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SVAZEK 17 (1972) A P L I K A C E M A T E M A T I K Y ČÍSL01 

STABILITY AND LOCAL ERROR OF DIFFERENCE METHODS 
FOR THE SOLUTION O F THE ORDINARY DIFFERENTIAL EQUATION 

O F THE FIRST ORDER 

PETR VONKA 

(Received May 28, 1970) 

The present paper deals with the problem of the construction of the difference 
formulae for the solution of the ordinary differential equation of the first order from 
the given characteristic polynomial (Sec. 2), with the effect of the choice of zeros of 
the characteristic polynomial on the local error of the difference methods for the 
equation y' = Ay, y(0) = 1, A being a constant (Sec. 3), and with the dependence of 
the error constant on the choice of zeros of the characteristic polynomial in the general 
case (Sec. 4). 

1. INTRODUCTION 

In what follows, we study some problems of the numerical solution of the differen­
tial equation 

(1) y' = f(x, y) y(a) = y0 

by the linear multistep method (1). We assume that the assumptions of the existence 
theorem (1 j for the solution of Eq. (1) are fulfilled. The general multistep method may 
be expressed in the form 

(2) CCkyn + k + Xk-iyn + k-l + '-'OC0yn = h{Pkfn + k + Pk-lfn + k-l + -~Pofn} 

where k is a fixed positive integer, fm = f(xm9 ym) (m = 0, 1, 2, ...), ab pt (i = 0, 1,... 
.,., k) are real constants independent of n, ak + 0, | a 0 | + |/?0| 4= 0. 

Define the polynomials 

(3) g(0 = vuf + tk-i?"1 +.•• + «<> 

with the coefficients identical with those of Eq. (2). It is possible to show that the 



general linear k-step method is convergent (1) if and only if the following two condi­
tions are satisfied: 

(i) All zero points of the polynomial O(£) are in their absolute value at most 
equal to one. Moreover, those with the absolute value equal to one are simple zeros. 

(ii)<?(l) = 0 , Q'(l) = a(l). 

The first condition is called the condition of stability, the second one the condition 
of consistency. Define the differential operator associated to the relation (2) by 

(4) L(y(x), h) = aky(x + kh) + ak_- y(x + (k — 1) h) + ... + a0 y(x) 

- h% y'(x + kh) + pk-x y'(x + (k - 1) h) + . . . + fi0 y'(x)} 

Assuming that the differential operator (4) as a function in h has the derivatives 
of all orders we can expand it with respect to h: 

(5) L(y(x), h) = C0 y(x) + Cxh y'(x) + .. . + Cqh« y<*\x) + .. . 

The coefficients Cq (q = 0, 1, 2, ...) are independent of the choice of y(x). The dif­

ferential operator (4) will be said to be of degree p if C0 = Cx = ... = Cp = 0, 

Cp+1 + 0 . 

The quantity 

Cp+1 (6) C 
% + ßl + ••• + 

is the so called error constant. The constant C is invariant with respect to the multi­
plication of both sides of (2) by an arbitrary real number. 

Suppose that an arbitrary but fixed value of k is chosen. Then it holds (1) that the 
degree of a stable operator (5) (i.e. the polynomial 0(f) satisfies the condition of 
stability) cannot exceed the value p = k + 2. A necessary and sufficient condition 
for p = k + 2 is that k be even and all zero points of the polynomial Q(£) have the 
absolute value equal to one, Q(— 1) = 0. 

2. CONSTRUCTION OF THE DIFFERENCE FORMULA (2) 

Choose arbitrarily a fixed fc = 1 and put p = k + 1. Choose a polynomial of the 
k-th degree Q(£) SO that it satisfies the condition of stability and that Q(1) = 0. Now, 
try to construct generally the polynomial a(£) so that the differential operator (4) 
may have the highest degree possible. Put 

(7) Co = C1 = ... = CP = 0 
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Equating the coefficients at the same powers of h in the relations (4), (5) and sub­
stituting into (7) we obtain a system of p equations for p unknowns /?o> fiu •••» FV 

(8) /?<> + Pi + ... + Pk = <*i + 2a2 + 3a3 + .. . + kak 

px + 2/?2 + .. . + kpk = — (a- + 22a2 + 32a3 + .. . + k2afc) 

(/?,. + 2'-1jB2 + . . . + kp~xpk) = 1 (ax + 2*a2 + 3 % + ... + kpa,) 
(P - 0! 
The first equation in (8) corresponds to the condition Cx = 0, the second one to 

