u]v in L2(T) Vp e M, p -> + 00 . 
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Proof . With respect to Theorem 4A , the sequence {u(p)}™=1 is compact in the 
weak topology of the space V. Hence, the first assertion of Theorem 4.2 holds im­
mediately. Moreover, 

[u(p)]v -> [u]v (weakly) in L2(F). 

It is well known (e.g. [6], Theorem 6.2, page 107) that the restriction of the spaces 
WX'2(Q') and Wl,2(Q") into L2(F) is compact. Hence, the convergence assertion above 
is also valid in the strong sense. 

Lemma 4.3. If {u(p)}peM and u are respectively the subsequence and the function 
of Vfrom Theorem 4.2, then 

J(u) = J(w) Vw e K . 

Proof. Let w be an element of K. With respect to the assumptions (A) and (Al), 
there exist sequences {wE}Ee(0A), {w (p)}^=1 (Ve G (0, 1)) such that 

WEEK, (W£);e E(Q') , (wE)f; e E(Q"), i = l , 2 

w(p) e V(p), [w (p)]v = 0 on N(p) 

lim wE = w in V 
e-*0 + 

lim w(
E

p) = w£ in V. 
jp-* + 00 

As u(p) solves Problem (2.1), we have 

J(u(p)) = J(w(
e
p)) Ve e (0, l) , V integer p . 

The functional J(«) is Frechet-differentiable and convex; hence it is weakly lower 

semi-continuous, which means: 

If u(p) -> u (weakly) in Vthen 

lim inf J(u(p)) = J(u). 
jP-> + OO 

The weak convergence of {u(p)}peM is guaranteed by Theorem 4.2. Using both ine­
qualities above, we can derive 

(4.3) J(u) g lim inf J(u(p)) = lim sup J(u(p)) = J(w) Vw e K . 
p-+ + oo p-* + 00 

peM peM 

Lemma 4.4. If {U(P)}P<=M and u are respectively the subsequence and the function 
from Theorem 4.2, then 

UEK. 

Proof. Since u(p) is a solution to Problem (2.1), it is [u(p)]v = 0 on N(p), i.e. 
lip)[u(p)]v ^ 0 on f. Using Theorems 4.2 and 4.1 and assumption (A2), we easily 
prove that 

L<*>ry>], -> [u], in L2(r). 
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It means that L(p)[u(p)~]v converges to [w]v a .e . on F and this implies that [w]v ^ 0 
a. e. on F. 

Theorem 4.3. The whole sequence {u(p)}p°:=1 converges to u in V, i.e. 

u(p) -> u in V for p -> + oo . 

Proof. We now show that the whole sequence {u(p)}p°=1 weakly converges. Let us 
suppose the contrary: 

According to Theorem 4.1 it means that there exist two subsequences {u(p)}peM, 
{u(p)}p6M, such that 

u(p) -> UE V for p E M, p -* + oo 

u(p) -> u' EV for p E M' p -• + oo 
and 

u + u' . 

Lemmas 4,3 and 4.4 imply that both functions u and u' are solutions to Problem (1.2). 
This contradicts Theorem 1.1. 

Hence, as a consequence of Theorem 4.2, there exists u e Vsuch that 

(4.4) u(p) -> u (weakly) in V 

[ u ( ^ ] - > [ u ] v in L 2 ( r ) . 

We now proceed to the proof of strong convergence of the sequence {u(p)}p°=1. Sub­
stituting w = u into (4.3), we derive that 

(4.5) J(u(p)) -> J(u) for p -> + oo . 

We recall the following identity: 

J(u) - J(u(p)) = A(u - u(p), u) - iA(u - u(p), u - u(p)) -
» /» 

F . (u - u(p)) dx t dx2 - P . (u - u(p)) do- . 
« JTi 

Hence, taking into account the weak convergence (4.4) and the assertion (4.5), we 
prove that 

A(u - u(p), u - u(p)) -> 0 for p -> + oo , 
i.e. 

A(Tt(u - u(p)) , T-(II ~ u(p))) -> 0 for P -> + oo . 

Finally, Lemma 1.2 implies that 

(4.6) C, | | ^ (u - u (p))||2 ^ ( 1 , ( 1 , - u(p)), T,(u - u(p))) -> 0 for p-++oo. 

Let us notice that 

\\u - u^\\2 S C0||T(u - u<">)|2 + C0||T2(u - u ^ ) | | 2 . 
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The first term on the right-hand side converges to zero with respect to (4.6). The 

second also converges to zero as a consequence of (4,4) and the definition of T2 (see 

Definition 1.4). 

4.3. Convergence of reactive forces 

Unfortunately we have not been able to establish the convergence of {Xip)}™=1. 

For this reason in this section we only point out the difficulties which we have en­

countered in attempting a proof of convergence. We shall start with the saddle for­

mulation of our main Problem (1.2), i.e. we involve Lagrange multipliers. We set 

A = {//; fi e IV~1 / 2 , 2(F)5 ji ^ 0 on F in the natural functional sense} . 

P r o b l e m . Find u e Vand X e A such that 

X[u~]v do- S J(w) + /i[w]v do- V/z e A , Vw e V. J(u) + џ[u]vda S J(u) + 

It is possible to show that there exists a unique solution to the above problem 

using the same technique as we applied to Problem (2.3) —(2.4). Moreover, the func­

tion u solves our main Problem (1.2) and the function X can be interpreted as the 

reaction force of the body Q'' along F. 

