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SVAZEK 16 (1971) APLIKACE M A T E M A T I K Y ČÍSLO 4 

EVALUATION OF THE HALF-PERIODS OF THE WEIERSTRASS 

p-FUNCTION FOR TFIE ABSOLUTE INVARIANT GREATER THAN ONE 

JAN CHRAPAN 

(Received July 16, 1969) 

The paper is a continuation of that on Weierstrass p-functions by the same 
author [3] . The solution of this mathematical problem is connected with a motion 
of a rigird body with one fixed point. 

The half-periods of the Weierstrass p-function [1, p. 328; 13.12] may be deter 
mined by means of relations [1, p. 341; (9)]: 

( i) 

(2) 0J = 

V(*i - eъ) ' 

ІK' 

V(*i ~ eъ) ' 

where K, K' are the constants of the periods of Jacobi elliptic functions (complete 

elliptic integrals of the first type), eu e3 are zero points of the Weierstrass cubic 

polynomial [1, p. 338; (10)] which have different real values provided that the 

absolute invariant [1, p. 375; (4), (5)] is greater than one: 

£ (1 - k2 + fc4)3
 = ± (1 - k2k'2)3 

g\ - 21g\ 27 k"k'A ~ 27 k*k'4 
(3) J = - *2 = _ VÍ 1 ^^> = ^ \L 1J1-L > i 

Considering (3) we obtain 

g\ _ 1 (1 + k2)2 (1 - 2k2)2 (2 - k2)2 

108 (1 - k2k'2)г 

which yields a reciprocal equation of the sixth degree for the unknown k2. The 

solutions of this equation fulfil the relation [1, p. 340; 13.16, (3)] for the six permut­

ations of the zero points eu e2, e3 of the Weierstrass cubic polynomial [1, p. 338; (10)]. 
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After a modification and reduction we obtain the cubic equation 

(4) (a-ir-22j(a-l) + 2^J = 0. 
4 4 

Let the zero points of the Weierstrass cubic polynomial [1, p. 338; (10)] fulfil the 
inequality 

ei > e2 > e3 , 

so that according to [V p. 342; (11)] the moduli of Jacobi elliptic functions [V p. 340; 
13.16] fulfil 

0 < k2 < 1 ; 0 < k'2 < 1 . 

According to [1, p. 340; 13.16, (3)] 

ex — e3 = 3O > 0 

holds and with respect to [1, p. 332; (5)] the invariant 

g3 = 4exe2e3 = V ( 2 - k2)(l - 2k2) (1 + k2) = 

= 4O3(1 + k'2) (2k '2 - 1) (2 - k'2) , 

so that 

sign g3 = sign (1 — 2k2) = sign (2k'2 — 1) . 

Consequently, if g3 > 0, then the inequalities 

(5) 0 < k2 < i ; i < k'2 < 1 ; 

hold; if g3 < 0, then 

i < k2 < 1 ; 0 < k'2 < i . 

Hence the evaluation of the most suitable value of the modulus k under the condition 
(3) is given by the relation 

where, using the goniometric solution of (4), we have 

(8) a = 1 + 3 c o s ^ - ^ ) > 5 ; 

cos <p 2 
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(9) cos ę = — 
yj J 

(10) 0 < ę < - . 
2 

With respect to [1, p. 340; 13.16, (3) and p. 332; (5), (6) respectively], the half-
periods (l) and (2) if the Weierstrass p-functions are given by 

(11) °-кHÇ-^г) 
K IJ2 //(l + fc-)(l-2fc-)(2-fc-)\ . 

(12) ď'"HNг) 
.„, m л í((i + e)(\-2k*)(2-e) 
iK' 'i V 3 V \ g3 

provided condition (3) is fulfilled. 

Examples: 1. Consider the differential equation 

, 2 l d y V 
2dxj 

= y3 - 24y - 1.6 . 
2." 

After a modification we obtain the equation 

ffi-4y3 - 96y - 64 , 

which is satisfied by the Weierstrass function 

(14) y = p(x + c), 

c being a constant of integration [I , p. 332; (4)]. Let us find the half-periods (1), (2) 
of the Weierstrass function (14). 

According to (13) g2 = 96; g3 = 64, hence the absolute invariant 

J = 1,142857 . . . > 1 . 

Substituting this value into (9) we obtain with respect to (10) 

q> = 0,361367123 . . . , 
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which implies with regard to (8) 

a = 2,92570 ... 

and, according to (6) and (5) 

k2 = 0,39517... , 

Thus after the evaluation of complete integrals [2, p. 105 — 108] 

K = 1,77416 ; K' = 1,95479 , 

and with respect to (11) and (12) we obtain the half-periods (l) and (2) respectively: 

co = 0,5688... co' = 0,6267 .. . i. 

If it were g3 = — 64 in the equation (13), then according to (7) we should have 
k2 = 0,60482 .. . Hence according to (11) and (12) the half-periods (1) and (2) would 
be co = 0,6267 ... and co' = 0,5688 .. . respectively. 

2. If we have the differential equation 

,£-£)•-->,-,„,-«. 
we modify it to 

/ i c \ fdy\2 A 3 5 2 3 6 8 

(IS) ( _ ) _ « . . - _ , - _ . 

so that the invariants 

52 368 
Qi = — ; ga = —r > 

3 27 

hence the absolute invariant 

J = 27,12345 ... > 1 . 

After the substitution of this value into (9) we obtain with regard to (10) 

<p = 1,377585830..., 

which implies according to (8) 

a = 14 

and according to (6) and (5) it is 

k2 = 0,071796 . . . . 
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Thus after the evaluation of complete elliptic integrals [2, p. 105 — 108] 

K - 1,60018; K' = 2,73504, 

and with respect to (11) and (12) we have the half-periods (1) and (2) respectively: 

co = 0,8283... CD' = 1,4157... i. 

If it were g3 = —368/27, then according to (7) we should have k2 = 0,92820... 
Hence according to (11) and (12) the halfperiods (l) and (2) would be co = 1,4157 .. . 
and co' = 0,8283 ... i. 
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S ú h r n 

VYČÍSLEME POLPERIÓD WEIERSTRASSOVEJ p-FUNKCIE 

PRI ABSOLÚTNOM INVARIANTE VÁČŠOM AKO ČÍSLO 1 

JÁN CHRAPAN 

V práci sú odvodené výrazy vhodné pre vyčíslenie polperiód Weierstarssovej 
p-funkcie pri absolútnom invariante váčšom ako číslo 1 a výpočet je ilustrovaný 
na dvoch numerických príkladoch. 

Authaťs address: f Prof. RNDr. Ján Chrapan, Přírodovědecká fakulta University Komenského, 
Bratislava. 
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