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SVAZEK 19 (1974) APLIKACE MATEMATIKY CisLo 4

BOUNDARY VALUE PROBLEMS FOR THE MILDLY NON-LINEAR
ORDINARY DIFFERENTIAL EQUATION OF THE FOURTH ORDER

HELENA RUZICKOVA

(Received March 21, 1973)

1. INTRODUCTION

In this paper, the finite difference method is applied to a boundary value problem
for the mildly non-linear ordinary differential equation of the fourth order. The
existence of a unique solution of both the differential and the difference problems
is proved and an 0(h?) estimate of the discretization error and its first difference
quotient is derived. Some numerical examples are given.

The same method has been used in [9] for linear and in [4] for mildly non-linear
boundary value problems of the second order. The linear boundary value problem
of the fourth order have been considered in [1], [3], [7]. In [7] an approach similar
to that used in this paper has been briefly mentioned. [1] have used the estimate
of the discrete Dirichlet formula in somewhat different way. [3] deals in addition
with discontinuous coefficients, using the discrete Green function for the error
estimate.

The present paper is a part of the author’s thesis [6].

2. DIFFERENTIAL EQUATION

Let us consider the mildly non-linear boundary value problem of the fourth order
(1) Ly = () &) = (40) y () + () 3(x) = f(x 9() . xeCa, b,
@ y(a) = y(a) = y(b) = y(b) = 0
under the following assumptions:

(3) px)2m>0, g(x)20, r(x)=20, xela,b),
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(4)  p"(x), q"(x), r'(x) satisfy Lipschitz condition in <a, b} ,

(5) f(x, ¥(x)) has continuous partial derivatives up to the second order inclusive
for xe (a, by, ye(—, ),

(6) fy(x, y(x)) £ o < 2, for xela, by, ye(—oc0, ) where 4, is the smallest
eigenvalue of L y(x) = 2 y(x) with boundary conditions (2).

Denote

IviE, = f:yz(X) dx,

b
b = [T+ 20 + s ax.
For any sufficiently smooth function y(x) satisfying (2) it holds

b
() j V() dx 2 K |2

a

where
Ky =1+%b—-a)(1 + b - a)

and, further,

®) a?:‘;ly(x)l = V/(b ~ a) H}’l 2>
©) ;;j;lf(x)l < Jb—a)|y]..

Inequalities (8), (9) are inequalities of Sobolev type. They can be proved in a similar
way as their discrete analogues introduced later.

Denote fo(x) = f(x, 0). From the mean value theorem, it follows
T 2(x) = f(x, ) = fo(x) + fo(x) = y(x) J fi(x, &y) dE + folx) -
0

We substitute it into (1), multiply the equation by y(x) and integrate. From (6) and
Schwarz inequality we get

[by(x)Ly(x) dx = J ij(x) j ;fy(x, £) dé dx + ﬂfo(x) W(x)dx =

Ja

IIA

ajbyz(x) dx + “fo“Lz ”}’“Lz .
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If y(x) is a solution of (1), (2) and 4, the smallest cigenvalue of Ly = Ay and (2), then

[ :y(x) L y(x) dx

j 2(x) dx

a

A S

hence

a

<1 _ ;‘) J V0 L) dx = [folls I¥les = Lol ]

‘1

Integrating by parts and using (3) we get on the other hand
b b
.( y(x) L y(x) dx = f(P(—‘) Yx) + q(x) y3(x) + 1(x) y3(x)) dx =
a a b
> i;1f}f"2(x)dx.

a

From the last two inequalities and from (7) it follows

(1= )kt otz s (1= ) j}(x)w) ax = [fole, 712

1 1

which gives
(10) [¥1> = Kf(m(t = af2)) [ fol c, -

From (8), (9), (10) we get

(1) max [y(x)] < Kaffo],, max [y (x)] < Kl fole. -
where

K, = K, /(b = a)/(m(1 — «/2))).