C2 = 0 etc. up to the T-th one corresponding to Cp = 0. The condition C0 = 0 is 
fulfilled obviously according to the choice of Q(£) (O(l) = 0). The determinant of the 
system (8) is non zero for an arbitrary k. The condition of stability implies that the 
first component of the vector on the right hand side of the system (8) is also non zero 
Hence the system (8) has for any k ^ 1 exactly one non zero solution. Consequently, 
to any polynomial O(£) of the k-th degree (k j _ 1) which satisfies the condition of sta­
bility and the relation O(l) = 0, there exists exactly one polynomial O-(() of at most 
the k-th degree, such that the degree of the operator (4) is at least p = k + 1. Moreo-
over, the condition O(l) = 0 guarantees the convergence of (2). The difference formula 
(2) whose associated operator has the degree p = k + 2 is called optimal. 

E x a m p l e 1. k = 2. The solution of the system 

(9) /?o + Pi + Pi = «i + 2a2 

Pi + 2p2 = i(ax + 4a2) 

HP i + 4j32) = i(«i + 8a2) 
is 

(10) p0 = T2*t + i a 2 

Pi = *«i + fa2 

The polynomial O(£) for k = 2 may be written in the form 

(11) < # ) - = ( * - - ) ( * - * ) A e < - l , l ) 

This implies 

(12) a2 = 1 ax = - ( 1 + A) a0 = X 

Substituting (12) into (10), (2) we obtain the general difference formula 

(13) y„+2 - (1 + X)yn+l +lyn = h f ^ L + 2 + - - ~ - / . + i - ^ A 
V 12 2 12 j 
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Substituting (10), (12) into C3 and dividing by fi0 + Px + ft2 we obtain the relation 
for C 

1 1 + X 
(14) C = - — 
V ' 24 1 - A 
Substituting A = — 1 into (13) we obtain the optimal formula whose associated 
differential operator has the degree 4. 

E x a m p l e 2. k = 4. Analogously to Ex. 1 we solve the system (8) for k = 4. 

The solution is 

, x _ 224a4 + 243a3 + 232a2 + 251 a-

02 = 

720 

512a4 + 459a3 + 496a: > + 323at 

360 

64a4 + 108a3 + 32a2 -- 44a-

120 

512a4 + 189a3 + 16a2 + 53a^ 

360 

224a4 — 27a3 — 8a2 — 19a! 

720 

The constant C is evaluated also analogously to Ex. 1: 

27a3 + 16a2 + 27ax (16) C = 
1440(4a4 + 3a3 + 2a2 + a-) 

3. EFFECT OF THE CHOICE OF THE ZEROS OF THE POLYNOMIAL 
ON THE LOCAL ERRORS 

The dependence of the local error of Eq. (2) on the choice of zeros of the polynomial 
Q(£) for fixed k will be studied in the case of the differential equation 

(17) y' = Ay y(0) = 1 

A being a real constant. The local error assumes then the form 

(18) e„ = yn - eAx» 

It follows from the theory (1) of difference equations that the solution of the difference 
equation (2) has the form 

(19) ;v„«_4# 
д = l 
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where A„ are constants and the values |M are the zeros of the polynomial 

(20) e(£) = Q($) - Ah a(t) 

Let us further assume that the zeros of Q(£) are simple. We find easily that 

(21) J„ = {,(1 + KAh + 0((Ah)2)) 

X »_?&) ._ ,1 = 1,2, ..., n 

holds. The values AM are called the growth parameters. Let us number the zeros of the 
polynomial O(^) so that Cj = LThen 

<a> ->• - € - ' 
el1) 

The zeros of the polynomial @(£) with the absolute value equal to one may be written 
in the form f = e,<pn (/t = 1, 2, ...). Then it is possible to show (l) that 

(23) ll = e
in<p»(ex»Ax + 0(h)) h -> 0 nfc = x 

In particular, this yields 

(24) l\ = eAx + O(fc) fc -> 0 

It can be proved (l) that the constants A^ from (19) fulfil 

(25) limA^fc) = 1 

limA^fc) = 0 n = 2, 3, . . . , k 
/ i - 0 

A,(fc) £ 0 /* = l , 2 , . . . ,k 

Consequently, only the first term on the right hand side of (19) approximates the solu-
k 

tion of (17). The other terms of the sum, i.e. £ A^Q form the so called parasitic 
H = 2 

solution, which in case of an improper choice of the polynomial Q(£) with respect 
to the given A . fc may cause the results to be quite worthless. (For an example, see 
(l).) It is evident from (19) that, given Afc, the polynomial D(£) (and hence also the 
form (2)) must be chosen so that 