Problem (2.3) —(2.4) is actually a discrete version of the above problem (spaces V 

and A are replaced by Vip) and Aip)). Hence, it is expected that uip) -* u and Xip) -> X 

in the corresponding spaces; the symbols uip), Xip) denote the solution of Problem 

(2.3) —(2.4). The former assertion is true; see the previous section 4.2. To prove the 

latter, it is necessary (and sufficient) to show that the sequence {u(p)}*:=1 is bounded 

in some norm connected with the norm of the space W~1/2,2 (F). This is the main 

difficulty which we have not been able to overcome. 

4.4. Convergence of "bolted" displacements 

We now consider the meaning of the auxiliary Problem (3.2) — (3.3). The solution 

to this problem represents an intermediate step for obtaining the solution of Problem 

(2.1); see Conclusion of Chapter 3. In this section we show that the auxiliary problem 

also approximates the main Problem (2.1). 

Theorem 4.4. Let a point AeF be fixed and let triangulations Qip) such that 

AeNip) for any integer p (for G<*) and Nip), see Definition 2.1 and 2.2) be given. 

Ifuip) and u solve Problem (3.1) and (1.2), then 

u(p) ~+u in V for p ^ +oo . 
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R e m a r k 4.3. Even if both bodies Q' and Q" are "bolted" at a "wrong" point A 
(i.e. if the solution u of the main Problem (1.2) has no contact at this point: [u]v < 0 
at A), the approximations u{p) converge. However, the convergence may be very 
poor in the neighbourhood of the "bolt" A. This can, in fact, be deduced from the 
proof of Theorem 4.4. 

Lemma 4.5. Let a function Z$)3(r, \p) be defined as follows for any r e [0, -f oo), 
\jj e [0, 2TT) and parameters 3 e (6, 1), 6 e (0, 1): Ifij/e [0, 2n) and 

if r e [0, 3 e - 2 / r ] then Zd/r, ij/) = 0 , 

if re [5 e"2/0, 3] then Ze>d(r, xj/) = 1 - - log - , 
2 r 

if r > S then Zds(r, i/J) = 1 . 

Then 

Ze,a->1 in WU2(U2) 

for r?->0+ and 3 -• 0 + . 

P r o o f consists in routine calculation only. 

R e m a r k 4.4. By virtue of the regularisation technique (see [6], Theorem 2.1, 
page 60) one can easily conclude from Lemma 4.5 that there exists a family of func­
tions Z M = ZQb(r, ij/), r e [0, + oo), \ji e [0, 2n) for parameters 0 e (0, l), 3 e (0, 1) 
such that 

Z M e E(U2), 

Z M -> 1 in WU2(U2) as 0 -> 0 + , 3 -> 0 + , 

<5 _ , 

t0' 
Žøjő = 1 for r > 23 . 

Z ð = 0 for r є | 

Lemma 4.6. Let AeF be given. Then for any weK there exists a sequence 

{We}ee(0,l) SUCh that We = [\V- >£, W 2 J e i ( , 

w ; t e e £ ( Q % w ; > £ ( f i " ) for 1 = 1,2, 

vve = 0 at A , 

we "^ w f o r e -^ 0+ in the 5p«ce V. 

Proof. According to assumption (A) there exists a sequence {^£}£e(0,i) satisfying 
all demands described above except the condition vE = 0 at A. Let us transform the 
function Z0>d (see Remark 4.4) into a Cartesian coordinate system with the origin 
at the point A. Then we can find 6 = 6(s), 3 = 3(s) such that ||v£ — Zef5ve\\ _: s, 
see Lemma 4.5. Thus it is sufficient to set wE = ZQdve. 
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P r o o f of Theorem 4.4. We can use exactly the same arguments as those in Section 
4.2 with the following changes: 

(i) replace assumption (A) by the assertion of Lemma 4.6; 
(ii) replace Problem (2.1) by Problem (3.1); 

(iii) replace the space V{p) by the space V^p). 

5. SMOOTH APPROXIMATION OF K 

We start with 

Definition 5.1. Let F be the symmetric extension of F about the x2-axis, i.e. 

F == F u [x e U2; x = (xl9 x2) such that ( — xl9 x2) e F} , 

see Fig. 4. 

Fig. 4. 

The purpose of this chapter is the p roo f of the following. 

Theorem 5.1. IfF is an infinitely smooth Jordan curve then Assumption (A) from 

Chapter 4 is satisfied, i.e. 

Vw e K there exists a sequence {w£}£e(0?1) such that 

(i) w£ = [w1>£, w 2 J e K , 

(ii) < , e £ ( Q % < e e £ ( . G " ) for i =-= 1, 2 , 

(iii) we -^ w in V for e -> 0+ . 

The p r o o f of the theorem will be based on five lemmas. In the following we shall 
assume automatically that the assumptions of Theorem 5.1 concerning the smoothness 
of F are satisfied. 
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Definition 5.2. Let G be a simply connected domain in U2 such that F c G and 
G n {F! u f 2 u F5} = 0 and G is symmetric about the x2-axis. Let Q' and Q" be 
the symmetric extensions of Q' and Q" about the x2-axis; see Fig. 4. 

Lemma 5.1. There exists a linear continuous operator 

Z:W1/22(r)-^W^2(G) 
such that 

(5.1) Zi/> = \j/ on r in the trace sense ; 

(5.2) if xj/e Wi/22(r) then supp Zif/czG ; 

(5.3) moreover, if if/ g 0 a.e. on F then Zxj/ ̂  0 a.e. On G ; 

(5.4) zf ^ G Wfc~1/2'2(F) then ZiA G Wk2(G n &') n Wfc2(G n 0") 

fOr Ony integer k . 

Proof. For the proof see [6], Theorem 5.7, page 103, The quoted proof does not 
assert (5.3) explicitly. One can check very easily that the operator Z constructed in [6] 
satisfies the condition (5.3). 