Let us suppose that there exist two solutions y,(x), y,(x) of the problem (1), (2).
Then their difference z(x) = y,(x) — y,(x) is a solution of a similar problem

Lz = f(x, (%)) = £, 2(x)) . =(a) = 2(a) = =(b) = #(b) = 0.
By the mean value theorem,
S i) = f(%, v2(x) = £l &va + (1= &) 32) (vi = ¥2) = Flx, 2(x))
and Fy(x) = F(x, 0) = 0. According to (11) it holds
max |z(x)| £ K,|F,[., =0,

as=x=b

i.e., problem (1), (2) has at most one solution.

218



In [8], certain necessary conditions for the existence of a solution of mildly
non-linear elliptic boundary value problems are stated. As the problem (1), (2)

fulfils these conditions, there exists the unique solution y(x). Assumptions (4), (5)
imply that y®(x) satisfies Lipschitz condition in {a, b).

3. FINITE DIFFERENCE APPROXIMATION

Let N be an integer, i = (b — a)[N, x; = a + ih, i integer, g; = g(x)), g.(x;) =

= (gis1 = 9:)[h, gux)) = (9; = gi=1)/h. g_\-;-(» )= (gies = 29: + gii)[h% golx)=
=(g;+1 — g;-1)/(2h) for any function g(x).
Define ”.“2,,, b

(12) Y3, ="n Vz_l (xi) + h\ilY )+ h Z Y7

In the sequel the index h will be omitted, if no misunderstanding can arise.

Lemma. If Y, = Yy = 0, then

2 2
(13) R
)
(14) max |Y;| < /(b — a) 1 '{2
O=<i=EN
15 max |Yy(x;)] £ J(b — «a , + hly,,
(15) Jmax W) = V(b — o)
where

Ky=314+30b—a) (1 +4b-a)}) ', Ki=%4b—-a)"

are positive constants independent of h.
i-t

Proof. As Y, =h Y Y(x;)+ Y, for i =1,2,....N, it follows by Schwarz
i=o
inequality

- i—1

:(hiilY( J))2<1121 IIVY‘ ;) :IIIZY (x;).

Multiplying by h and adding we obtain

(16) h zyz Z ih? Z Y2(x;) = h? LAN(N — l)hﬁ\il}’f(.\'j) <

< (b~ a) b Jgoyfm
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Similarly, from

Yix;,) = hi Yoo(x;) + Y(xo)
and
Y(x) = —h Nz—l Yedx;) + Ylxy-y),

j=it+1

using the obvious inequality (¢ + d)* < 2(c* + d?), we get
Y2(x;) S 2(h Y Yee(x,))* + 2072 YT,
j=1

: N—1
Yf(x,-) < 2h Y Yxi(xj))z + 2077 Yoy .
j=itt

Adding and using Schwarz inequality we further get

-1

Y2(x,) < hini(xj)h z [+ th Vi) h S 1+ *(Yl YR S

j=i+l1

g(b—a)hgy (x;) + ; (Y7 + Yi-y)

and from here

(17) h’\é:Yf(x,-) <(b —a)h Ng Yid(x;) + (b — a) ~(YP + Ya-y)-

We use also the identities

N-1
(X YN L — _h .;1 ﬁ Yx;(x.')

valid for Y, = Yy = 0. From here it follows by Schwarz inequality

Z—f - <hNiI i - N Yx,—c(xx-)>2 < hNi (i )z ~21 Vi) <

i=1

N-1
<(b-a)hy Yix).
i=1
which together with the similar inequality for Yy _,/h* yields

(18) :‘2 Y”‘ z(b—a)hz 2(x) .
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From (16)—(18) we have
Y3 = (14 306 = 0 (46 — 0 + 1) 8 Y Va)

and from here and (18) it follows (13).
The inequalities (14), (15) follow by Schwarz inequality from

i-1
Y, = h Z Yx(x.i) + Y, and YX(X") =h Z Xxi(xj) + YX(XO) ’
j=1 j=1

i=
respectively.
Let us define the linear difference operator L, by

LY = (P Yas(x))ss — 3ai Yilx)s — 3(4: Yalx)))e + ri¥s =

= h™ 4 (pi-1Yie2 — 2Api-1 + P) Yies + (Dicy + 4pi + Pivy) Vi —

= 2pi + Pir1) Yier + PivtViv2) + B =4(qio 0 + q)) Yie, +

+ (3qi-1 + 4i + 3000) Yo = Hdi + diei) Yirn) + 1iY5
We approximate the differential problem (1), (2) by the system of non-linear dif-
ference equations
(19) LY, =f(x,Y), i=12..,N—1,
(200 Yo =0, Y., =3Y, —4¥,, Yy=0, Yy, =3¥y_, — ¥y ,.
We first prove the existence of a unique solution of (19) and (20).

