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SVAZEK 18 (1973) A P L I K A C E M A T E M A T I K Y ČÍSLO 1 

ORTHOTROPIC ALMOST CYLINDRICAL BEAMS: 
BENDING BY A TRANSVERSE LOAD 

CONSTANTIN I . BORS 

(Received July 2, 1970) 

We shall consider a beam bounded by two planes x3 = 0, x3 = h and a surface 
^ given by 

(1) / [ x . ( l - fcx3) , x 2 ( l -/cx 3 ) ] = 0 , 

where k is a small parameter, the square and higher powers of which can be neglected. 

Such beams are called "almost cylindrical beams" [1]. 

Many results are known in connection with beams of the shape (1). 

Homogeneous and composite beams have been taken into account in the isotropic 
case [1], [2], [3] etc. as well as in the anisotropic case [4], [5], [6], [7] etc. 

In this Note we will study the problem of bending by a transverse load when the 
material of the beam is orthotropic. 

The solution of the problem will be given in two steps. 

First, the problem will be reduced to Almansi's problem. 

Second, the complete solution will be given. A solution of this problem correspond­
ing to the first step was given in the paper [6] but by a complicated method. Here, 
the first step is performed in a very simple way and, moreover, it may be easily 
generalized to the case when the surface 3F is of the form 

(2) f\xx(\ - ko)9 x2(i - key] = o, 

where 6 = 9(x3) is a given function of x3. 

1. GENERAL EQUATIONS 

We suppose that the surface OF is free from tractions and that there are no body 
forces. We denote by i r the region occupied by the beam. 
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Under these assumptions the stress components GU must satisfy the equilibrium 
equations 

(3) <r,7., = 0 in r*) 

and the boundary conditions 

(4) 0 ^ = 0 on &, 

where nt are the direction cosines of the exterior normal to the surface #". 

The tractions applied at the end at x3 = h are equivalent with a transverse load 
Fx acting in the direction of i } . 

We shall suppose that the material of the beam is orthotropic so that Hooke's 
law may be written in the form 

G1X = Aylx + Hy22 + Gy33 , 

(5a) G22 = Hyxx + By22 + Fy33 , 

^33 = Gyn + Fy22 + Cy33 , 

(5b) GX2 = Dy12 , G23 = Ly23 , G3X = My3X , 

where A, B, ..., L,M are moduli of elasticity. 

We express the components of strain ytj in terms of stress components by 

1 / N 
T i l = - ( V i i O " u + Vl2G22 - VXG33), 

E 

(6a) y 2 2 = ~(V12GXI + V22G22 - v 2 G 3 3 ) , 
E 

1 / N 
T33 = - ( ~ Vl^"l 1 - V2(T22 + G33) , 

E 

(6b) yl2 = — G12 , y23 = —• G23 , y 3 1 = — O31 , 

where the coefficients of strain E, vtj, vt can be expressed in terms of moduli of elasti-
city [8]. 

The components ytj are given in terms of displacement components ut by 

yH = uiA (not summed) , ytJ = uisj + ujti (i + j) 

*) The index j after comma indicates partial differentiation with respect to Xj. We use also 
the summation convention over the repeated indices. 



and they must satisfy the compatibility conditions of Saint-Venant 

( 7 a ) yi\ ,22 + 722,11 = 7l2,12* ••• 

( 7 b ) ( ~ 7 2 3 , 1 + 731,2 + 7 l 2 , 3 ) , 1 = 7l l ,23> ••• 

By means of the transformation [1] 

(8) C = xj(l - kx3) , rj = x2(\ - kx3) , C = * 3 > 

x, = c ( l + k C ) , x2 = rj(\ + k C ) , x3 = C, 

the surface (1) becomes 

(9) j(c,»/) = 0 , 

which is a cylindrical surface # \ in the space £, rj, £. 

We denote by S the domain of the cross-section of the cylindrical surface (9) and 
by F the boundary of S. 

We can easily prove the following formulae 

(10a) 

Ü (i - kc) ^, -д- = (i - ң) д-, д- = A - k U A + , A 
дţ дx2 ôrj (Зx 3 ŐC \ <ЗC <3n 

and 

(10b) ni = cos a , u2 = cos /? , w3 = — k(C cos a + rj cos /?) , 

where cos a, cos /? are the direction cosines of the exterior normal to the curve F. 

