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SVAZEK 19 (1974) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

UNIVERSAL APPROXIMATION BY SYSTEMS 
OF HILL FUNCTIONS 

KAREL SEGETH 

(Received April 23, 1974) 

1. INTRODUCTION 

Several results extending the author's work [7] are given in this paper. In particu­
lar, these results contribute to a better numerical employment of the ideas presented 
in [7], For the sake of simplicity we will confine ourselves to the one-dimensional 
case as well as we did in [7], 

Let co be an infinitely smooth rapidly decreasing function and A its Fourier trans­
form. In [7], the approximation of the form 

(1.1) t ckaj((xlh-k)n(h)) 
k = — oo 

is studied where r\(h) is a certain increasing function (so-called A-admissible function), 
/7(0) = 0. This approximation is shown to be universal, i.e., for any approximated 
function / we obtain the best possible order of approximation limited only by the 
smoothness of/. Analogously to the hill functions of Babuska [ l ] the function co 
is called the universal hill function. 

Babuska [1], and Fix and Strang [4], [9] consider the approximation of the form 

00 

(1.2) I ckco(xlh-k) 
k = — 00 

and show that it is necessary for the Fourier transform of the hill function co to have 
zeros at the points 2nj for all non-zero integers j . The multiplicity of these zeros 
determines the highest order of approximation attainable. 

In the universal approximation of the form (1.1), no zeros of the Fourier transform 
A of the universal hill function co are required in general. The quality of the approxim­
ation is achieved only by the employment of the A-admissible function rj(h). However, 
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practical computations show that if A has zeros at some of the points 2nj\r](h) (which 
correspond here to the points 2nj considered in the approximation of the form 
(1.2)) then the error of the result may decrease. We will be concerned with this pheno­
menon in the paper. 

Unfortunately, the dependence of A (as well as of co) on n is more complex in this 
case. We have to work with a whole system of universal hill functions here and the 
results of [7] need a generalization, which is the subject of this paper, too. 

The purpose of such an investigation is far from purely theoretical. In practical 
computation, the round-off error prevails in the result relatively soon, i.e., for relati­
vely large parameter h. Thus we cannot obtain arbitrarily accurate results choosing 
sufficiently small h. We are forced to seek ways for obtaining very accurate results 
for relatively large values of /?, which are acceptable in the numerical process in­
volved. • 

Basic concepts of the theory of generalized functions are introduced in Sec. 2. 
We refer to [10], [7] for their principal properties. In addition, the main result 
of [1] in approximation by hill functions is given in this section. 

In Sec. 3 we introduce a system {coy}ye(otu) of infinitely smooth rapidly decreasing 
functions and establish a theorem concerned with the approximation by this system 
of universal hill functions. A proper choice of a A-admissible function rj(h) is shown 
for a class of systems {coy} and a possibility of the approximation by a system of 
functions not having compact supports is studied. These statements are generaliza­
tions of the corresponding theorems of [7] Sec. 4. 

Two particular systems of universal hill functions the Fourier transform of which 
has zeros of a certain multiplicity at some of the points 2nj\y are constructed in Sec. 4. 
Moreover, a theorem examining the influence of these zeros on the quality of the 
approximation is proven here. 

In conclusion, a simple numerical example illustrating the statements of Sections 3 
and 4 is given in Sec. 5. 

2. PRELIMINARIES 

We will confine ourselves to the one-dimensional case. Apart from basic defini­
tions and notations, the principal result of [1] is given without proof in the con­
clusion of this section. 

Definition 2.1. Let R be a one-dimensional Euclidean space. Let us denote the set 
of complex-valued continuous functions defined in R with derivatives of all orders 
continuous in R by C°°(iv). Let us denote by S(R) the set of all rapidly decreasing 
(at oo) functions (i.e., the functions cp e C^K) satisfying the condition 

SUp |xk<p(I)(:x)| < OO 
xeR 
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for all non-negative integers k, l) with the usual topology (see [10]). Let S'(R) 
be the space of generalized functions over S(R). We will write simply C00, S, S' etc. 
instead of C°°(R), S(R), S'(R) wherever it will not be ambiguous. • 

We also introduce the convolution cp * i/> of functions cp, xjj e S, and the product \j/f 
and the convolution / * \jj of functions \j/ e S, / e S' in the usual way. 

Definition 2.2. Let w(x) = ax + b be a non-singular linear mapping of R on R 
with a, b real, letfeS'. Let us denote by f(ax + b) a function from S' satisfying 
the relation 

(f(ax + b), <p(x)) = (f(w(x)), cp(x)) = \a\~l (f(x), <p(w-\x))) 

for any cp e S. For the sake of brevity we will sometimes use the notation 

f\x)=f(ax) 
with b = 0. 

Definition 2.3. Let us denote the Fourier transform of a function cp e S by 

^(cp)(x) = y(x)= T eitxcp(t)dt. 
J - o o 

Let us introduce #"(/) = JforfeS' by the equality 

(&(f), .¥(?)) = 2n(f, cp) 
valid for any cp e S. 

R e m a r k 2.1. The Fourier transform <F is a linear continuous mapping of S on S 
and of S' on S'. The inverse Fourier transform &r~1(cp) of the function cp eS is given 
by the formula 

.*~»(x)-. i - P e-il*<p(t)dt. 
2?rJ -oo 

The inverse Fourier transform ^~1(f) of the function fe S' is defined by the equality 

(F-\f),<p) = (2n)-l(f,&(<P)) 
valid for any cp e S. 

Definition 2.4, Let f e S'. A closed set G = s u p p / is said to be the support of the 
function f if (f, cp) = 0 for all cp e S such that cp(x) = 0 in some neighborhood 
of G.(A support in the sense of this definition need not mean the minimal support.) 

Definition 2.5. Let us denote by Ha(R), a ^ 0 the set of all functions f e S' such 

that 
H / ) ( x ) | 2 ( l + \x\2')eLx(R). 
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Let us put 

(2.1) ||f||H«(R) = f T Hf)(x)|2(l + W")dx. 
2TUJ„ 0 0 

The normed linear space Ha(P) with the norm (2.1) is said to be a fractional Sobolev 
space. 

Remark 2.2. Apparently Ha(K) => H^K) for 0 ^ a ^ p, and H°(R) = L2(R). • 

The following theorem is a special case of Theorem 4A , the basic approximation 
theorem of [1]. 

Theorem 2.1. Let 0 ^ a' :g ft be real numbers. Let atj e S';j = 1, ..., r be functions 
with compact supports. Let xf J = 1, ..., r be (complex-valued) trigonometric poly­
nomials such that the function 

* = ihxj 
I=i 

where Xj = i^(cO/) hOs the following properties'. 

\. 

(2.2) A(0) # 0 . 

2. There exists a function z(k) such that 

(2.3) |A(x - 2TU/C)| ^ z(k) |x|f 

for some t ^ 0, all x such that 

(2.4) |x| < 7i, 

and all integers k =# 0, and 
3. 

oo 

(2.5) X -"W N2*' < °° • 
fc= — oo 

Then there exists an operator Ah, 

r oo 

^(j)W = Z X cAh,f,k)a>/xlh-k) 
j = 1 fc = — oo 

mapping H^ into H* for any 0 ^ a ^ a'. Moreover, 

(2-6) ||/ - A„(j)IU« = Ch"|/|U, 
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where 

(2.7) p = min (t — a, p — a) 

and 0 < C < oo is a constant independent of h. 

If the support Toff is compact then there exists a constant 0 < L < oo indepen­

dent of h such that Ah(f)has a compact support T' where V is an Lh-neighborhood 

ofT. 

P r o o f is given in [1], 

R e m a r k 2.3. Further analysis in [ l ] shows that the conditions (2.2) to (2.5) are 

not only sufficient but also necessary for the estimate (2.6), (2.7). Condition (2.3) 

is of particular importance. It says that the function A has zeros of multiplicity t' 

at all the points Ink where k + 0 is an integer and t' is the minimal integer not less 

than t. 