We muitiply L,Y;, i = 1,2,...,N — 1 by Y; and by h and add. By Green’s dif-
ference formulas

N-1 N-1
h Y UV(x) = —-hY Udx) Vi — UgVy + Uy Vy,
=1 =1
N—1 N-1
h Z U; Vx(x,-) = —h Z Ux(x,-) Vi = UV + UpVy_y,
i=1 i=1

N1 N-1
hY UVx) = h Y Usx)Vi+ h UV — Uy + Uy_ Vy — UVx-1)
=1 =1
we get (with respect to (20))

N-1 N-1
h Z Y,.L,Y; = h Z (piYXZ;‘c(xi) + %‘Iinz(xi) + %’»Iiyxz(xi) + "iYiZ) +
=1 i=1

+ h73(poY((4Yy — 3Y2) + paYy-1(4¥y_; — 1¥y_,)) +
+ (2h) 1 (qoY? + anYr_1)-
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There exists hy, > 0 such that for h < h, it holds

h.3p YA(x)) + h73peY,(4Y, — 1Y,) = h 3 (po(3(Y; — Y,)2 + 2¥]) +
+ 1hp'(xe + O,h) (Y, — 2Y,)*) 2 0,
W3 (n(3GYv-1 = Yy-2)? + 5Y5-1) = 3hp/(xy = ©@2h) (Yy-n = Yy1)?) 2 0
where 0 < O, O, < 1.

Omitting the non-negative terms containing q;, r; and taking account of p, =z m
N-1

we get the estimate of h ) Y,L,Y; from below
i=1

i=
N-1

N—-1
(1) . h'Y YLY, =z imh Y YA(x;) + mh™ (Y] + Ya_y).
=1 i=1

i

If the right-hand side of (19) does not depend on Y then (19), (20) is a system of linear
equations the matrix of which is, according to (2]), positive definite and therefore
(19), (20) has a unique solution.

In the non-linear case we can again write
1
S ¥) =, | i ) 06 + ().
0

Let A, be the smailest eigenvalue of the matrix eigenvalue problem L,U; = AU,,
i=1,....,N — 1and (20). If Yis a solution of (19), (20), then
N-1 N-1

Ay 2Ry YLY(h Y YD) .
=1 i=1

It can be proved (see [2], [5], [6]) that for h > 0 sufficiently small it holds
(22) |2y = 44| = ©(h?)

and so we may again assume A; < o.
Let us multiply (19) by h and Y; and add.
We obtain

N—-1

) N-1 N-1 1 N-1
h Y YiLY, =h Z Yif(xi’ Yi) =hy, ijfy(x: iY) d¢ + h z Yif()(xi) =
i=1 i=1 i=1 0 i=1

N-1

N—-1 N—-1
ah Y Y2 + h Y Y, folx)) < of/Ash Y, VLY, +
i=1 i=1 i=1

I\

N—-1 N—1
+ max lfo(xi)] Y D)2 hY YH?,
1<isN-1 i=1 iZ1
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ie.,
N

(1 = ofAy) h 25

1
YiLY; £ max |fo(x,)| (b — a) Y]
1<isN-1

i=1
which leads together with (21) and (13) to the estimate
iEY”2 < Ks(b — a)™'* max ’fo(xi)] .
1

1SisSN-

Further, by (14) we have

(23) max ]Yi] < K5 max |f0(x,-)|
0<igN 1<i<N-1
where K5 = 2m™ ' K3'(1 — a/A,)™* (b — a) is a positive constant independent of /1.
If (19), (20) has two solutions Y', Y2, their difference Y' — Y2 would be a solution
of the system of difference equations of the same type. Its right-hand side is