We shall take the axes £, rj, C such that the axis C is the central line of the beam (9) 
and the axes £ and rj are the principal axes of inertia of the end at £ = 0. In this case 
we have 

(П) £ d£ árj = 0 . rj dç ârj = 0 £n d£ árj = 0 . 

We shall try to find the solution of the above problem supposing that the displace­
ments u- are of the form 

(12) u! = -T7/C + a[i(h - C) ( v ^ 2 - v2rj2) + \K2 - £f3] + *t-i , 

w2 == Tĉ C + «(fc - C) v2C>7 + ku2 , 

u3 = T(p(£, rj) - a[x(c, //) + (h - it) CC] + ku°3 , 

where u° are complementary unknown displacements, x and a are constants which 
must be determined from the end conditions. Further, <p(C, rj) is the function of torsion 



of the beam (9) defined by 

(13a) Md^ + Ld^ = 0 in S , 

(13b) ®<p = AIw cos a - L£ cos jS on F 

and /(c, *l) is the flexion function of the same beam (9) defined by 

d2y d2y 

(14a) M ~~ + L —£ + (Mvt + Lv2 - £) f = 0 in S , 
d<r OV 

(14b) % = ~lM(vx^2 - v2*/2) cos a - Lv2<^ cos j5 on T . 

The operator £? is given by 

(15) 9 = M cos a h Lcos /? — . 

5f drj 

From the displacements (12) we obtain the following components of stress 

o-n = -kG(H , - i f l K 2 ) + fcrn, 

<722 = -kF (H ! - ia^C 2 ) + kT22, 

(16) c/33 = ~a{l - kC) (h ~ C) F£ - /cC(H, - i^C2) + /ct33 , 

<T12 = K T 1 2 , 

<x23 = L(—i+ T C ; - a v 2 < ^ ) - /cL ( y i + TCjC + 2av2(/i — C) "»l +fcT23-

»31 = M ~ - Tf - 2 " O ^ ~ V'2,/2) ~ 

- fcM | T - ^ - _ n, - a(fc - | c )~ | c + «(* - 0 ( v . { 2 - v2 /j2) | + fct31, 

where TI7 are the stresses corresponding to the additional displacements u° and 

(17) /,.(& 1,) = MZ> n) - ax(Z, n), Hfc r,) = id^ + r, f-1-. 

The substitution of stresses (16) into equations (3) shows that the components 
Ttj must satisfy the equations 

^ - + ^ + ^ - ( c + M)(f--MA + 

+ 2M[T>J + a(v,e - v2t]
2) + a(/i - C) C] = 0 , 



°h± + ^ + ^ - (E + L) f L - 2L(TČ - 2_ v 2í„) = O, 
CQ Ot] OL, cr] 

^ + ^ + ^ - - fl(2ň - C) (Mvt + Lv2 - F) c + aCK = 0 . 
<3c ^ ^ C 

2. REDUCTION TO ALMANSI'S P R O B L E M 

Let us take into account the following components of stress 

(19) -?, = G(H, - iflC2), t2*2 = E(H, - M2), T ? 2 _ 0 , 

T * 3 = C(HL - |aC 2 ) - 2aE(A - 0 « , 

= L ^ y i + 2 T C ) C + 2av2(A - 2 0 C » l 

= M Wj± - 2 T / ? ) C + «(A - 2 0 (v,c2 - v2^
2) - a(A - K ) C 2 1 

^ 2 3 

* 3 1 

It is easy to verify that the stresses (19) represent a solution of equations (18). 
Also, we can prove that the corresponding strains y* satisfy the conditions of com­
patibility. 

Let us now put 

(20) Ty = T*; + fy . 

From equations (18) we conclude that the new stress components f0 must verify 
equations 

(21) hj.i = °*) • 

If we take into account (16), (19), (20) and (13b), (14b) we find that the new com­
ponents of stress fl7 satisfy the following boundaiy conditions 

(22) xlx cos a + f12 cos /? = M \ — - — xr\ — \a(y£2 — v2t]
2) (c cos a + rj cos /?), 

L<?c J 

f 12 cos a + f22 cos p = L — - + re — av20] (£ cos a + r/ cos /?) , 
ISri J 

f31 cos a + f23 cos /? = — C^(Hi — 2 T ^ + 3 ^ ) — 

— aE(h — 0 (c2 cos a + £// cos /?) on F . 

Equations (21) and (22) define Almansi's problem whose solution is known [9]. 