R e m a r k 5.1. As a consequence of (5.4) we obtain the following results: If xj/ is 
infinitely differentiable on F then 

(Zil/)' G E(Q'), (Zi//)" G E(Q") 
and 

supp Zxjj cz G . 

Definition 5.3. We define the odd and even parts of the operator Z (see Lemma 5.1) 
as follows: If> e Wl/2'2(F) and (xu x2) e G then 

Zie%-(Xl,*2) s i ^ | - ( ^ x 2 ) + iZ^\x=(.XuX2) 

and 

z'°%=(Xl,X2) = iz^(xl,X2) - m\x^Xl,X2). 

Lemma 5.2. The operators Z{e) and Z ( 0 ) are linear continuous operators mapping 
Wl,2-2(r) into W'2(G). Ifxjt^ and «/,«» belong to W1I2'2(F) and 

\l>(e>(xt,x2) = ^ie\-xux2), 

^\xux2)^ -^(-XuX2) 

for (xl, x2) e T, then 

(5.5) supp Z<ety(e) c G , supp Z(0ty(0> c G , 

(5.6.) Z(cty<e> = Z (0ty (0 ) = ^ ( 0 ) on T in the trace sense, 
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(5.7) if\j/M ^ 0 a.e. on E then Z<cV(e> ^ 0 a.e. on G , 

(5.8) (/ ij/U} and \jj{0) are infinitely differentiable on E then 

z ( e V ( e ) e Ka)n E(Q") 
and 

Z<°V(0) e £(Q') n E(fl") , 

(5.9) Z (eV (e )U= ( ,1 ,X2) = Z ( eV ( e) | ; c = (_X i > X 2 ) , 

Z ( 0 V ( 0 ) U= ( , 1 „ 2 ) = Z(0V(o>| x, (_Xi>X2) / o r ( x „ x 2 ) e G . 

P roo f follows immediately from Lemma 5A and Definition 5.3. 

R e m a r k 5.2. Let us keep the notation of Lemma 5.2. In the following we shall 
assume that the functions Z(ety(e) and Z ( 0 ) ^ ( 0 ) are extended by zero outside G. Then, 
with respect to (5.5), we can state that Z(e)ijj(e) and Z(0ty(0> belong to W1,2(U2). 

Definition 5.4. If w = [wl5 w2] e V then w = [wl5 w2)] i5 l/ze vector function on 

Q' u .Q" de/wed by 

^ 1 ^ 2 ) = ( - 1 ) ' fi£-xux2) 

for x = (x l s x2) e SI' u £T, i = 1, 2 and 

# . ( * ! , x2) = w i (x 1 ,x 2 ) 

fOr x = (x l5 x2) G Q' u :Q", i = 1, 2. Symbols w- a?iJ wj denote the restrictions of 
W; On .Q' and Q" for i = 1, 2. 

Moreover, if v = (v1? v2) is t/ie outward normal vector on F wi/n respect to Q' 
then we set 

w'v == wivj + w2v2 , 

#t = wiv2 - w2vx , 

Wv = W ^ + W2V2 , 

W" = Wiv 2 — W^Vj 

On F in the trace sense. 

R e m a r k 5.3. It is easy to verify that wf e W1,2(Q') n W1,2(Q"). As a consequence 
of the theorem concerning traces (see [6], Theorem 5.5, page 99) we have w'h w" e 
6 W1/2,2(F) and hence w'v, w'x, wv, w" e W1|2'2(F); remember that v ls v2 are infinitely 
smooth on F. 

Definition 5.5. For w e V we set (see Remark 5.2) 

vi = Z{0)v{ . Z(e)w'v + Z{e)v2 . Z(0)w'x 

v2 = Z{e)v2 . Z(e)w'v - Z(0>v1 . Z{0)w'x 

on Q' 
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and 

v'[ = z<°>v,. z<*>< + z<c>v2. z<°>w; 1 -
1 v z \ on Q , 

v2 = z ( e ) v 2 . z (e)w; - z ( 0 ) v 1 . z ( 0 ) < J 
where wv Ot/07 wT Ore Or'ven by Definition 5.4. 

Lemma 5.3. If w e V and the functions w, v are given by Definitions 5.4, 5.5 then 

(5.10) w - v e V , 

(5.11) w - v = w On 0 \ G , 

(5.12) (w, - vt)\x=ixuX2) = ( - l ) ' . ( t f i - ^ ) | , = ( - , „ 2 ) 

V(xl,x2)e& u fi", i = 1,2, 

(5.13) W; - vfEW1'2^), i = 1,2. 

Proof. It can be verified that the functions v2, wv, wv and the functions vl5 wT, wT 

satisfy the assumptions of Lemma 5.2 concerning the functions i/y(e) and \jj(0\ re­
spectively. The assertions (5A2) and (5.H) are then consequences of (5.9) and (5.5). 

From (5.6) and (5A2) it follows that 

(5.14) wt - v\ = 0 , 

w[ - v[ = 0 

on r in the trace sense for i = 1, 2 and 

(5.15) wi - vi = 0 on F3 , 

w1 — vx = 0 on F4 

in the trace sense. Remember again that v., v2 are infinitely smooth and hence the 
assumptions of (5.8) are satisfied. Then (5A3) and (5A0) follow from (514) and 
(5.15), (5.11). 

Definition 5.6. If *// e L1>IOC(R2)
 and SUPP ^ is compact in U2 then 

i f |x — vl2 

(Oe * lA = <Ae(*) = — ^00 eXP , | i J 2 dy 

KS J x - vr - £Z 
f supple \ 
l l x - y l ^ e l 

suppi/t 

Ve > 0, Vx e R2, where 

X I 2 

exp ПV— d x 
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R e m a r k 5.4. If y\i e Wl,2(G), supp ij/ c G then co£ * \j/ e E(G) and supp (co£ * \j/) c 
o G for e > 0 sufficiently small. From [8], Theorem 2.1, page 60 it follows that 

| | K * \l/) - ij/\\w^HG) -> 0 for £ -> 0 + . 