F(xi’ Yil - Y:'Z) = f(xi» Yi1) - f(xi’ Yiz) =
=[x &Y+ (L= &)Y (Y = YD),
i=1,2,.. N —1, &e<0, 1,

i.e., Fo(x) = 0 and therefore it follows from (23) that Y' = Y2, i.e., (19), (20) has at
most one solution.
Let Q be the domain of all mesh functions Y satisfying (20) such that
max Y| = Ky, Kg=Ks max lfo(xi)l.
0<i=N 1<isN-1
Let T be the mapping defined in Q by TY = V, where V is a solution of the system
of linear difference equations

1
Ly, = V,.ny(x,., EY)AE + folx)s i= L2 uN—1
0

N—-1

satisfying the boundary conditions (20). From the estimates of h Y VL,V it can
i=1

be deduced that the matrix of this system is positive definite, so it has just one solution
V and it holds
max |Vj| = max [(TY)] £ K,
0<isN 0<is<N
i.e., T maps Q into itself.
For any & > 0 there exists § > 0 such that for any two mesh functions Y!, Y* e Q
such that max |YiI - Yizl < ¢ it holds

0ZigN

It ! ;
IJ Silxi, &y}) dé — ny(xi, £Y?) dE| < o(KsKq) ™"
Jo 0

223



Let ¥V = V' — V2 be the solution of the equation
1 t
LhVi = LhVil - LhViz = Vil jfy(xis iyil) dé + fo(xi) - [/izjfy(xia EY.'Z) dé - fo(x) =
0 0
1 {
= (Vil - VZE)J‘fy(xi’ éYil) dé + Vizj (fy(xi’ é’Yil) - fy(xi’ éyiz)) d‘f ’
0 0

i=12,..N — I, satisfying (20).
By (23) we get

max 1V,~| < K5 max <

0<izN 0ZisN

i
V,-ZJ. (fy(xi» SEYiI) - fy(xi’ éyiz)) dé

< Ky eK3'Kg' max V7| < eKg'Kg = ¢

0<isN

ie., max |[(TY');, — (TY?)| <&, i.e., the mapping T is continuous.
<N

0<i
By Brouwer fixed point theorem there exists Y e Q such that TY = Y. According
to the definition of T, Y is a solution of (19), (20).

4. DISCRETIZATION ERROR
Theorem. Let y(x) be the solution of (1), (2), Y, i = —1,0,..., N + 1 the solution

of (19). (20) and let the assumptions (3)—(6) be fulfilled. Then for a sufficiently
small h > 0 it holds

(24) max |y(x;)) — Y| £ K;h?,
0<is<N
(25) max y’(x,-) _ Y =Yy < Kgh?,
0<isN 2h

where K, Kg are positive constants independent of h.

Proof. Set y_; =3y, — 4y2 Yn+1 = 3¥nv-1 — $¥n-2- Then L,y; — Ly; = R,
where R; = O(h?) for i =2,3,...,N — 2, R, = O(1), Ry_; = O(1) as it can be
easily seen by Taylor expansion at the points x; if i = 2,...,N — 2, at xo if i =1

and at xy if i = N — 1. The mesh function E; =y, - Y, i= -1,0,..,N + 1
is a solution of the system of non-linear difference equations

(26) LE; = R, +fy(xia &y + (1 - f.) Yi) E,, i=1.,N—-1¢¢€01,
(27) E, =0, E_; =3E, — }E,, Ey=0, Eyy =3Ey_; —3Ey-;
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as it holds
LE; = Lyy; — LyYi = Ly, — Ly; + Ly, — L,Y, = R; + f(xis .Vi) - f(-\’.'x Y;)

for i=12,..,N—1.
N-1
We now estimate the expression h ). E;L,E,. In the same way as (21) we get
i=1

i=
N-1

; N—1

h Y ELE, = YmhY EXL(x;) + mh™3(E} + E}_))
=1 =

and further, with respect to (13)