(26) 11,1 > IIJ n = 2,3,...,k 

Example 3. k = 2. For k = 2 the roots £t, £2 are obtained by solving the 
quadratic equation 

(27) al2 + hi + c = 0 
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Example 1 and the relation (20) yield 

12 - 5z - zX 
(28) 

12 

- 3 - ЗX - 2z + 2Яz 

c = 
\2X + z + 5Xz 

12 

where z = Ah. Easy transformations lead us to 

i + x + V(i 
(29) hm£ l i 2( / i) = Xf = 1 OГ X 

Let us answer the question how to choose X for given z so that \l\ 

from (27), (29) that 

| ? 2 | . It follows 

(30) -ь + Уffr2 - 4ac) 
2a 

•b - v

;(fe2 - 4ac) 

2a 

must hold. If a > 0 (i.e. z < 2) is assumed, then a discussion of the inequality (30) 

shows easily that (30) is satisfied if an only if the following two conditions hold 

simultaneously: 

(31) b < 0 

b2 - Aac > 0 

Substituting (28) into the expression b2 — 4ac and investigating the resulting quadrat­

ic function of X for an arbitrary and fixed z, we prove easily that the second condition 

in (31) is fulfilled for any pair (z, X), z (— oo, oo), X e < — 1, 1). The second relation 

(28) implies that b < 0 if 

(32) A(2z - 3) < (2z + 3) 

The relation (32) defines the set (z, X) for which (if a > 0) |£ t | > |^2 | holds. The case 
a < 0 (z > 2) is investigated analogously, however, it is not interesting due to the 
big value of z. It is evident from (32) that it is unsuitable to use the optimal formula 
for Ah < 0. 

E x a m p l e 4. k = 4. In this case it is not possible to proveed analogously to the 
case k = 2. The zeros | 1 ? <J2, £3, f4 of the polynomial £>(£) may be only estimated 
by means of (21). Nevertheless, let us show that in case of Ah < 0 it is unsuitable to 
use optimal formulae even for k = 4. For the optimal formula, the zero points of the 
polynomial O(<i;) are 

(33) £. = 1 Z2 = - 1 U = q + i V(l - q2) U = q~i V0 " Q2) 
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with q G ( - J, 1). It follows from (33) that the coefficients of the polynomial O(f) are 

(34) a 4 = 1 a 3 = — 2q a 2 = 0 a1 = 2q a 0 = — 1 

Substituting (34) into (15) and (21) we find 

19 + \\q 
(35) Я2 = 

(36) Я3 = Я4 = 

45(1 + q) 

(g - 0 2 

45(д + 1) 

(35) implies that the growth parameter A2 corresponding to the zero point £2 = — 1 
is less than — 1/3 for k = 4. Hence it follows from (21) that for small negative values 
of Ah | | 2 | > | l i | holds, which is a contradiction to (26). Moreover, let us show that 
for Ah > 0 we can use the optimal formula analogously as for k = 2. (35) implies 
that for small positive Ah h is ||21 > | | 2 | . It holds 

(37) £з = (<7 + i V 0 - < ? 2 ) ) ( l + ; 

Hence \ 

(38) \t»\*1+  

^л^oaмү)) 
45(q + 1 

O 2 

45(1 + q) 
Ah 

It follows from (38) that for q > —0 8 it is \%t\ > | | 3 | . For a suggection concerning 
the choice of zero points of the polynomial Q(£) for Ah < 0, as well as for a more 
detailed discussion of the problem see (2). 

4. DEPENDENCE OF THE ERROR CONSTANT C ON THE CHOICE OF ZEROS 
OF THE POLYNOMIAL 

The above considerations show that it is not always advantageous to choose the 
optimal difference equation for the solution of (17) of, more generally, (1). It is 
evident that, given k arid the value Ah, we shall aim at such a choice of the zeros of the 
polynomial O(£) that the relations (26) hold and the absolute value of the quantity C 
be as small as possible. Therefore we are interested in the dependence of C on the zeros 
of the polynomial O(£). Before stating a general theorem, let us introduce two exam­
ples. 

E x a m p l e 5. k = 2. Example 1 implies that C is a non positive strictly monotone 
function of A. Hence it is obviously profitable to choose such X = A0 that for given 
Ah satisfies the relation 

(39) l0 = min (|«5.(A)| S |f2(A)|) 
< ! e < - l , l ) 
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It is seen from(32) that A0 = - 1 for Ah > 0, A0 = (2z + 3)/(2z - 3) + s for z = 
= Ah < 0 where E > 0. 