3. UNIVERSAL APPROXIMATION BY SYSTEMS 

This section is devoted to the formulation of the results of [7] Sec. 4 for systems 

{coy} of functions introduced in Definition 3.1. The principal theorem of the paper 

is Theorem 3.1, an analog of [7] Theorem 4.1. In the theorem we examine the appro­

ximation by a system of hill functions, i.e., the approximation of the form 

X ckoon{h)((x\h - k) rj(h)), 
л = -

where ^(coy) = Ay and /? is a A-admissible function introduced in Definition 3.2, 

and show when this approximation is universal. We attach a brief sketch of the proof 

of this theorem since we will need some relations and the notation of the proof 

in Sec. 4. For the same reason, we present also Lemma 3.1 (an analog of [7] Lemma 

4.2) with proof. On the other hand, we refer to [7] wherever it is suitable. 

In conclusion, we show the choice of A-admissible function for a class of systems 

of universal hill functions in Theorem 3.2 and consider a numerically practicable 

way for the approximation by a system of functions not having compact supports 

in Theorem 3.3. The proofs of these theorems follow from the proofs of [7] Theo­

rems 4.2 and 4.3 after obvious changes. 

C, D, and Lmean general constants (independent, in particular, of the parameter 

h) taking different finite positive values at different places throughout this and the 

following section. 

Definition 3.1. Let U > Obe given. Let us denote by {<Py}y6(o,v) a system of complex-

-valued functions cpy defined in R for all y e (0, U). We will write simply {cpy} 
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wherever it will not be ambiguous. Further we will write {cpy} a S(R) if cpyeS(R) 

for any y e (0, U). 
A single function cp will be considered as a system {cpy} if we put cpy = cp, y e (0, U), 

with an arbitrary U > 0. 

Remark 3.1. Let {<py} c S. Let us put i/Jy = &{<Py) for any y e (0, U). Then 
apparently {ij/y} a S (cf. Remark 2A). # 

We will introduce the concept of the A-admissible function n(h), which plays 
an important role in the universal approximation by hill functions as well as by 
systems of them. 

Definition 3.2. Let {Ay}ye(0 V) c S(R) be given. A bounded continuous increasing 
real-valued function rj(h) defined on the interval <0, 1> is said to be A-admissible 
if it satisfies the following conditions: 

1. 

(3.1) ri(0) = 0, rj(\)^U. 

2. There exists a finite positive constant C(n) such that 

(3.2) lfjrj(h) ^ C(tj) 

for 0 < h < 1 and any e > 0. 

3. For any a = 0 there exists a function z(k) = z(k, oc) such that 

(3.3) \A,(h)((x - 2nk)ln(h))\ ^ C(a, y) W z(k, a) 

holds for all integers k, k =f= 0, any y §: 0, 0 < h < 1 and |x| < n with some 
finite positive constant C(a, y). Moreover 

OO 

(3.4) £ z2(k, a) |k |2a < oo , 
k= — oo 

£4=0 

i.e., /he series converges for any a ^ 0. 

R e m a r k 3.2. Let AGS. We will also speak about the A-admissible function 
n(h) in the sense of Definition 3.2 considering the system {A}]yei0U) given by the 
equality Ay = A, ye(0, U), where U > 0 is arbitrary (cf. Definition 3.1 and [7] 
Definition 4.1). 

Theorem 3.1. Let e > 0, s' > 0 he given. Let {ojy}ye(0)V) <= S(R) and let us denote 
the Fourier transform of coy by ^(cx>y) = Av. Let there exist finite positive constants 
Voo> IV and Fs such that 

(3.5) o < r 0 0 < |A , (0) | , 
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(3.6) sup \A„(x)\ S T0 , 
xsR 

(3.7) sup \Ay%x)\ g rs 
xeR 

for any positive integer s idependently of y e (0, U). Further, let there exist a A-ad-

missible function n(h). 

Let 

(3.8) 0 < a £ P < oo 

be m*?/ numbers and let f e HP(R). 

Then there exists an operator Ghrj, 0 < h < 1, 

oo 

(3.9) C i / ) (x) = # ) X c(A, A, / ) a>„w((x//. - fe) # ) ) 
k= — oo 

such that 

(3.10) | | / - GfJf)\\H.iR) <? C(a, /», c) / ^ - - | |f | jH/?(R) 

for 0 < h < 1. 

Let Q cz R be such a set that 

(3.11) (2 = suppc0y, ye(0, U) 

(cf Definition 2.4). If bOth the support T of f and the set Q are compact then there 
exists a constant L(a, /?, e') such that Ghit}(f)has a compact support Tr where T' is 
an Lhl~~£ -neighborhood of T 

Proof. The course of the proof is based on that of Theorem 4.1 given in [7] . 
We refer to [7] in the cases when the argument of the proof remains completely 
unchanged. However, we repeat the substantial steps of the proof here and introduce 
the notation which will be used in Sec. 4. 

The proof consists of four parts. In the first part we approximate the function 
feHfi(R) by a function fh e CG°(R) and find the bound (3.16) for the error of this 
approximation. We construct a function g 6 Ha(R) approximating fh in the second 
part and find the bound (3.25) for the norm of their difference in the third part. 
The fourth part is concerned with the statement on compactness of the support 
of G;,,.(/). The proof of an auxiliary statement is removed into Lemma 3.1 that 
follows the proof of the theorem. 

1. We introduce the function fh e C00 exactly in the same way as in [7]. We start 
from the definition of the functions x e S, v e S: 

x(x) = exp(N2 - 1)"1 , |N| ^ 1 , 

= 0 , |x| > 1, 
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and v = ?F(x). According to [7] Lemma 4.1 there exists a trigonometric polynomial 
P such that 

(3.12) |i - cp(xh)\ = C\x\p~* hp~x, \xh\ < 1 

where 

(3.13) <p = vP 

and <p e S. Further let us write % = ^~l(q>) and 

(3-14) A = «"«(/ *x[ft"']) 

whe re / e tf'(R). Then we obtain that/,, e C00, &(fh)eS' (cf. [7] Remark 2.3) and 

(3.15) £„ = &(fh) = <p™<F(f). 

Moreover, we find that fh e H*(R) and 

(3-16) |A - / I U R , = C^-1/ | |H , ( R ) • 

2. According to Lemma 3.1 there exists a trigonometric polynomial Ph such that 

(3.17) \Anih)(xh\ri(h)) Ph(xh) - 1| S C / / - a | x p - a , |x| g rr/h 

and 

(3.18) |P„(x)| S Ch~\ xeR 

for an arbitrarily chosen s > 0. Then we may proceed in the same way as in the 
proof of [7] Theorem 4.1. Let us put 

OO 

(3.19) C*(x) = Ph(xh) £ Ux-2nklh). 
fc= — GO 

Then the series in (3.19) converges in L2( — n\h, njh) since we may estimate 

(3.20) || £ U* ~ 2*fc/«)L(_1,/M/ll) g C||/||i2(R) -
k— — oo 

Therefore ^he L2( — n\h,n\h). Moreover, the function £/. is apparently periodic 
with period 27r//i. Further let us write 

(3-21) U = P[h\ih + <K) 

where 

(3.22) ^(x) = X U* - 2*klh) • 
k*0 
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This function is denoted by £* in [7], i.e., 

(3-23) c*h = i,h 

in our present notation. 

Let us construct a Fourier series for the function £fc in ( —71//7, nlh) , 

w,! » = I -*(*)«" 
k = - 00 

where 

**(*) 
2я 

•л//i 

^(xje-^dx 
- Л / / Í 

Finally let us write 

g(x) = A-^(A) f ck(h)mMh)((x\h - k) r,(h)). 
k = — 00 

Then we find (cf. [7] Remarks 2.2 and 2.7) that 

A„-'(A) ^(/*"-<*>J) (x) = A¥h)(x) t ck(h) e'*"<*>\ 

(3.24) j fy ) = c^jjs; '<*>] = P[hU% '<"%, + P™A% '<*»«/,„. 

3. Let us now show 

(3-25) \h-9\Hw<Ch>-—\f\Htw. 