Moreover, if ^(x{, x2) = ij/( — xl, x2) or if/(x1, x2) = —1//( —x1? x2), respectively, 
then 

or 

We * l / ' l x^x , ,^ ) == -G> e * ^\x = (-xux2) 

for (x1? x2) e G. 

Definition 5.7. If w eV and the functions vv, v are given by Definitions 5.4, 5.5 
then we set 

vE = K,£>t}2,£] 

for any £ > 0, where (see Remark 5.2) 

»;,. .- z < ° \ . («8 * #•>*;) + z<°>v2. K * z<°y) , 
Pi.. = Z w v 2 • («>. * Z(e)w;) - Z<°>v, . (a>£ * Z<°>vvr) 

On .3' and 

vi\£ = z(0)v1. K * z(e)vv;) + z(0)v2. K * z ( 0 ) o , 

»2,« = z(e)v2 • K * z(e)<) - z(0>vi • K * z(0)<> 
on Q"'. 

Lemma 5.4. If w eV and the functions vv, v, v£ are given by Definitions 5.4, 5.5, 
5.7 then the following assertions hold for any £ > 0 sufficiently small: 

(5.16) v;->£ G E(Q') , < £ G E(fi") , i = 1, 2 , 

(5.17) supp viR cz G , i = 1, 2 , 

(5.18) v£GV, 

(5.19) [v£]v = co£ * Z(e)[vv]v O.e. On F , 

(5.20) ||v - v£|| - * 0 for £ - > 0 4 у + • 

Proof. The assertions (5.16) —(5A8), (5.20) are easy consequences of Lemma 5.2 
and Remark 5.4. It is sufficient only to realise that the functions v2, vvv, vvv are even 
and v l 5 vv̂ , vv" are odd on F with respect to the x2-axis. Moreover, vx and v2 are 
infinitely differentiable. 

The assertion (5A9) follows by direct computation. 
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Lemma 5.5. If we V and the function v is given via Definition 5.5, then we set 
z = w — v. For any e > 0 there exists z£ = [z1>£, z2 £] e V such that 

ziiBeE(Q), i = l , 2 

||ze — z|| -> 0 fOr £ -> 0+ . 

Proof. According to Lemma 5.3, the functions zl9 z2 have the following properties: 

zl9z2eWt-2(Q), 

z, = z2 = 0 a.e. on F2 , 

zv = 0 a.e. on F3 u F4 . 

Finally, we recall the assumption from Chapter 1 that the boundary dQ of Q 
is Lipschitz continuous. Hence we can use the standard regularisation techniques 
for the proof — see [8], Theorem 2.1, page 60. 

Proof of Theorem 5.1. If w e K then we set 

w£ = z£ + ve \fs > 0 , 

where z£ and v£ are given by Lemma 5.5 and Definition 5.7. 

The assertions (ii), (iii) of Theorem 5.1 and 

(5.21) we e V Ve > 0 , 

follow easily from Lemma 5.4 and 5.5. Hence it remains to show that 

(5.22) [w£]v S 0 a.e. on F Ve > 0 . 

Then the assertion (i) follows from (5.21) and (5.22). 

As ziBe E(Q), see Lemma 5.5, we have [w£]v = [ve]v. With respect to (5.19) we 
obtain that 

[w£]v = coE * Z(e)[w]v a.e. on F . 

We can easily verify that [w]v is an even function on F (with respect to the xraxis). 
Moreover, the function [w]v equals [w]v on F and hence [w]v g 0 on F. As a con­
sequence of (5.7) and Remark 5.2 we obtain that 

Z(e)[w]v = 0 a.e. on R2 . 

Finally, according to Definition 5.6 we can show that 

OJ£ * Z(e)[w]v ^ 0 on U2 (and the more on F) . 
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6. APPROXIMATION PROPERTIES OF THE SPACES V<->) 

The following Definitions 6.1 — 6.3 are introduced in order to facilitate the descrip­

tion of triangulation Q(p\ see Definition 2.L 

Definition 6.1. If two vertices of a (curved) triangle QipeQ(p) lie on F then 

Qip is called a contact element. If two vertices of a (curved) triangle Qi>peQ(p} 

lie on Fj u F2 u F5 then Qip is called a boundary element; see Fig. 5. 

Fig. 5. 1—5 boundary elements, 6—11 contact elements. 

C o n v e n t i o n . (Numbering of vertices.) If Qip e Q(p) is either a contact element 

or a boundary element, then we denote its vertices by Al9 A2, A3 so that Ax and A2 

are the two vertices which lie either on F or on rl u F2 u F5; see Fig. 6. 

for nuflufl 1UІ2U!5 

Fig. 6 (for y = \ ) . 
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Definition 6.2. Let Qt e Q(p) be either a contact element or a boundary element 
with vertices Ax, A2, A3. Let A4 be the point symmetric to A3 about the mid-point 
of the segment AXA2. Let A\ and A2 be two points on the sides AXA3 and A2A3, 
respectively, satisfying dist (Ai, A3) = y dist (A1 ?A3) and dist (A2, A3) = 
= y dist (A2, A3) where y is a fixed constant, 0 < y < 1. Then 

coi is the parallelogram with vertices Ax, A3, A2, A4 , 

T( p is the triangle with vertices Al9 A2, A3 , 

TlP is the triangle with vertices A[, A2, A3 . 

{See Fig. 6.) 