ET + Ej_
mK,|[E|? + (_;’_ ' 1<4> Bt B

N-1

(28) hY ELE > L
i=1 2

On the other hand, we have

N—-1 N-1 N—-1
h Y ELE; = hY ER, + hY EFf(x;, Eyi + (1 = &) Y)

i=1 i=1 i=1
N—1 N—-1 N-—
ShYER +htY E} <hy
i=1 i=1 i=1

1 o N-t
ER; + —h Y ELE, .
Ay =1

By the inequality @Y < Jep® + 1e¢~ 'y valid for any ¢, ¥ and any ¢ > 0 we get
from here

-1 E E N-2
Y ELE, < l—' o(h?) + —";"—‘ o(h*) + h'y E, O(h?*) <
= /] i=

o N
1 ——)h
Ay i=1 2

€ 2 2 1 e N2 2 1
—(E1 + E}_))+ — O(h*) + = h Ei +—h
2’12(1 N 1) 2¢ ( ) 2 i;2 2¢

N-—

2O(h“L)

which together with (28) gives
(29) A|E|2 + BE—%ihZE’Z’—‘I < 2]: O(h*)
where
= (1~ al4) K, — ).
B =(1 —afA)mh™* + K,) — ¢

We can choose ¢ > 0 independent of h such that A, B are positive and independent
of h. Therefore (29) implies

(0) [EJ> = o(r?). Ei = o). Ey-.=o(w)

225



and from here by (14) and (15)

max |E;| = max |y, — ;| = 0(h?),
0<iN

(. J’.x(xi) - Yx(xi)l = 0(112) .

max ‘Ex(xi)] = max
0<i<N 0<isN

x;) = O(h?), we have
."’(Xi) - Yix) = ."/(Xi) - .\'x(xi) + .Vi(xi) - Yx-(-‘(.‘) =
O(h?) + 1E(x;) + 1E{x;) = O(h?)

As )"(-\',‘) - .".i'(

Il

and therefore also
max [)'(x;) — Yi(x;)| = O(h?).

0<i<N
Remark 1. Let the boundary conditions be
) ra)=xb)=0, y(a)=yy(a), V(b)=-py(0b), y=0p=z0.
Denote by (6') the assumption (6) in which (2) is replaced by (2). Let the approxima-
tion of (2) be chosen in the following way:
(20) Yo=Yy=0, Y, =Y/ (=1 +yh —yh?), Yy, =
=Yy_((=1 4 Bh — 1p*h?).

Then the problem (1), (2') under the assumptions (3)—(6’) has just one solution y(x),
the problem (19), (20') has just one solution Y and their difference y(x) — Y can
be estimated by (24), (25) with possibly different constants, i.e., it again holds

max |y, — V| = O(h?), max |y/(x;) — Yi(x;)| = O(h?).
0<isN 0SisN
The verification of these assertions is almost the same as the above analysis of the
problem (1), (2) and its approximation (19), (20).
Remark 2. If we use instead of (20) the approximation

(207 . Yo=0, Yy=0, Yixo) =0, Yyxy) =0,

then Ly, — L,y; = O(h™"), Lyy_; — L,yy-; = O(h™") and therefore we get
N-1

h'Y ELE; < 1eh™(E} + Ey_q) + 1| E|3 + ¢ O(h*)
i=1 .

and from here
”EHZ = 0(h*?), E; = O(h™?), Ey_y = O(h°"?)
and further
max ly,- - Yil = O(h3/2) , OT?](V ]y’(xi) _ Yi(xi)I _ 0(113/2)'

0<isN
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These estimates are worse than those corresponding to the approximation (20).
The reason may be rather in the method of estimation than in the nature of the
problem as the numerical results show.

5. NUMERICAL RESULTS

Several boundary value problems chosen so that y(x), p(x), g(x), r(x), f(x, y(x))
are polynomials have been solved. The computations have been performed on the
computer D 21 in the Computing Centre of the Technical University in Brno.

The system of non-linear difference equations has been solved by the method
of successive approximations

LY'™ 4wy = f(x, Y + Y, i= 1., N—=1,n=0,1..

with the corresponding approximation of boundary conditions, which converges
for any Y° and for a properly chosen parameter v (see [6]). It has been sufficient
to carry out 2 to 5 iterations.

The system of linear difference equations has been solved by Gauss elimination
method fitted to five-diagonal matrices.