E x a m p l e 6. fc = 4. Assume that the zeros of the polynomial Q(£) are of the form 

(40) l , b , q ! ± iq2 

where b e < — 1, l), #, + q\ = I, qt + 1, q2 ~ 0. Evaluating the dependence of the 
coefficients of the polynomial on the zeros (40) and substituting into (16) we obtain 

(41) c - - J L - « i * * * 
1440 K3(l - b) 

wheie 

(42) K, = 11 + 2 2 $ , + 2 7 ( ^ + g|) 

K2 = 27 + 22^, + l l fa j + q2) 

K3 = 1 - 2 ^ + q? + q2
2 

It can be shown easily that K1? K2, K3 > 0 for all admissible values qA, q2. This 
implies that the constant C is non positive. (41) yields that C = 0 if an only if b = — 1, 
qi + q2 = -> qi 4= 1- Further it follows from (41) that the quantity C is a strictly 
monotone function of b for arbitrary fixed ql9 q2 (satisfying (40)). Choosing arbitrarily 
fixed values of b, q2 from the definition domain of (40), we can show that the function 
C = C(qx) is strictly monotone as well. The proof of this assertion is essentially very 
simple, although immensely tedious and combersome. Actually it consists in proving 
that the function 

dC(qt) 
ФЫ = dąx 

has no zero in the interval (— ^ ( 1 — g2), ^J(l — ql)). 
Let us now proceed to the general statement. Assume that the polynomial Q(£) 

has r real zero points b{ (i = 1, 2, ..., r) different from and s pairs of complex con­
jugate zero points pt + iqt (i = 1, 2, ..., s). Hence fc = 1 + r + 2s. Assume that all 
zeros of the polynomial O(£) satisfy the stability condition. The set of these zeros 
denote by M. 

Theorem. The function C = C(b1 ? b2, ..., br, pl9 p2, ..., pS9 ql9 q2, ..., $s) has no 
strict extreme on M. 

Proof. A) Assume r + 0. Then the polynomial Q(£) assumes the form 

(44) « ( f ) - ( « - 1) (5 - *»,>-*• 

25 



where F is a function independent of bx. In the relation (6) for C let us first consider 
the denominator. It is 

(45) j80 + p, + .. . + fik = a i + 2a2 + ... + kak = D/(1) = (1 - bt) F 

The system (8) implies 

(46) Pi = tct/*J i = 0, l , . . . , /c 
7 = 1 

where C0 are constants. On the other hand, (44) implies 

(47) a, = d, + ty,. 

Where d7, h7 are constants independent of b{. Putting together (46), (47) we obtain 

(48) pt = ictj(dj + hfa) 

(6), (4), (5), (8) yield 
k k 

(49) C5 = X p,,sa, + X w ^ 
i = 0 i = 0 

Where v£)S, wf s are constants independent of bt. Substituting (45), (47), (48), (49) 
into (6) we obtain 

(50) C = *±±R. 
(i - bt)F 

where the quantities E, D, F are functions independent of bt. This completes the 
proof in this case. 

B) Suppose r = 0. Then 5 + 0 and the polynomial assumes the form 

(51) g(S) = (£ - 1) ({ - Pl - i9l) (£-Pl + iqt) F 

where F is a function independent of the values, pu qt. It holds 

(52) e(i) - (« - l) (e - 2PlZ + P\ + q\) F 

Q'(l) = ((l-Pl)
2 + q2)F 

The value ql is from the interval <0, 1>. Let us use the substitution 

(53) qx = q\ 

Substituting (52), (53) into (6) we find 

(54) C = £< + F ^ 
E2 + F2qx 

where £ , , E2, Ft, F2 are functions independent of qx. This completes the proof. 
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STABILITA A LOKÁLNÍ CHYBA DIFERENČNÍCH METOD 
PRO ŘEŠENÍ OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU 

PETR VOŇKA 

Tato práce se zabývá problémem konstrukce diferenčních formulí pro řešení oby­
čejné diferenciální rovnice 1. řádu ze zadaného charakteristického polynomu (2. ka­
pitola), vlivem volby kořenů charakteristického polynomu na lokální chybu dife­
renčních metod u rovnice y' = Ay, y(0) = 1, kde A je konstanta (3. kapitola) a zá­
vislostí konstanty chyby na volbě kořenů charakteristického polynomu v obecném 
případě (4. kapitola). 
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