Definition 6.3. Let Q; „ e Q(p) and set 

Tip = $ iff Qip is either a contact element or a boundary element 

Then we define 

Q. p = ZTotherwise . 

Gi,P ~ perimeter of £T, 

Qi,P — diameter of the inscribed circle of 3". 

Asymptotic properties of Q(p) as p -> + oo, can now be formulated as follows: 

Definition 6.4. A family of triangulations Q(p), p = 1, 2, ... is called a regular 
family provided that: 

(i) There exist constants cx, c2 sucht that 

VitpSCiP"1, 

Q7,p = CiP 

for any positive integer p and for any i = 1, ..., K(T). 

(ii) If Qt p e Qip) and QitP is a boundary or a contact element, then 

T!tP c Qitp9 Qip c= aoip 

and 
dQip is star-shaped with respect to any inner point 

xeTiP. *) 

(iii) If Qip e Q(p) is a contact element with vertices Ai9 A2, A3 then any straight 
line parallel either to AiA3 or to A2A3 has only one common point with the 
curved side AiA2, see Fig. 1. 

*) This means that any ray with the origin at x has one and only one common point with 

щ,P-
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Now we give definitions required for the description of the technique of mapping 
Qi>p onto a fixed "reference" domain. 

Fig. 7. 

Definition 6.5. Denote by T the "reference" triangle with vertices A3 = (0, 0)y 

A2 = (1, 0), A! = (0, 1) and let QitP£ Q(p) be an element with vertices Ax, A2, A3. 
Then Fip denotes the affine mapping FitP : U2 -> 1R2 such that 

FitP(Ak) = Ak for k= 1,2,3. 

Definition 6.6. Denote by R, T' and P, respectively, the reference square with 
vertices Ax, A2, A3, A4 = (1, 1), the reference triangle T' with vertices A[ = (0, y), 
A2 = (y, 0), A3 and the reference polygon P with vertices Al5 A3, A2, A5 = (y/2, 
y/2); the constant y is defined in Definition 6.2. 

Definition 6.7. The range of F~[tP is defined as follows 

&i,P == {% e ^2? there exists x e Qip such that x = Fipx) ; 

see Fig. 8. 

If j/J is a function on Qip then \j/ = xj/ o F{ p is a function on Qip. 

R e m a r k 6.1. If Fip is the operator introduced in Definition 6.5 then there exists 
a "2 x 2" matrix Bi p and a vector bip e U2

 s u c n t n a t 

FiiPx = BitPx + bt 

for any x є U2-
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If we denote by |*|^fc,2(fi. p) the usual semi-norm on the Sobolev space Wk,2(Qif1) 
then we can prove, using a classical argument (see e.g. [1]), that 

M^(«..P) = \^tBi,p\1/2 l^^llkl^l^2^-) 
(convention: W0,2 = L2) and 

|l?|«*.><a..,> =§ Ide tB,,, ,!"1 '2 ||B,,p||*Ri |^|^,J(ni,p) 

for any integer k, where 

\\B, < 6 f f- .P 1" v, 

|det BfjP| g 2a 2
p , 

Z7T 

V integer p, Vi = 1, ..., X(p), Vi/' e W*'2(ß, 

Ä 

-2 "2 

Fig. 8 (for y = 1). 

Lemma 6.1. If a family DO) \S regular then there exist constants Cu C2 such that 

( 6 1 ) I^lki.-(OfiP) -S C1||#||Hri.a(3<iJ,) 

and 

(6-2) l#L(fi..,) = C2/#|k<o,„), 

ll^lU''2(S,,p) = ^I'/'IrTLHO,,,) . 

II^|IF-.-<3,>,) = C2p
_1|^|>^2.2cn«.p) 

V integer p, Vi = 1, . . . , K(p\ Vl/, e Jf -•-(Q,tl,). 
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Proof . The proof follows directly from Remark 6.1 and Definition 6.4. 

Lemma 6.2.. If Gx, G2 are simply connected domains, Gi c G2 and k is an integer, 
then there exists a constant C0 such that 

(6.3) inf ||u + X\\W*.HG) ^ C0\u\wk,2(G), 
XePk-i 

where Pk-, denotes the space of all polynomials of a degree less or equal to k — su 

Vw e Wk,2(G), VG : Gj c G c G2, OG is star-shaped with respect to G, (i.e. if 
x e Gl then c/r?y ray with the origin at x intersects dG at one and only one point). 

Proof. See Appendix. 

Theorem 6.1. If a family Qip) is regular (see Definition 6.4) then the assumption 
(Al) from Chapter 4 is satisfied. 

Proof. If w e V, w = [w1} w2], w} e F(Q'), w} e F(Q") then we define w(p) e V{p) 

so that 

v J } J' I for j- = 1, 2 
(w(p))" = w} j 

at any nodal point Q, i.e. w(p) interpolates w. As [w(p)]v = [w]v on N(p), it remains 
to show that w(p) -> w in V. We use a classical argument and give a sketch of the 
proof only. 

We shall investigate the norms 

II U! 1A)(p)\\ 

for j = 1, 2 and i = 1, ..., K(p) and an integer p. In accordance with (6.1) it is 

(6-4) | h - wJ'V.-cfl..,) ^ C.|^ - ^lUt^tS,.,) • 

First we deal with the most difficult case that Qt p is either a boundary element or 
a contact one. From Definitions 6.4 — 6.7 we can easily derive that dQi>p is star-shaped 
with respect to any inner point x e V so that 

Since w/ } is linear over i5f- p, there exist constants C3, C4 (independent of i, p, w) 
such that 

IW/ IWi.-^i.p) -S C3||w/ ||W!.2(R) = ^ I P / llc(R) • 

By means of the continuous embedding W2,2(P) into C(P) we can verify that there 
exists a constant C5 (independent of i, p, w) such that 

(6-5) \WP}\\wl'HGt.P) ^ C5\\Wj\\W2,2(P) g C s H ^ I ^ ^ S , , , ) • 
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As a consequence of (6.4) and (6.5) there exists a constant C6 (independent of i, p, w) 
such that 

(6-6) . K - wip)lk-.*(o,.P) = Q K I K ^ . P ) . 