The results are given in tables, where

ME = max |y, —= Y|, ME = max |y(x) — Yi(x)|,

0<igN 15isN—-1

ME[y = max |y; — Y|/ max |y(x)|,
O0<isN as=x=<b

ME'|y’ = max |y(x;) — Y(x,)|/ max |y'(x)| -
1=isN-1 asxsb

The last two quantities are given in percents. 4B denotes the type of approximation
of boundary conditions. If y(a) = y’(a) = 0, then AB = 1 corresponds to Y, = 0,
Yo, =3Y, =1V, AB=2to Y, =0, Y{(x,) =0, AB=5 to Y, = Yy(x,) =0,
AB =6 to Y, =0, Y(xo) — 31 Yi(x0) = 0 and AB = 3 corresponds to Y, =
= Y 4(x) = 0 for y(a) = y"(a) = 0. The situation at x = b is similar.

EXAMPLE 1:

The function y(x) = x*(x — 1)* is the exact solution of the linear problem

(A) y=24,
W(0) = y'(0) = (1) = y(1) = 0.

227



The same y(x) is also the solution of the non-linear problem
(B) vV o+ xty = —p>+ x"? —6x" + 15x"0 — 20x° + 16x% — 8x7 + 2x° + 24
2(0) = y'(0) = y(1) = y(1) = 0.

Another polynomial of the 4th degree y(x) = (x — 1)*(x + 1)? is the solution
of the problem

(C) YWy =xt = 2x? + 25,

A=1) = y(=1) = (1) = y(1) = 0.

EXAMPLE 2:
The function
W) = (v = P (= ) = B+ B+ Dl + 1)
is the exact solution of the non-linear equations (D), (E)
(D) 4y — y" + 8y = —y* + Py(x),
(E) ((x* +001) y")" — (%) 4+ (x> + 8) y = —)* + Py(x)

where P,(x), P,(x) are certain polynomials of 24th degree in x. The above y(x)
is also the solution of the linear equations (F), (G), (H)

(F) 4y — y" + 8y = 8x® — 74-5x° 4 6802-5x* — 3352:4375x2 + 158:3125
©) (4 + 00) ¥7) = (¥0) + (2 + 8)y = Py(x)

where P4(x) is a polynomial of the 10th degree in x,

(H) yV = 1680x* — 832:5x2 + 39-375.

The boundary conditions are always

=1 =y(=1)=x1)=y(1)=0.

EXAMPLE 3:

The function
y(x) = 2x7 — 7x® + 6x° 4 3x* — 5%° + x

is the exact solution of the problem
(1) ¥V + 4y = 8x7 — 28x® + 24x° + 12x* + 1660x> — 2520x> + 724x + 72
(0) = y"(0) = y(1) = y(1) = 0.

The first column in the tables denotes the problem considered.
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-10
-01
-01

10
-05
025

-01
-01

-004

-01

-01
02
02
-01
-01
-01

-01
01 |
-005
-005

-01
-01
-005

-01
-01

—

7”7; 7

Table |

1

ME | MEy | ME | ME) | hEER | 4B |
50% 1073 | 80 10° | 14x 1071 |74 100 | 1ax 1074 | 1
47% 107% 1 72 x 1073 [ 119% 1073 | -10 x 10° ‘1 16 x 10710
50% 1074 | -80x 1071 12X 107® 63 x 107* |16 107 2