Then we obtain also that g e H*(1\). From (3.15), (3.24) we have 

1 f00 

(3.26) ||A - gtUn = 2- J Ux) - Pu(xh) An(h)(xhl,ih)) ch(x) -

- Ph(xh)An(h)(xhln(h))<l,h(x)\2(l + |x|2")dx g 

g C/T* |1 - P„(xA) ^, („, (xhMh ) ) | 2 |ax ) | 2 ( l + |x|2*)dx + 
\ J -7T//1 

+ T " |PA(xA)A,(A)(xA/,,(A))|2|^(x)|2(l + |x|2«)dx + 
J -n/h 

oo f*n/h 

+ E |w,W|2 K(*)((*A - 2^)/^(A))|2 (1 + |x - 2;rA/A|2°) dx + 
/C= — 00 J — Tt//l 

fc*0 

+ f k"*WI2 (i + M2*) dx) = q / , +I2+I3+ u) 
J n/h<\x\ ) 

since £h is periodic with period 2njh. 
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From (3.8), (3.15), (3.17) we obtain 

(3.27) 7, g Ch2(ß~x) 
>я/A 

\3?(f)(x)\2 \<p(xh)\2 | x | 2 ( " - ^ ( l + | x | 2 a )dx g 
-я/A 

< r -/-2(B-a)|j /-II2 

since the functions cp and 

(3.28) (1 + | x | 2 a ) | x | 2 ( / ? ~ a ) ( l + Ixl2^)-1 

are bounded in R. 

We can easily verify that the assumptions of [7] Lemma 4.3 are fulfilled. Putting 

y = a in the statement of the lemma and using (3.23), we have 

r \ux)\2(i+\xndx^ch^-^\f\\2

HHR) 
J -7t/A 

which together with (3.6), (3.18) gives 

(3.29) I2 g Ch2<"—'>||/||*,(JI) 

for an arbitrary e > 0. 

Further let us write 

I3 S I V ,lP,(xh)|2 |^,W| 2 \A,m((xh - 2nk)jn(h))\2 (1 + |x - 2/rfc/hHdx + 
fc*0 J -7t/A 

+ I V | ^ . ( ^ ) | 2 | ^ ( x ) | 2 \Anm((xh - 2nk)\t](h))\2 (\ + jx - 2nkjh\2*)dx = 
fc*0 J -7T/A 

= '31 + / 3 2 . 

Putting 7 = P + e in (3.3) of Definition 3.2, and using (3 + 8) and the fact that 

1 + \x ~ 2nk\h\2a £ C/T2 a |k |2 a 

we get 

(3.30) \Ph(xh)\2 \Anih)((xh - 2nk)lr,(h))\2 (1 + |x - 2Kkjh\2^) g 

g ChHf--t z2(fc) |fc|2« 

for |x| ^ 7t/h, 0 < h < 1, and any integer k, k + 0. Then from (3.15), (3.30), and 
(3.4) of Definition 3.2 we have 

I31 £ Ch2("-a) X -2(k) \k\2* \ \<P(f) (x)|2 \<p{xh)\2 dx g 
fcФO J -к/h 

J - i t / f i 
(R) 
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because the function cp is bounded in R. Putting y = /? in [7] Lemma 4.3 and using 
(3.23) we obtain 

r î (x)p(i + i^)d^C i i / i i^w , 
J - */A 

which together with (3.30) and (3.4) of Definition 3.2 gives 

J32 < Ch*«-> E z2(k) \k\» ["' \*h(x)Y (1 + | . f ) dx < CA2( '-">||/ | |J, (- ) • 
Ac*0 J - i t /A 

Therefore 

(3.31) 73 £ C h ^ - ) | | / | | 2
w . 

Finally we use (3.8), (3.15) and the boundedness of the function cp to show 

(3.32) h<c[ \3F(f) (xf (1 + |x|2«)dx < 

C f K j ) W | 2 (1 + l^2") k | 2 ( a -" ) dx < Ch^-yfHHRl 
Jn/h<\x\ 

< 

since the function (3.28) is bounded in R. 

From (3.27), (3.29), (3.31), (3.32) we obtain (3.25), which together with (3.16) 
completes the proof of (3.10) if we put 

Gh*(f) = 9 • 
ThusGhitJ(f)eH«(R). 

4. Supposing that the support T of f is compact and repeating the argument 
of the proof of [7] Theorem 4.1, we establish that the sum in (3.9) is finite, i.e., 
the summation goes o^er all integers k e K where 

(3.33) K - [k, kh = v + y , v e T, \y\ g Lh] 

with some finite positive constant L. 

Let the set Q be also compact, i.e., let there exist a constant D such that 

Q c [x, \x\ = D] . 

Then according to (3.11) 

Qk = supp <Dm((x/h - k) rj(h)) c [N, |(x - kh) n(h)/h| £ D] = 

- [x, kh - Dhjri(h) ^ x ^ kh + Dh/rj(h)] . 
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Finally with respect to (3.33) we find 

(3.34) T' = supp C,,„(/) = U Q, k 
keK 

a [w, w = v -f x + y, v e T, |y | ^ Lh, |x | ^ Dhjn(h)\ cz 

cz [w, w = v + z, v G T, |z| ^ Lhl~£] 

since the function hE'(L + Djn(h)) is bounded for 0 < /?. < 1 and an arbitrary 
e' > 0 according to (3.2) of Definition 3.2. Apparently (3.34) is an Lhx~E -neigh­
borhood of T The last statement of the theorem has been proven. 

Remark 3.3. Choosing in Theorem 3.1 

(3.35) coy = o) 

for all y e (0, U) we obtain immediately [7] Theorem 4.1. 

In the sense of Definition 3.1 and Remark 3.2, we say that a function a) e S(R) 
satisfies the assumptions of Theorem 3.1 if the system {coy} where coy is given by 
(3.35) (as well as the system {A^}, Ay = ^(coy)) satisfies them. • 

The following lemma is used in the proof of Theorem 3.1 and also referred to 
in Sec 4. 

Lemma 3.1. Let the assumptions of Theorem 3.1 be fulfilled. Then there exists 
a trigonometric polynomial Ph such that 

(3.36) \A,m(xhjn(h)) Ph(xh) - l| ^ C\x\"- h>-

for \x\ = njh and 
\Ph(x)\ ^ Ch-

for x e R and an arbitrary s < 0. 

Proof. The existence of Ph follows from a modification of the proofs of [7] 
Lemmas 4.1 and 4.2. If /? = a we may put Ph(x) = 0. Thus let a < /? and let us 
denote the minimal integer not less than ft — a + 1 by B. Let us choose two integers 
N = M in such a way that 

N-M = B - 1 ^ 0 . 

Assuming that Ph is of the form 

(3.37) Ph(x) = i bk(h) «'*-
k = M 

we will find its coefficients bk(h)\ k = M, ..., N. 
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Let us write a Taylor series for the function (A%)
mPh - 1) e C°°(R). Putting 

(3.38) ^-(An(h)(xjr,(h)) Ph(x) - \)\x = 0 = 0 ; j = 0, 1, . . . , B - 1 

we get the Taylor series with the first B terms equal to zero, i.e., 

A,(h)(x\n(h))Ph(x) - 1 = xB(B\)~l f-(A,(h)(xlr,(h))Ph(x))\x=x 

ax 

for INI ^ 7r where |jc| < n. Substituting (3.37) for Ph and using (3.6), (3.7), and 
Definition 3.2, we get 

\Am(xlrj(h)) Ph(x) - \ \ S C\x\B
n-

B(h) £ \bk(h)\ . 
fc = M 

We will show that max \bk(h)\ = Ch~£ in the following. Considering this and 
fc = M , . . . , J V 

(3.2) of Definition 3.2, we will have 

\An(h)(xjn(h))ph(x) - i | g c h " 1 ! * ! " - ^ ' . 

Substituting finally xh for x, we obtain (3.36). 

Let us further examine the conditions (3.38). Differentiating (3.37) and substituting 
for the derivatives in (3.38), we have the system of B linear algebraic equations 
for B unknown coefficients bk(h); k = M, ..., N, namely 

(3.39) X ajk(h) bk(h) = 80j ; j = 0, 1, . . . , B - 1 
fc = M 

where 

(3.40) ^ = £o(;)i-w-jm^o) 

and c>m,, is the Kronecker symbol1). Making use of the form (3.40) of the elements 
of the matrix of the system and expressing the determinant det (ajk(h)) of this matrix 
in terms of the sums in (3.40), we finally obtain 

det (ajk(h)) = ( '
B(B-1) /2 AB

(h)(0) VB(M, M+l,...,N) 

where VB(M, M + 1, ..., N) is the non-zero Vandermonde determinant formed 
of the B integers M, M + 1, ..., N, which are different from each other. Considering 
(3.5), (3.6) we can estimate 

(3.41) F*|VB(M, M + 1, . . . ,N ) | = |det (ajk(h))\ ^ r*>|VB(M, M + 1, . . . , N)| > 0 

) 3mn = 0 unless m = n, in which case 3mn — 1. 
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independently of h. Thus the system (3.39) has a unique solution bk(h); k = M, ..., N 
for any right-hand part and 0 < h < 1. The trigonometric polynomial (3.37) satis­
fying (3.38) has been constructed. 