*) Here the indices 1, 2, 3 after comma indicate partial differentiation with respect to f, >7\ C-
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3. COMPLETE SOLUTION 

Using a method similar to that used in [10] we can solve the problem defined 
by (21) and (22) in a simpler way. 

To this purpose let us consider the following representation of the stresses f tJi 

(23) 
Õ2J> 

щ2 
- M(col + 0,) , 

õ2ф 
x 2 2 = — ч - - Цшt + 2 ) , 

õç2 

д2ф 

т _. _. Чдr, 

Q + _ í + _ , - , - , 

T,* = L 

fзl = M 

____L + ____ Г + —o 
дrj дrj / ôrj 

Sço_i +
 З Лr + ______ 

дç ' дč ) ' ' дç 

where (j>, to,, co0 are unknown functions which will be defined below, 

1 
(24) Q = E + ( в i + tf2) + - M . f l l ç з + ^ M 

+ v 

6\v 

f^ - M(CD! + 0, 

+ 
"cl2cт5 

c/t/ 
+ V; --J- - _(„, + e2) 

CÇ 

0Í = b^n2 - c^rj , 02 = a^2 . / + c^crj . 

a l5 bl7 c, being some constants which will be chosen in such a way to guarantee 
the existence of the functions co^ and c/>. 

The stresses (23) satisfy equations (21) if the functions co0 and col satisfy the 
equations 

(25) 

and 

(26) M ___ 
дç2~ 

м 

+ Ĺ 

д2ш0 õ2ш0 

___ 

+ L = 0 in S 
щ 

f £ [ ^ č + ^ d S. 

The third equation (22) yields the following boundary conditions for the functions 
cOo and cO]: 

(27) 
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and 

(28) 9co1 = ~Q)(H1 - 2TCP + 3aX) + OF(£2 cos a + £n cos p) -

— M —L cos a — L cos p on F. 
O"C 3*7 

Making use of (11) we can prove that the conditions of existence for the functions 
Oj0 and Oh are satisfied with arbitrary au bu cx. 

All compatibility conditions (7) will be satisfied by the strains ytj if the function 
<j) satisfies the equation 

(29) fi2a& + (2pti + fi3i)^ + P l l 3 g -

= (Lft22 + Mpi2 + v2) ̂  + (Lp12 +MP11 + v.) ~ - i + 
CQ crj 

+ 2[(Mj8u + Vl) bxC + (L/̂ 22 + v2) fl^] in S. 

The first two equations (8) require that 

I2" 
drj2 d£ drj 

(30) — cos cc — cos ß = M(cD! + І ) cos a + 

+ M — L - xrj -Í(VÍC2 - V2M
2) (c cos a + ř/ cos /?) , 

L d£ 2 J 
л2 A т2 І 

— cos a -j cos ß = L(ш! + 2) CОS ß + 

where 

+ L í — - + TČ, — av2^rj ] (c cos a + rj cos /?) on F, 
\drj ) 

ß =Ъi—Wlt (i,j= 1,2), ß33 = ~. 
E D 

From (30) it is obvious that we can obtain the function c/> in a similar way to that 
corresponding to Airy's function for the plane problem of orthotopic bodies. It 
follows that we can choose the constants at, bu cx in such a way to guarantee the 
existence of the function c/>. 

As shown in [10], we can find the constants a l5 bx, cL before we know the function 
Ojx. 

The solution given here will satisfy all equations and boundary conditions except 
the end conditions. 

Therefore it still remains to correct the end conditions by superposition of solutions 
of some adequate problems for the cylindrical beam (9) but we can solve all needed 
additional problems [8], [11]. 



Some remarks - Making a = 0 we obtain the solution concerning the problem 
of torsion. 
— A similar method can be developed when 6 = £2 in the equation (2). 
— The above results can be extended to the case when the material of the beam is 
anisotropic with one plane of elastic symmetry perpendicular to the axis x3. 
— The results can be generalized also to composite beams. 
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Souhrn 

ORTOTROPNÍ SKORO CYLINDRICKÉ NOSNÍKY: 
OHYB PŘÍČNÝM ZATÍŽENÍM 

C L BORS 

V práci je řešen problém ohybu příčným zatížením pro ortotropní skoro cylindrický 
nosník převedením na Almansiho problém. Předložená metoda je značně jednodušší 
než dosud známé řešení. 

Authoťs address: Prof. Constantin I. Bors., Seminarul Matematic, Univ. AI. I. Cuza, Iasi, 
Romania. 
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