i |
50 1073 | -80x 10° | ‘14x 1071 | 74 % Lax 107 |
62% 1074 | 99 x 107! | 43X 1072 | 23 % 24 % 107° 1
78 % 1075 | 12 % 1071 ] A1 x 1072 | 58 % 38 % 1078 1
44 1075 | 44 % 1073 | 39 1073 | -26 x 130x 107° | 1
20 1073 | 20 107! ’ 72x 1075 | 48 32x107% | 2
Table 2
ME ME)y |  ME | ME}y | hzEXL | 4B
R e S e T e
. | ‘
233 1072 76 100 | 58x 1072 28 x 100 | 35x 1070 1
C61 X 1073 120 108 | 15 1077 |73 10° 23 x 107¢ ’ 1
2% 1073 | 40 x 100 | 11X 107 | 54 1072 31 1074 | 2
97x 107% | 32 10° ! 25% 1073 12% 10° | 59 x 1076 |
|
55 1073 | 18 x 10" | -18x 1072 | 88 x 10° | 70x 107* 1
i | t N |
36% 1071 | 123 103 | 85% 1071 | 41 x 102 | 12 x 10° Co
23% 1077 |76 10" | 58 1072 | 28 100 [ 351070 1
49% 1073 | -16x 100 44x 107% | 21 x 1071 | 46 % 1073 2
61x 1073 20 100 15x 1072 | 73x 100 L 23x 1074 |1
A2x 1073 1405 100 |11 x 107 sdx 1072 3 107 | 2
36x 1073 | «12x 100 | 15%x 1072 | -73x 10° 29 107* | right 2
left 1
A3x 1071 | 43 % 107 |28 1071 | 14 x 10? 14x 1072 | 5
22% 1072 | 73%x 100 | -16x 1071 | 278 x 10! 11 x 10° 6
5% 1073 | 50x 10° | -40x 1073 | 20 x 10° 15x 107° 1
BIx 1074 10x 10° | 31x 1073 | -15%x 1072 | -19x 1073 2
55% 1073 | .18 x 10! 18 % 1072 | -88x 10° | -69x 1074 1
28x 1073 1 -93x 10° [ -10x 1072 49x 10° | -62x 107¢ 2
14x 1073 | 46x 10° | -45x 1073 | -22%x 10° | 45%x 107° 1
67 x 1073 | 22 x 10! 5% 1072 | 73 % 10° | 26 x 1074 1
2% 1073 | 40x 10° | 22%x 107 | (11 x 1073 | 31 x 1074 2
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Table 3

; L ow | MmE MEly | ME | ME[ | hx2, AB
P | | B | o T
. ; v \ i ‘ !
L r 100 1501072 125 101 83 1072 |83 107 | 14 107! I 3
' 05 [ 13x 1072 -65x 10° | 27x 1072 27x 10° | 91x 1073 | 3
| 02 20X 1077 10x 10° | 50 1077 | -50x 1071 24 107* 3
01 | 50x 107% | 25 107! | 13x 1073 13x 107 5% 107 3
| —a | _ _ s | |
| 005 ;-16><IO43-80><102&-70><104‘~70><102:-9I><107§ 3
| t | | | |
| | ' i

The smallest error appears in three problems of Example 1. This could be expected
because y(x) is a polynomial of the 4th degree and therefore it holds L,y = Ly
and the discretization error is caused only by the approximation of boundary condi-
tions. Better results in Example 3 than in Example 2 are probably a consequence
of the fact that the polynomial from Example 3 has inside the interval (a, b) no roots
while the polynomial from example 2 has in (a, b) four roots.

If we compare the results for different approximations of the boundary conditions
for the same h, we can see that for max |y,- — Y,-| the approximation AB = 1 is much
better than AB = 2 in Example 1, but in Example 2 is AB = 1 almost like AB = 2.
For max Iy’(x[) - Yi(x,-)l, AB = 2 is surprisingly better in all cases. On the other

N-1

hand. the sum h Y Ei,-c(x,-) is always better for AB = 1. The ‘““inner” approximations

i=

AB = 5 and AB = 6 were used only once and they gave rather bad results.
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Souhrn

OKRAJOVE PROBLEMY
PRO MIRNE NELINEARNI OBY CEJNE DIFERENCIALNI ROVNICE
4. RADU

HELENA RUZICKOVA

Prace se zabyva metodou siti pro feSeni okrajovych problému pro mirn€ nelinedrng
obycejnou diferencialni rovnici 4. fadu. Je dokazana existence a jednoznacnost feSeni
diferencialniho a diferenéniho problému. Pro diskretizaéni chybu a jeji prvni diferenci
je dokazan odhad O(h?). Dale je uvedeno nékolik numerickych piikladd.

Author’s address: RNDr Helena RizZi¢kovd, CSc., Laboratof poditacich stroja, VUT Brno,
t¥. Obranci miru 21, 602 00 Brno.
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