Let us solve the system (3.39) using Cramer's rule. Denoting the matrix, obtained 
by replacing the rth column in the matrix (aJk(h)) by the column of the right-hand 
parts, by (rajk(h)) and treating this matrix in the same way as above, we find 

(3.42) detCaд(й)) = (-l)'È... ү! Í< 
/ I = 0 lв-г-0 

' B - 1 

мu 

мh 

^-Ҷh)...^--ß +Чh)л^^>(o)...A^^-^->(o) 

. . . (M + r - 2)h (M + r)lí 

. . . (M + r - 2)h (M + r)'2 

|M f B- J . . . (M + r - 2)lB~l (M + r)lB~l . 

According to (3.6), (3.7) we have 

K^)")(o).-^)1-'B-)(o)|^c 

Nh 

Nh 

Nlв-

independently of h and for any choice of lu ..., lB-i- Further, the determinant 
on the right-hand part of (3.42) vanishes apparently whenever lp = ls for a pair 
of indices from the set ll9 ..., lB_. t . Thus the minimum power of n(h) appears in the 
non-zero term with ls = s — 1. Finally we may estimate 

|det (rajk(h))\ ^ Cn

l~\h) + otf -\h)), h-*0. 

Since the determinant det (ajk(h)) of the system (3.39) is bounded from below inde­

pendently of h according to (3.41), we obtain 

ЬJҺ)\ й CҺ- 0 < h < 1 

for any e > 0 with respect to (3.2) of Definition 3.2. This completes the proof because 
then (3.36) holds and, moreover, 

ÍV 

I 
k = M 

Ph(x)\ g X Hh)\ ú Ch~ x eR . • 

A A-admissible function n fulfilling the conditions of Definition 3.2 may be readily 
found for the class of systems of functions from S the Fourier transform of which 
decreases (at oo) as rapidly as e~D|x'. 

Theorem 3.2. Let {Ay} c S satisfy the condition 

(3.43) 
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with some finite positive constants L, D. Then the function 

(3.44) r](h) = r)o(n, + log 1+£0 / i " 1 ) " 1 

where n0, nu &0 are arbitrary positive numbers and n0\nx = U, is A-admissible 
independently of L, D. 

Proof . Proceeding in the same way as in the proof of [7] Theorem 4.2, we verify the 
conditions (3.1) to (3.4) of Definition 3.2 since (3.43) is fulfilled independently of y.m 

Approximating a function / the support of which is compact we expect the support 
of GhtJ(f) to be also compact. However, this is possible only in the case when the 
approximating function ojy has also a compact support (cf. Theorem 3.1). 

In practice, the functions of the system {coy} need not have a compact support 
but may decrease (at oo) so rapidly that (from a numerical point of view) their 
values are negligible for |x| greater than some Y > 0. The approximation by a class 
of systems of such functions is considered in Theorem 3.3. 

Theorem 3.3. Let the assumptions of Theorem 3.1 be fulfilled. Further let K 
be a non-negative integer such that 

(3.45) K J )(X)I = Lje~Dj]x] ; x e R ; y e (0, U) ; j = 0, 1, ..., K 

with some finite positive constants Dj, Ly j = 0, 1, ...,K. 
Let us introduce a function eoy Y and its derivatives up to the order K by the 

formula 

(3.46) coy
J}(x) = coy

j\x) , \x\ < Y, 

= 0 , |x| ^ Y 

for y e (0, U) where 

(3.47) Y= Y(h) = Y0 + YA log1+£J / T 1 

with 0 < h < 1 and arbitrary positive constants Y0, Yu and &u Writing 

G(ti(f)(x) = ni+i(h) h-> J c(k, hj) <o%((x\h - k) ,,(/!)) , 
k= — oo 

OO 

(3.48) GHUf) (x) = r,>+l(h) h~> % c(k, h, f) co%iY((xjh - k) r,(h)) 
k= — oo 

for 0 < h < 1 with c(k, h,f) given in (3.9), and 

eiilv = GiU - GiHiY ; J = 0,l,...,K 
we have 

sup|^'u/)(x)i^ca,s)/i
sii/|L2W 

xeR 

for any s ^ 0 and j = 0, 1, ..., K. 
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Proof. Considering that (3.45) holds independently of y, we obtain the statement 
of the theorem by the same argument as in the proof of [7] Theorem 4.3. 

Remark 3.4. Let us put 

<&$(*) = coy
J\x) , |JC| S Y, 

= 0 , |JCJ > Y 

for y e (0, U). If we substitute cby
J)

Y for coy
j)

Y in Theorem 3.3 the theorem remains true. 
Its proof needs only minor changes. 

4. ON THE SUITABLE CHOICE OF SYSTEMS 

Let us consider a function to e S satisfying the assumptions of Theorem 3.1 (i.e., 
the corresponding system {coy}, coy = to for all v e (0, U), cf. Definition 3A and 
Remarks 3.2 and 3.3), <¥(co) = A. Further let {&>*} c S be such a system that 
^(coy) = A*, A* = qyA and the functions qy as well as A* have zeros at some 
of the points 2njjy, j 4= 0. In Definition 4A such a system is called the system asso­
ciated with the function OJ. 

Let us study the approximation by the associated system {ay*} of the form (3.9) 
as compared with the approximation by the single function co. We will return to the 
proof of Theorem 3.1 to this end. In (3.26), the principal part of the error of the 
approximation is bounded by the four integrals, Iu l2,13, I4. Let us confine ourselves 
to h e <H, 1) with some positive number H. Then we may readily see that It and I2 

depend only on the behavior of A and A* in a certain vicinity of the origin. This 
behavior of A and A* is rather similar if we assume qy(®) =t= 0. Further, I4 does not 
depend on A and A* at all. 

Since the dependence of the error of the approximation on the behavior of A 
is very complex, we will confine ourselves to the study of the integral I3 in dependence 
on A. This comparison is the subject of Theorem 4.3, the basic result of this section. 

In the introductory part of the section we are concerned with some properties 
of the associated systems in Lemmas 4.1 and 4.2, and study two particular associated 
systems that allow a relatively simple direct computation of cO* from co (without the 
explicit knowledge of A) in Theorems 4.1 and 4.2. 

The assumptions of Theorem 4.3 are chosen in order to show the role of the zeros 
of A* and their multiplicity in the error bound. Lemmas 4.3, 4 4, and 4.5 that 
follow the theorem should explain the nature of these rather restrictive assumptions. 

C, D, L, and P mean general constants (independent, in particular, of the parameter 
h) taking different finite positive values at different places throughout this (as well as the 
preceding) section. 
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Without repeating it explicitly, we use the notation 

<F(co) = A , tF(co*) = A* 

wherever we are concerned with a function w e S or a system {cO*} cz S in this 
section. 

Definition 4.1. Let a real number U > 0 and a function co e S(R) be given. Let 
J > 0, M > 0 be integers, let qy e C°°(R) be a function having zeros at the points 
2njj)\ i.e., 

qy(2nj\y) = 0 

where \j\ = 1, 2, ..., J and y e (0, U). Further let 

(4.1) |«j<*>(x)| ^ Ct|x>f + D t 

fOr x e R, y G (0, U) and arbitrary non-negative integer k with some finite constants 
Ck > 0, Dk > 0, and xk ^ 0, and 

(4.2) |av(0)| ^ Q>0, ye(0,U). 

The system {co*}ye{0 V) c S is said to be J, M-associated with the function co if 

(4.3) A* = < A . • 

The dependence of qy on J and that of co*, A* on J and M is not explicitly 
expressed in our notation but the corresponding values of J, M will be always apparent 
from context. In such cases, we will also say that a system is associated instead 
of J, M-associated. 