Because w(p) is the piecewise linear interpolant of w7, it could be easily shown that 

if Wj is linear on Qip then w(p) = Wj on JQ̂  p . 

This means that (6.6) can be replaced by 

(6-7) K ™ wjp)K'2(^,p) ^ Q K + z|k-.>(o,iP) 

for any xeP^ 

Now, we use Lemma 6.2 with G2 = P and Gi a fixed ball inside T". Then (6.7) 
implies 

(6-8) \\wj ~~ wT\w^HOi>P) ^ C6CQ\w^2,2^itp) • 

Finally, using (6.2) we derive from (6.8) that 

(6-9) K " WIP)|k1-2(Oi,p) = C6C0C2P~V j |W^(O,,p)-

In the case that zQ^ is neither a contact nor a boundary element, we can reach the 

same result (6.9). The proof is similar to the previous case and hence we omit it. 

As a direct consequence of (6.9) we have 

||w - w(p>\\ = C 0C 2C 6p- x( I (K|S,2.a (O0 + \w]\W2,Hn»))y!\ 
1 = 1 

i.e. 
|| w — w(p)|| —> 0 for p -> +oo . 

We proceed with the verification of assumption (A2) from Chapter 4 and start with 

Definition 6.8. Let {TijP}k(I\ = T(P) be the partition introduced in Definition 2.2. 
For any i i ] P e i ( p ) there exist unique boundary elements K' e Q(p) and K" e Q(p^ 
such that 

K' cz Q' and K" cz Q" 

K' n r = K" n F = Ti<p . 

FOr this K' (Or K") we set 

Tip = { i e H 2 ; there exists xeK' (or K") such that x = Fx , where F is the affine 
mapping which corresponds to K' (or K") via Definition 6.5}. 

129 



If^ Is a function on Tip then \j/ = \jf ° F is a function on Tip, where F is the affine 
mapping which corresponds to K' (or K") via Definition 6.5. 

Lemma 6.3. If a family Q(p) is regular then there exists a constant C1 such that 

WIL 2C) =- C7P-1/2||^||L^,P) 

V integer p, Vi = 1,..., k(p), MTUP e T(P), VIA e L2(ritP). 

Proof. Let K" be the contact element corresponding to a given TitP via Definition 
6.8. We denote by Al9 A29 A3 the vertices of K"; in accordance with the convention 
it is A! e T, A2e F, A3 e Q". For any straight line p parallel to AXA3 we denote by 
X, Y! and Y respectively the intersection of p with F, the straight line AtA2 and the 
side A2A3; see Fig. 9. 

4 * ^ — — T 

Fig. 9. 

We set e = dist (Au A3), d = dist (A2, A3), a s dist (Al9 A2). If dist (Y, A3) = 
= a . d for a parameter a, 0 g a g 1, then dist (Yx . Y) = (1 - a) . e. Further we set 

£EE(dist(X, Y1)).(dist(Y1, Y))"1. 

We can consider the value /? as a function of the parameter a, i.e. P = /?(a). Using 
the assumption concerning the smoothness of F and the assumption (ii) from Defini­
tion 6.4, it can be shown that /? = /?(a) is infinitely differentiable on [0, 1], i.e. 
PeC^([0,l]). 

It is apparent that the coordinates of the point X = (xl9 x2) can be understood as 
a function of a, i.e. 

X = (x:(a) , x2(a)). 

Making the relevant substitution, we can show that 

(6.10) \\m2itl,p) = a f V(x,(a), x2(a))|2 ( l - 2(/?'(a) (1 - a) - fla)) £ - COS (Ú + 

+ ( Я a ) ( l - a ) - » 2 ^ J / 2 d a á 

g 2a |V(x , («) ,x 2 («)) | 2 ( l + ()8'(«)(1 - «) - /X«))2 ^ J ^ 
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where co is the angle between the lines AXA2 and A!A3; see Fig. 9. We can check that 

i f X - F - 1 ^ , Yl=F ^Y, f~F~1Y1 

then /5(a) = (dist (X, tt)) (dist (tl9 Y))"1 . 

Using the fact above we can derive that 

(6.11) milti,r) = v 2 J k(«i(«). ^2(«))i2 (i - n«) (i - «) +!?(«) + 

+ ( / ? ' ( a ) ( l - a ) - ^ ( a ) ) 2 i y / 2 d a = 

V ( * , ( a ) , x 2 (a)) | 2 (1 + (1 - j8'(a) (1 - a) + /?(a))2)"2 da . 

Since 

аnd 

- < ^ < ^-
я ~ QІ,P ~ C2 

1 + q2 ~ = max (2, ^ ) ( 1 + (1 -» <z)2) Vg e (-00, 00) , 

we obtain from (6A0) and (6.H) the estimate 

(6-12) | | ^ | i l ( t l , p ) ^ 2 a | | . A l 2

l ( f i , F ) m a x ( 2 , 3 | ) , 

where the constant a can be estimated as follows: 

(6.13) a = meas (ii)P) = eip-1 . 

The estimates (6.12), (6.13) give the assertion of Lemma 6.3 immediately. 

Lemma 6.4. If a family Q(p) is regular then there exists a constant C8 such that 

(6.14) | |w>, - L<")(w>,)| t 2 ( r ) ^ CslKl^,^,^1/2 

and 

(6A5) | |w>, - L(p)(w>,)||L2(r) = Csllw;!!^^^-1/2 , 

where L{p) is defined in Definition 4.1, V integer p, Vw = [w1? w2] e V(/0, VI = 1, 2. 