R e m a r k 4.L From (4.1) we obtain immediately that A* e S. Moreover, we may 
write 

to* = ^~HA*) = &-\q?A) = 

- #"" l (g^) * w = &-\qy) *...*&" l(qy) * Oj 

where the term ^~x(qy) appears in the convolution M times since it follows from 
(4.1) that qy (as well as qf) is a multiplier and ^~~l(qy) (as well as ^"x(q^)) is a con-
volutor (cf. [7] Definition 2.7 and Remarks 2.3 and 2.4). • 

The following two lemmas describe some properties of the associated systems 

to)-
Lemma 4.1. Let a function co e S(R) be given. Let the system {co*}ye(OU) be J, M-

-associated with the function co. Let us have a A-admissible function n(h) (cf. Remark 
3.2). Then the function n(h) is A*-admissible. 
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Proof . Obviously it is sufficient to verify condition 3 of Definition 3.2 for the 
system {A*}. According to our assumption that rj(h) is A-admissible, there exist 
z(k, a) and C(a, y) such that 

\A((x - 2nk)\n(h))\ s C(a, y) hy z(k, a) 

and 
oo 

X z2(k, a) \k\2" < oo 
k= — oo 

fc*0 

for arbitrary a ^ 0, y ^ 0, 0 < h < 1, and |x| < n. 

From Definition 4.1 we have 

A*(x) = q
M(x)A(x) 

where qy satisfies (4.1). Then 

\A*(h)((x - 2nk)jn(h))\ = \qM
h)((x - 2nk)lr,(h))\ \A((x - 2nk)jr,(h))\ ^ 

<: (C0\x - 2nk\T0 + D0)
M \A((x - 2nk)jn(h))\ S 

<: C|fc|Mt0 \A((x - 2nk)ln(h))\ <; C(a + Mx0, y) |fc|Mt° V z(k, a + Mx0) 

for |x| < n where we used (3.3) with a + Mx0 instead of a. Writing 

(4.4) z*(k, a) = z(fc, a + Mx0) |fc|Mt°, 

C*(a, y) = C(a + Mx0, y) , 

we finally obtain 

\A*(h)((x - 2nk)lr,(h))\ g C*(a, y) W z*(k, a) 

for all integers k, k #= 0, any a ^ O , y ^ O , 0 < / z < 1 , and |x | < n. Further, with 
respect to (3.4) of Definition 3.2 and (4.1) we have 

X z*^(k, a) |k |2 a = X z2(K a + Mr0) |k | 2 ^ + ̂ > < oo . 
fc*0 fe*0 

Therefore rj(h) is A*-admissible. 

Lemma 4.2. Let a function a) e S(R) satisfy the assumptions of Theorem 3.1 (cf. 
Remark 3.3). Let the system {cD*}ye(0yU) oe J-> M-associated with the function co. 
Then the system {co*} satisfies the assumptions of Theorem 3.1, lOO. 

Proof . With respect to Lemma 4.1 it is obviously sufficient to verify the existence 
of constants F0, F00, Fs in (3.5) to (3.7). 

Since 
A*(0) = q?(0)A(0) 
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according to Definition 4.1, the relation (3.5) follows immediately from (4.2). Further 
from (4.1), (4.3) 

\A*(x)\ ^ \A(x)\ (C0\xyf° + Doy < \A(x)\ (C\X\'° + D0)
M 

which gives (3.6) since A e S and 0 < y < U. Finally we may write 

^,s,W = Zo(^ ( r ,W(<W)^r ) 

and thus we obtain (3.7) for any positive integer s by the same argument as above. • 
The following two theorems present two particular associated systems {co*} 

of practical importance since the function co* can be determined from o) directly, 
without the explicit knowledge of J^(co). 

Theorem 4.1. Let a real number U > 0 and a function co e S(R) be given. Let 

(4.5) P/(f) = n02-47r2 /2) = i ;V 2 ' 
j=l 1=0 

be a polynomial of degree 2J with zeros at the points 2nj; |j| = V ..., J. Putting 

(4.6) qy(x) = Pj(xy) 

in Definition 4.1 we obtain a J, M-associated system {co*}ye(0U), 

(4.7) aj*(x)=Ji(-\)'dy^'\x), 
1 = 0 

where we use the notation 
JM 

j^(t) = I d j 2 ' . 

/ = o 

P r o o f . F rom (4.5), (4.6) we have 

<?„(*) = i tv2y' = y2J ri c*2 - 4*2;2/f2), 
/ = 0 j = l 

i.e., qy has zeros at the points 2njjy, \j\ = V ..., J. Apparently (4.1) holds with 
rfc = max (2J — k, 0) and suitable constants Cfc, Dk. Further 

<?,.(o) = n ( - 4 ^ 2 ) = Q>o 
j = i 

independently of y, which implies (4.2). 

Considering Remark 4.1 and the relation 

5^k\x) = 1 V 

421 



where 5 is the Dirac function we obtain (4.7), The theorem has been proven since 
the relation {to*} <= S is obvious. 

Theorem 4.2. Let a real number U > 0 and a function co e S(R) be given. Putting 

qy(x) = ( i ^y ) " 1 s'mixy 

in Definition 4A we obtain a J, M-associated system {(o*}ye(o,u) for an arbitrary 
integer J > 0. Let 8 be the central difference with step y, i.e., 

8/(x) = / ( x + iy) - f(x - \y), 

8m/(x) = 8(8m-"1/0)) • 

Further let there exist a function Mco e S such that 

Mco(M) = co . 
Then 

(4.8) to* = y~MhMMco, ye(0, U) 

for any positive integer M. 

Proof . Since 

qy(0) = lim ( ixy ) " 1 sin ±xy = 1 , ye (0, U) , 
x-*0 

qy has apparently zeros at all the points 2njjy,j ^ 0. Further (4.2) holds with Q = 1. 
Differentiating the function qy as the product of sin ^xy and (\xy)~l and consider­
ing the relation 

|sin \xy\ ^ C|x| y , x e R , y e (0, U) , 
we have 

(4.9) 1 ^ 0 ) 1 = \{{ixy)- Jk> sin ix> + £ 0 ) ((|-x>)- »)<*-» (sin ix>)(^>| ^ 

< C/c!|x|-' + Д 0 ) 0 - /)! jxp-*"1 ( i^- 1 ^ Сí 

for |x| ^ 1 and y e (0, U). To obtain an analogous bound for |x| § V we use the 
power series expansion for sin \xy. The series as well as all those obtained by differen­
tiating converge for x E R, y e (0, U). In particular, 

(4.10) m*)\ = y ЫÏ 
á,2(2j+ l)(2j-k)l 

i .A 2 1 v21" f c 

(ь)2J* ûc: 

for |x| S 1 and y e (0, U). Thus (4.1) follows from (4.9) and (4.10) with xk = 0; 
k > 0. 
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Direct computation gives 

where 
-*-'(«,) = 3 ť - V " , ] 

<p(x) = 1 , |x| < i , 

Moreover, we may compute 

0r~1(q,)*0l = y_1Sg, geS. 

Considering Remark 4 J , we obtain finally (4.8). The relation {OO*} c Sis obvious. 

R e m a r k 4.2. For both the J, M-associated systems defined in Theorems 4. 
and 4.2 we have 

y-*0 
im cüy = Cco , x є P 

as an immediate consequence of (4.7) or (4.8). Therefore, in the approximation by 

the system {coy}9 we can expect no advantages for small h as compared with the 

approximation by the function co. m 

The following definition introduces the notation necessary for the study of the 

role of zeros of A* and their multiplicity performed in Theorem 4.3. 

Definition 4.2. Let a function co e S(R) satisfy the assumptions of Theorem 3A 

(cf. Remark 3.3). Let the system {co*}ye(0U) be «I> M-associated with the function 

co and let there exist a A-admissible function rj(h) (cf. Remark 3.2). 

Using the notation of the proof of Theorem 3A, let us construct the trigonometric 

polynomials Ph, P* (corresponding to the functions A, A*(/,)) according to Lemma 3.L 

Let fe HP(R). Let fh be the function (3A4) constructed in the first part of the proof 

of Theorem 3A. Let us introduce the function l,h by (3A5), (3.21), and (3.22), and the 

function £* by the analogous relation 

oo 

C*(x) = Pt(xh) X ih(x - Inkjh) = P*(xh)(Ux) + M*)) • 
k= — oo 

Finally we put 
f* 

I(h, f) = |C(x)j2 \A(xh\n(h))\2 (\ + |x|2*) dx , 
Jn/h<\x\ 

I*(h, f) = f |C*(x)|2 \A*w(xh\n(h))Y (1 + |x|2") dx . 
j«l*<|x| 

We will simply write I, I* wherever it is not ambiguous. 

R e m a r k 4.3. The integrals l(h,f) , I*(h,/) correspond to the integral I3 in the 
proof of Theorem 3.1. Our notation introduced in Definition 4.2 underlines the 
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dependence of this integral on h and on the functionf. On the other hand, the integral 
I*(h, f) depends also on the choice of the J, M-associated system {&>*}, and, in 
particular, on the integers J, M. 

Theorem 4.3. Let a function a> e S(R) satisfy the assumptions of Theorem 3.1. 
Let 

(4.11) |A(x)| > 0 , xeR 

Let there exist a A-admissible function n(h). 

Let {(o*}ye(o,u) be the system J, M-associated with the function co for arbitrary 
positive integers J, M and let 

(4.12) |tj,(x)| Š 1 , xeR 

where qy is the function from Definition 4.L Further let there exist a constant 
L(J) > 0 such that 

(4.13) sup \A*%\(xh - 2nj)ln(h))\ ^ LM(J) 
xe< — n/h,n/h} 

holds for all integers j , 0 < |j | 5g J and arbitrary positive J, M. 

Let 6 > 0, 1 > H > 0 be given. Let E c HP(R) be the set of functions satisfying 
the following two conditions for H ^ h < 1: 

1. There exists a positive constant C such that 

(4-14) / (* , / ) ^ C||/ | |2
2(R) 

/or all f e E. 

2. For any non-zero integer k and any f e E, we have 

(4.15) f |C*(x)|2 (1 + |x - 27rfc/fc|2*) dx :£ 
j -n/h 

йC(k) 
'n/h 

-n/h 

|C(x) | 2 ( l + | x - 2 ; r f c / h | 2 * ) d x , 

(4.16) 
'я/ft 

-я/Л 

|Cr(x)|2 \A*w((xh - 2nk)\n(h))\2 (1 + |x - 27rfc/fc|2*) dx ^ 
ft 

g D(fc) f * |C(x) | 2 \A*J(xh - 2nk)\n(h))\2 (\ + |x - 27rfc/fc|2*)dx 
j -n/h 

where C(k) is a finite positive constant and 

(4.17) 0 < D(k) ^ D\k\x 

with some constants D, t ^ 0 . 
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Then there exist positive integers J0, M0 and such a system {co*}V6(0,u) Jo> M0-
-associated with the function co that 

I*(hJ) S Ol(hJ) 

for any H g h < 1 and f e E. 

Proof . Let us put 

h = /*(*,/) = f |C(*)|2 |A((xh - 27r%(/r))|2 (1 +\x- 2nklh\2°)dx, 
J -«/« 

4* = -?(* , / ) = r |C*W|2 |A*ft)((xh - 2rtfc)Mh))|2 (1 + |x - 2;r/c/h|2*) dx 
J-7T//I 

for all integers k, k =j= 0. Writing the integrals I, I* as the sum of the integrals from 
— Inkjh — n\h to —2nkjh + n\h and performing a substitution, we obtain 

oo oo 

-"(*./) = I '*(*./). /*(*./)= I '?(*./) 
k= — oo k= ~ oo 

fc*0 fc*0 

since the functions £fc, £* are periodic with period 27r//z. 

The proof of the theorem is divided into two parts. In the first part we will find 
an integer J0 > 0 such that 

— J o - 1 oo 

(4.18) ( I + I K_aw 
fc = — 00 fc = J o + l 

for an arbitrary M > 0, H g h < 1, and the functions / satisfying (4.14), (4A6). 
To this end we will establish the inequality 

(4.19) J* S D(k)lk 

for any integer k, k 4= 0 and arbitrary J > 0, M > 0 where the D(k)'s are given 
in (4A6) and fulfill the inequality (4.17). We will use the notation 

N -K N 

I = I +E 
|fc|=K k=-N k = K 

for the sums analogous to those in (4A8). 

In the second part we will show that for any 0' > 0 there exists an integer M 0 > 0 
such that 

(4.20) It S Wh 
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for 0 < |k| ^ J0, H ^ h < t, and the functions/ satisfying (4A5). Finally we obtain 

(4.21) £ I* ^ |c9I 
l*l = i 

which together with (4A8) gives the statement of the theorem. 

1. From (4.12) we have 

(4.22) \A*(x)\ = |<jy
M(x)| \A(x)\ £ |A(x)|, x e R , ye(0,U) 

according to (4.3) of Definition 4.1. Let us estimate 

*>(*)/* - it = r* W*) M*)\2 \A((xh - 2^)h(h))\2 -
J -n/h 

- |C?W|2 \A*nW((xh - 2-fe)Mfc))|2) (1 + |x - 2nk\h\^)dx = 

= D(k) ['" mx) | 2 ( |A ( (xh - 2nk)ln(h)f - \A*ih)((xh - 2nk)ln(h))\2) x 
J -n/h 

x (1 + |x - 27ik/h|2a)dx + 

"'* (D(k) |C,(x)|2 - |Cft*(x)|2) \A*(h)((xh - 27rk)/^(h))|2 (1 + |x - 2nk\h\2a) dx £ 0 
- 7 T / / 1 

since both the integrals are non-negative with respect to (4.16) and (4.22). Therefore 
the relation (4.19) holds for any integer k, k 4= 0, H ^ h < 1 and arbitrary J > 0, 
M > 0 with the constants D(k) given in (4.16). 

Let us show that 
00 

(4.23) X D(k)Ik<oo. 
I*l = i 

According to the proof of Theorem 3.1 we have Ch e L2( — n\h, n\h). Further, the 
bound 

(4-24) ||C»|M-,/*,,/», ^ e||flU<«, 

follows from (3.19), (3.20) since the trigonometric polynomial Ph is bounded. Using 
Definition 3.2 for H ^ h < 1, we obtain 

(4.25) \A((xh - 2nk)lrj(h))\ ^ C(O,y) hy z(k, O) S C(Q) z(k, Q) 

for all integers k, k 4= 0, any O ^ 0 and |x| < n\h. Moreover, 

oo 

(4.26) X ^(Ko)\k\2Q < ^ 
l*l = i 
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for any O. Further, considering the inequality 

1 + |x - 2nk\h\2ct ^ Ch~2x \k\2x S C\k\2x 

valid for k #= 0 and H 51 h < 1, and (4.17), (4.25), we may estimate 

D(fc)/k - D(fc) P |C,W|2 |A((x/i - 2nk)\t1(h))\2 (1 + |x - 2nk\h\2x) dx <i 
J ~nfh 

£ C(t, a) z2(/c, i t + a) |/c|2* + < \U(x)\2 dx = 
J -njh 

- C 72(k IT 4- rŷi lkl2a + T I I r I I 2 

— C Z (rC, 2 T -I" 0(j |rC| | |U | |L 2 ( -7 t / f i , r t / / , ) • 

Finally from this and (4.24) we obtain 

00 oo 

(4.27) X D(k)lk S C\\f\\lAR) I z2(/c, i t + a) |/<|2* + I <; 
|fc|=J IM= J 

zgC| | f | | 2
2 ( K ) < co 

with respect to (4.26) for any positive integer J and H 5i h < 1. 

Therefore the sum (4.23) converges and we may estimate 

00 00 00 

I lt?k I D(k)lk S C\\f\\lIR) X z2(/c, i t + a) |fc|2* + < 
|fc|=J \k\=J \k\=J 

for arbitrary J > 0, M > 0, and H S h < 1 using (4.19), (4.27). Moreover, for 
an arbitrary 0" > 0 there exists a J0 > 0 such that 

00 

I lt^0"C\\f\\lAR) 
! lc |=Jo+ 1 

for H 51 h < 1, M > 0. Finally we have 

00 

X 1* ^ 0"CI 51 ±0/ 
|fc|=Jo+i 

\ 
for the functions / satisfying (4.14), (4A6), suitably chosen 9", H 51 h < 1, and an 
arbitrary integer M > 0. Thus the inequality (4A8) has been proven. 