Proof. We verify (6A4) only; the estimate (6.15) can be proved in the same way. 

Making use of the triangle inequality, we obtain (dropping the index) 

(6.16) |w'v - L < > ' v ) | | t 2 ( r ) = I V - L " V ) v | | M r ) + 

+ ||(L<*V)(L<»v) - L<")(W 'v)| |L 2 ( r ) + ||(L<'V)(v - L<")v)| | r 2 ( r ). 
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We successively estimate all three terms on the right hand side of (6A6). To this 
purpose we choose an arbitrary Tip e r ( r ) and denote by K' the relevant element from 
Q(p) via Definition 6.8. 
(a) Lemma 6.3 yields 

I V - L<*V) v|| l l ( t l i j r ) ^ C7p-"2||(vv' - L<*V) v | t 2 ( i , p ) . 

Apparently, there exists a constant C9 (independent of p, i, w) such that 

(6-17) | |v | | L „ ( . , , p ) <;c 9 . 

Hence 

\\(w' - L"V)v|L 2 ( f i_p ) g C9\\w' - Z f ' V f l ^ , , , , ^ 2C9 | |^ ' | |C ( e , ,p )(measf j > p)1/2 . 

We remark that Definition 6.4 (assumption (iii)) implies 

meas xip <; 2 . 

As the space of linear functions is finite-dimensional, there exists a constant C10 

(independent of p, i, w) such that 

||w'||c(Si lP) = | |^'| | C(R) = C1o||Vv / | | f ri>2 ( r^ ) g C 1 0 | |w , | | T F i , 2 ( ^' ) , 

The estimates above yield 

(6.18) ||(w' - i f ' V ) v||L.(tliF) ^ Ctlp-ll2\W\wuw , 

where Cll = 4C7C8C9C1 0 . 

We can easily check that if w' is constant on K' then w' is constant on Tip and hence 
w' = lSp)w' on Tip. This fact implies that (6.18) can be replaced by 

(6.19) \\(w' - £ > V ) v||L2(ti,p) g Cu\w' + X\wuHR.)P-1'2 

for any constant %. According to Lemmas 6.2 and 6.1, we can estimate 

(6.20) inf ||w + X\\WI.HK>) ^ coC2\w'\wi,2(K1 ; 
/ = const. 

we remark again (see proof of Theorem 1) that fL' is star-shaped with respect to any 

inner point x e T and that T cz K' c R. 

Hence (6.19) and (6.20) yield 

||(w' - L^w')v\\L2(Xitp) g Cl2p-1/2\w'\wu2iK^, 

where C12 = CilC0C2, and finally 

(6.21) ||(w' - L<"V) v|L 2 ( r ) § C . 2 j T " V l , - , .^ . , . 
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(b) By means similar to those used in the proof of (6.18) we can show that 

(6.22) ||(LVv')(L<"v) - &\w'. v)||L2(r(>p) £ C^p-^w'^.^, 

where the constant C13 does not depend on p, i, w. If w' is constant on K' then w' 
is constant on zip and hence (L ( PV) (L(p)v) — lip)(w' . v) = 0. It means that we can 
replace the estimate (6.22) by 

(6.23) ||(L«V)(L<">v) - &\w'. v)||L2(ti ip) g C 1 3 p - " 2 | w ' + xlw^V) 

for any x = constant. Making use of Lemmas 6.1 and 6.2, we estimate 

||(L<"V)(L<">v) - L<">(w'.v)||L2(t„p) g C 1 4 ^ 1 / 2 | w V , W , 

i.e. 

(6.24) ||(L<">w') (L<">v) - &\w'. v) |L 2 ( r ) S C1 4p-1 / 2 |wV*^(- ' ) • 

(c) It holds 

(6.25) ||(L<"V) (v - L<">v)||L2(r) ^ |L<">w'||L2(r) ||v - L<">v||wr) . 

Since we assume that F is infinitely differentiable, we can easily check that 

(6.26) ||v - L<*>v||wr) ^ Cl5p-\ 

where the constant C15 is independent of p. We remark that lSp)v is the piecewise 
linear interpolation of v with respect to a variable which is a parameter of the variety 
F. As v and F are smooth enough, the result (6.26) is the same as that in the one-
dimensional case. 

Lemmas 6.3 and 6.1 yield 

(6.27) | | ^ V | | L 2 ( T , p ) £ C 7 p - / i I i ^ | | L 2 ( f , p ) £ 

^ C7C1 6P~1 / 2 | |w' | | r i ,2 ( r o g C7C1 6p~1 / 2 | |w' | |^i ,2 ( i n g C7C16C2jp
1/2||w ,|| iyl)2(K,) , 

where the constant C16 does not depend on p, i, w. 

Setting C17 = C2C1Cl5Cl6 we derive from (6.25)-(6.27) that 

(6.28) | | (U 'V) (v - L<"v)||L2(r) ^ C17p^/2||w'|U,2(in . 

(d) The assertion (6.14) follows from (6.21), (6.24) and (6.28) 

Theorem 6.2. If a family Qip) is regular (see Definition 6.4) then the assumption 
(A2) from Chapter 4 is satisfied. 

Proof. If w e V<P» then it holds 

(6.29) [w]v - L(p)[w~\v = (w'lVl - L<p)(wiv.)) + (w'2v2 - L<">(w>2)) -

- (wl'v, - L ' V / v , ) ) - (w;v2 - L<*>V'v2)) . 
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Using Lemma 6.4, we derive from (6.29) that the following estimate holds: 

(6-30) | | |> ] v - L « > ] v | L 2 ( r ) ^ C8p-^\\W\\ 

V integer p, Vw e V(p). It means that the assumption (A2) is satisfied. 