2. In accord with Definition 4.V let the function A* e S have zeros of multiplicity M 
at the points 2nk\y, 0 < |k | <I J0. From the Taylor series for A*(A) at the point 
- 2nk\r](h) we obtain 

A*(h)((xh - 2nk)ln(h)) = Y A*n%(-2nkln(h))(xhjn(h)y(r\)-i + 
r = 0 

+ A*W((xh9 - 2nk)ln(h))(xhln(h))M(M\)-í 
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for 0 < |/<| g J0 and an arbitrary M > 0 where 0 < # < 1. Since —2nkjrj(h) is 
a zero of A*(/j) of multiplicity M we may estimate 

(4.28) \A;m((xh-2nk)jr,(h))\^(nl,1(h)r(M^1 sup K ^ x h - 2nk)jr,(h))\ 
xe< -n/h,n/h} 

for |x| g 7i//i, 0 < |k| g J0, and an arbitrary M > 0. 
Let us now show that there exists an integer M0 such that (4.20) holds. We may 

use (4.13), (4.28) and write 

It ^ (nln(h))2M (Ml)'2 sup \A*$\(xh - 2nk)\n(h))\2 x 
xe{ -n/h.n/h) 

x \ |c,T(x)|2(l +\x - 2nklh\2a)dx g 

g C(/c)(^(/7))2 M(M!)~2L2 M( j0) r |C„(x)|2(l + |x - 2,r/</h|2«)dx 
J -n/h 

for the functions f satisfying (4.15) and 0 < |k| S «Io w n n <Io fixed. Further from 
(4.H) we obtain 

|A((xfc - 2nk)jr](h))\ ^ C > 0 

for |x| ^ 71//7, 0 < |kI g; J0, and II ^ h < 1. Therefore 

* |Cfc(x)|2(l + \x -2nklh\2*)dx^Ik 
-n/h 

and, finally, we have 

(4.29) I* g CD2M(Ml)-2Ik 

for an arbitrary M > 0 where D = nL(j0)]i](H) and C = C(k)\C. With respect 
to the character of the dependence of the right-hand part of (4.29) on M, there exists 
an M 0 > 0 such that 

CD2M0(M0\)-
2 £ W 

for an arbitrary fixed 0' > 0. Thus (4.20) holds with this M 0 for H ^ h < 1 and 
0 < |k| ^ J0. From this the relation (4.21) follows immediately as well as the state­
ment of the theorem according to (4.18). 

R e m a r k 4.4. In practical computations it may be advantageous to introduce 
an associated system {co*} in a more complex way, namely to consider different 
multiplicities of the zeros 2njjy, \j\ = V 2, ..., J of the function A*. This may be 
easily achieved e.g. by constructing the associated system according to Theorem 4.V 
On the other hand, the second part of the proof of Theorem 4.3 can apparently be 
modified in accord with this generalized concept of the associated system. 

In our considerations, the nature of which is more or less merely qualitative, we 
confined ourselves only to the associated systems introduced in Definition 4.1. ® 
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The following two lemmas give the conditions sufficient for fulfilling some of the 

assumptions of Theorem 4.3. 

Lemma 4.3. Let the assumptions of Theorem 3A and (A A \) be fulfilled for a function 

co e S. Let 

(4.30) |PA(x)| ^ P > 0 , xєR, H = Һ<1 

hold for the trigonometric polynomial Ph constructed in (3A7) (cf. Definition 4.2). 
Let f(z) = f(x + iy) be an entire holomorphic function of complex variable 

z = x + iy. For any integer N > 0, let there exist a finite positive constant CN such 
that 

(4.31) \f(z)\ <CN(\ + | z | ) - * e x p ( e | y | 

holds in the complex plane with a positive constant Q. Let the partial function 

f(x) e H»(R). 

Then, for a sufficiently small Q, there exists a positive constant C such that 

(4.32) 

for H < Һ < 1. 

ЏJ) = c\\f\\l2W 

Proof. We obtain that the support of the function #"(f) is contained in the sphere 

|z| ^ Q using the Paley-Wiener theorem (cf. e.g. [10]) and (4.31). Let us suppose 

Q < n and use the notation of the proof of Theorem 3.1. Then we have 

c, = Hh) = <Pm^(f) 

(cf. (3.15)) where cp e S is given in (3.13). Therefore 

(4.33) suppffc = <-7I, 7T> . 

Let us estimate the integral I(h,f). For H = h < 1, we have 

(4.34) l(h,f) = E Ik(ҺJ)гh(ҺJ)^ 
k= — oo 

/cФO 

n/h 

n/h 

'n/h 

jC(x)|2 \A((xh - 2n)\n(h))\2 (1 + |x - 2n\h\2«)dx S: 

> c 
-n/h 

\Ph(xh)\2 X ţћ(x-2nk\h) 
k= — oo 

âx > 

Гn/h 

= C 
J -n/i 

x ąx - inkjh) 
k= — oo 

dx 
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since Ik(h,f) ^ 0 and with respect to (3.19), (4.11), (4.30). Further, considering 
(4.33) we get 

supp c;,(x — 2nkjh) = (Inkjh — njh , 2nkjh + 7i//z> 

for any h < 1, i.e., 

(4.35) iA„(x)= f £„(x - 27rk//i) = 0 
k— — oo 

J t * 0 

for |x| ^ 7r//i and H S' h < 1. 

According to (3.12), cp is a continuous function and (/>(0) = 1. Thus for an arbitrary 
0 < <P < 1 there exists a positive number X (depending only on a and /?) such that 

[(p(x)| > 0 for |x| ^ X . 

Let Q ^ X. Then we have supp <;h — <—K\ K> instead of (4.33) and, finally, from 
this and (4.34), (4.35) 

l(Kf) ^ C ['h | c ^ ) | 2 d x = C f |^(x/z)|2 | ^ ( / ) ( x ) | 2 d x ^ 
J -n/h J -X 

/*X foo 

^ C | .^( / ) (x)|2 dx = C \P{f) (x)|2 dx = C\\f\\l(R) 
J - X J -oo 

for H ^ /z < V The statement (4.32) of the lemma has been proven. 

Lemma 4.4. Let the assumptions of Theorem 3.1 be fulfilled for a function a> e S, 
let {&>*} be a J, M-associated system. Let 

(4.36) \Ph(x)\ ^ P > 0 , X G R , H ^ h < 1 

hold for the trigonometric polynomial Ph constructed in (3.17) (cf. Definition 4.2). 

Then there exist finite positive constants C(k), D(k) satisfying (4.17) and such 
that (4.15), (4.16) hold independently of J, M for any integer k, k + 0, an arbitrary 
feHp(R), and H £ h < 1. 

Proof . Using the notation of the proof of Theorem 3.1, we may write 

*n/h 

(4.37) \Ch(x)\2 (1 + |x - 27ik//z|2a) dx ^ 
J -n/h 

Mh 
^ P2 \£h(x) + \j/h(x)\2 (1 + |x - 27ik//z|2a) dx 

J -n/h 
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according to (3.21), (4.36). On the other hand, the trigonometric polynomial P* (cf. 
Definition 4.2) is bounded, therefore 

C*(x)|2(l + \x -2nkjh\2*)dx S 
-n/h 

< C ['" \íh(x) + fh(x)\2 (1 + |x - 2nklh\2")dx . 
J - «/* 

From this and (4.37) we obtain C(k) = CP~2 for k * 0 and H g h < 1. 
In an analogous way we get D(k) = CP"2 for k 4= 0 and H :g h < 1, i.e., (4A7) 

is fulfilled with x = 0 and D = CP~2. • 
In the preceding two lemmas we supposed that the polynomial Ph has no zeros 

for H ^ h < 1. We show the existence of such a polynomial in the following lemma. 
We have to consider the system {Ay}ye(0oo) in this lemma since we choose the value 
n(H) of the A-admissible function during the construction of the polynomial Ph. 
As soon as the value n(H) is fixed we find U (as well as the particular system 
{Ay}ye(0fU)) in accord with (3.1) of Definition 3.2. 

Lemma 4.5. Let & > 0 and /i > a ^ 0 be given. Let {Ay}y€(0tOD) a S(R). Let 
there exist finite positive constants F00, F0, and Fs such that (3.5) to (3.7) hold 
independently of y e (0, oo) for any positive integer s. Let n(h) be a A-admissible 
function. Let us choose an H e (0, 1) and write n(H) = fj. 

Then there exists a trigonometric polynomial Ph such that (3.17) holds for \x\ ^ 
^ njh and (3.18) for xeR (cf. Lemma 3.1). Moreover, for a sufficiently large 
fj there exists a constant P > 0 such that 

(4.38) |P„(x)| ^ P > 0 

for x e R and H ^ h < 1. 

Proof . We will construct the polynomial P,, of the form (3.37) in the way describ­
ed in the proof of Lemma 3.1. Using the same notation as there, we put 

(4.39) M = 0 

i.e., N = B — 1. Let us write 

(4.40) \Ph(x)\ = 
B-l 

Z Һ(h) eik 
= |6o(*)| - I \h(h)\ 

k=l 

We will show that there exists a constant P > 0 such that 

(4.41) \b0(h)\ - B £ W 0 I = P > 0 
k=l 

for H g h < 1 and a sufficiently large fj. Then we obtain the statement (4.38) of the 
lemma from (4.40) and (4.41). 
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Let us follow the proof of Lemma 3.1 and solve the system (3.39) with the coeffi­
cients (3.40) by Cramer's rule. Substituting (4.39) into (3.42) and putting 0° = 1, 
we have 

(4.42) det(rajk(h)) = ( -1)" £ ... £ ih . . . i1*"1 x 

0-(t>-'<» 
í i = 0 i 

í в - i - ß + l 

•• ( г - 2 ) 

• ( / í )A^" , (o ) . . .< , ) , " ' B - , ) (o ) 

-'« . . . (5 - l)1 ' 
(r - 2)/2 r/2 . . . (B - \)h 

QlB-l (> _ 2)<B-1 -.lB-1 ^ _ iyB-i 

r = 1, 2, ..., B. The determinant on the right-hand part of (4.42) vanishes whenever 
lp = ls for a pair of indices from the set lu ..., lB-t. We can find that the term in 
det (rajk(h)) with the power rf(h) is that with ls = 5. 

The determinant 

1 2 
1 22 

І 2B~ 

.. B - 1 

•• ( ß T l ) 2 

•• ( ß : 0 ß " 

= ^ „ , ( 1 , 2 , . . . , ß - 1) + 0 

corresponds to this term Tin the expression (4.42) for the det (^ajk(li)). Formulae 
(3.5), (4.42) imply the existence of a positive constant D0 independent of rj and such 
that |T| _ D0. 

Let us choose an arbitrary 0 > 0. Considering the inequality 

rj(h) _ f) for H _ /i < 1 

(following from Definition 3.2) and choosing a sufficiently large //, we obtain that 
\dei(lajk(h)) - T| < 0 for H _ /z < 1. Fixing 67 in such a way that D0 - 67 = 
= I)0 > 0, we further have 

(4.43) IdetC^h))! = |T+ det(1a,V£(h)) - T\ £ 

Ž\T\ - |det (VCO) - r| = °ó-
It is b0(/i) = det(1ayfc(/i))/det (ajk(h)). Considering (3.41) and (4.43) we find that there 
exists a constant D0 such that 

(4.44) \b0(h)\ ^Do>0 

for a sufficiently large rj and H _ /z < 1. 

By the same argument we can show that the term in det (rajk(h)) with the power 
rf(h) is equal to zero for r > 1 since the corresponding determinant in (4.42) with 
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ls = s vanishes. Finally, for an arbitrary 6 > 0, a sufficiently large i% and H fg h < 1 
we get 

(4.45) \br(h)\ ^ 0 , r > 1 . 

The inequality (4.41) follows from (4.44) and (4.45). The lemma has been proven. 

5. A NUMERICAL EXAMPLE 

The following simple numerical example illustrates the statements of Sections 3 
and 4. We solved the same problem as in [3], [7], i.e., the ordinary equation 

(5.1) - u"(x) + cu(x) = f(x), x e (0, n) , c > 0 

with the boundary conditions 

(5.2) u'(0) = u'(n) = 0 

and the right-hand part 

(5.3) f(x) - - sin (d(x - i-7r)), d > 0 . 

The exact solution of this problem is 

/ \ 1 • / r/ i w d cos (\nd) . n , x , v 
" ( X ) = ~ T ~ r S1" ( J ( X " i 7 l ) ) + •(*!. \ I W i M S h ( ( X ~ i ? t ) ^ C ) • d + c (a + c) y/c ch (̂ 7i x/c) 

Let us solve the problem (5.1) to (5.3) by the finite element method using a universal 
hill function co and the systems associated with it. Let us denote the approximate 
solution of the problem sought in the form (3.9) by uh . Since fe H^(0, TT) for any 
/] ^ Owe obtain from Theorem 3.1 

I k , - «L(o,,) ^ c(/?,e)h"+ 2-£ | | /! |W ( 0 ,R ) 

for arbitrary s > 0 in the way analogous to [2]. Employing Theorem 3 3 and denoting 
the approximate solution of the problem in the form (3.48) by uht]Y, we have finally 

sup h,„.y(*) - u(x)\ <, C(P, e)A' + 2 - | | / | | H , ( 0 . .„ • 
X6<0,7t> 

The universal hill function 
co(x) = e~*2 

and the systems associated with it were used for approximation. These systems were 
constructed according to Theorem 4 J , i.e., we put 

qy(x) = Pj(xy) 
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where pj is a polynomial of degree 2J with zeros at the points 2nj; \j\ 

and 
= 1,.... J, 

Because 

ш* = A* = q?\. 

ш(x) = Л(x) = e~x2lĄ ^Jn , 

the A-admissible function r](h) of the form (3.44) may be chosen according to Theorem 
3.2. The functions coY and co* Y of the form (3.46) with Y(h) given in (3.47) were used 
for actual computation according to Theorem 3.3. 

The computation has been carried out in single precision on a Minsk 22 computer 
with J, M-associated systems for several values of J, M and various values of the 
parameters rj0, rju s0, Y0 , Y1? zx of the functions n(h), Y(h) and the parameters c, d 
of the problem. The system of linear algebraic equations obtained was solved by the 
Gauss elimination. 

20 24 28 32 36 40 44 48 52 

o 1 А2 vЗ 04 

Fig. 5.1. 

A typical result is shown in Fig. 5A where the scale of the variable N = njh 

(horizontal) is linear while the scale of the error (vertical) is logarithmic. The actual 

values of the parameters used in computation of the solution in Fig. 5A are: rj0 = 3.8, 
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r!l = 0.5, e0 = e, = 0.000V Y0 = --f, Y, = §, c = 0.25, and d = 3. The error of 
the solution is measured by the quantity 

((N+ \)-^\uh^(nh) - u(nh)\^ . 
n = 0 

Line 1 corresponds to the hill function co (a "0,0-associated system" in the sense 
of Definition 4.1), lines 2, 3, and 4 to the V1-, 2,1-, and V2-associated systems, 
respectively. It means that line 2 describes the approximation by the function co* 
with a simple zero of A* at +2njy\ line 3 that by co* with simple zeros of A* at 
+ 2n\y and ±4njy, and line 4 the approximation by co* with a double zero of A* 
at ±2njy. 

The graph shows that the error decreases (as N -> co) more rapidly than any poly­
nomial of a finite degree in all the cases. For large N, the error increases due to the 
round-off. 

The results confirm that the requirement A*( + 27c/y) —- 0 influences the error 
very strongly. On the other hand, the results obtained with J, M-associated systems 
for J > V M > 1 (lines 3 and 4) are very similar to those obtained with the VI-
-associated system (line 2). This means, in accord with our considerations in Sec. 4, 
that the part of the error influenced by the behavior of A* out of the vicinity of the 
origin is negligible in our example starting from J = V M = 1. The other parts 
of the error prevail and further zeros of A* or their higher multiplicity cannot im­
prove the total error of the approximation. 
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S o u h r n 

UNIVERZÁLNÍ APROXIMACE SYSTÉMY KOPEČKOVÝCH FUNKCÍ 

KAREL SEGETH 

Buď {coy} systém nekonečně hladkých rychle klesajících funkcí (definice 3. i) a rj(h) 
jistá rostoucí funkce, r/(0) = 0 (A-přípustná funkce, definice 3.2). Pak je aproximace 
tvaru 

fe = 
Z ckЩ(h){{xlh - k) rj(h)) 

univerzální, tj. pro každou aproximovanou funkci f dává systém {toy} kopečkových 
funkcí nejlepší možný řád aproximace omezený pouze hladkostí funkce f (věta 3.1). 

Systém {coy} lze vybrat tak, aby Fourierova transformace funkce a>y měla kořeny 
v bodech ±2njjy\ j — 1, ..., J, kde J je jisté přirozené číslo (definice 4A, věty 4.1 
a 4.2). V důsledku toho se nepřesnost aproximace zmenší (věta 4.3). 

Numerické výsledky potvrzují správnost uvedených tvrzení. 

Authoťs address: RNDr. Karel Segeth, CSc, Matematický ústav ČSAV, Žitná 25, 115 67 
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