APPENDIX 

The aim of this section is the proof of Bramble-Hilbert lemma under the assump­
tion that the domain of independent variables can be varied in a certain sense (see 
Lemma A.3). Throughout this appendix we assume G,, G2 to be bounded simply 
connected subdomains of the plane such that G{ c G2; the restriction on U2 is made 
just for the sake of simplicity. Let P be a fixed point of G{. We introduce a family 9Jt 
of subdomains G as follows: 

3JZ = {G is a subdomain in U2; Gx a G cz G2, G has Lipschitz continuous bound­
ary dG, dG is star-shaped with respect to the point P}. 

To characterize the family 2R, we fix two balls B, and B2 centered at P5 Bt c 
c Gi c G2 c B2; let Rt and R2 be the radii of Bl and B2. We set k = P1/K2. 

Lemma A.l. There exists a constant Ci such that 

( A l ) HL2(G) = c i (\U\W^HG) + udx 
V JG 

for each GeWl,ue Wl,2(G). 

Proof. For a given G e 9Jt the class C1(G) is dense in W1,2(G). Thus it is sufficient 
to verify (A.l) assuming u e C1(G) instead of u e W1,2(G). 

We introduce a polar coordinate system [r, <p] centered at P. For any domain G 
there exists a Lipschitz continuous function r = r(<p) such that [r, <p] e <3G iff r = 
= r(cp) and 0 = cp < 2n. If x = [r1? </>,] and y = [r2, <p2] belong to G then u(x) — 
— u(y) = ax + a2 + a3, where 

ctl = ax(r1? cpx) = u(rl5 cpx) - u(kr,, <p.) , 

a2 = a2(rl9 cpu cp2) = u(kr1? cp,) - u(krl5 cp2) , 
a3 = a3(^o r2, cp2) = u(kr1? <p2) - u(r2, <B2) . 

Let US note that [r, <B] e G implies [kr, <p] e B<. Assuming u e C^G), we can write 

f " du ( \A r du n \A 
a i = — (r,<Pi)dr; a2 = — (fer„ <p) dcp ; 

a3 = — (r, <p2)dr 
Jfcn dr 
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and using the Holder inequality we estimate 

(A.2) l o g -
k 

r(<pl) 

(r,Фi ár , 

a2 < 2тг 

log 

дu 

õcp 
(krl9(p) dф , 

>r(q>2) дu , , 
— ( r ' V2) 
Or 

dr . 

Since 

\u(x) - u(y)|2 = |u(x)| 2 + |u(y) | 2 - 2u(x)u(y) g 

^ 3(a2 + a 2 + a 2) , 

we obtain by double integration over G that 

2(meas G) ||w||2

2(G) — 2 ( u(x) dx ) g 

p2rt /•2JT /»r(<pi) pr(<p2) 

^ 3 r ^ a 2 + a 2 + a 3 ) dr 2 dr 2 dq>ud<p2 . 
Jo Jo Jo Jo 

Using the bounds (A.2) one can easily conclude that there exists a constant C 2 

(independent of u and G) such that the right hand side of the above inequality can be 

bounded by 

C, 
•2fi r>r{<p) / 

o J 0 V 

дu 2 1 
+ -

õu 

\ÕГ r дcp 
dr dę 

which is equal to C 2 |u | 2
F i , 2 ( G ) in Cartesian coordinates. We immediately get (A.l) 

with Cv = (meas G{)
1/2 max (1, (2~ 1 C 2 ) 1 / 2 ) . 

Lemma A.2. There exists a constant C 3 satisfying 

(A3) inf ||u + c||^i,2 (G) ^ C 3 |u |^i,2 ( G ) 

c — const. 

for each G e SIR, u e Wl2(G). 

Proof. The inequality (A.3) follows directly from (AA). 

Lemma A.3. For any integer k there exists a constant Kk such that 

(A.4) inf \\u + x\\w*,HG) ^ Kk\u\wk,2(G) 

XePk-i 

for each G e sItf, u e Wk2(G); Pn denotes the set of all polynomials of the n-th degree. 
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Proof. According to Lemma A.2 the inequality (A.4) holds for k = 1. Assume 

(A.4) to be valid for a given integer k = n — 1. Note that xn-i
 e Pn-i iff 

Xn-l ~ Xn-2 + __ ^ a X l •X2 > 
| a | = n - l 

where af is an integer, |a| = aj + a2 and #a are constants. 

First we realize that 

inf ||H + X\\W"*HG) = ( inf ||M + x\\wn-I.JW + |w |^^ ( G ) )
1 / 2 

XePn-i xePn-i 

and estimate 

inf ||u + x\\wn-i*HG) __ inf inf ||u + £ aaxTx2
2 + Xo||^-^-(G) _i 

*eP--i {«a}|«|=n-l ZoeBn-2 | a | = n - l 

__K2_! inf lu + E ^ l ^ W - l ^ C G ) , 
{««}|«|=n-i | a | = n - l 

where the last inequality follows from the induction assumption. According to 

Lemma A.2 we further estimate 

inf |u + X a«AxA2\wn-i>HG) __ 
{«_}|a|=n-l | a | - « - l 

^ X inf |-*" + ««|L(0)_--? I |->*«|̂ ..(G) _--f|«|iV-..(C) • 
a = n— 1 a a = const. | a j=n—1 

Thus we finally conclude that 

inf ||II + z||-..-(G) _ (1 + X ? „2_ I)
1 / 2H 

/ePn 
W».2(G) 

which completes the rc-th induction step with Kn = (1 + K2K^j)1/2 obviously Kn 

is independent of the choice of u and G. 
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