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SVAZEK 15 (1970) A P L I K A C E M A T E M A T I K Y ČÍSLO 6 

CONFORMAL MAPPING OF THE HALFPLANE ONTO A STRIP 
WITH VARIABLE WIDTH 

MILAN HVOZDARA 

(Received July 17, 1969) 

1. INTRODUCTION 

Many applications of conformal mapping in the solution of two-dimensional 
potential field problems require to find a conformal mapping of a complex halfplane 
into an infinitely long strip whose one boundary is a straight line while the other is 
a polygonal line. Let us have the complex plane w = £ + ir\. Our aim is to find 
a conformal mapping of the half plane Im (w) > 0 into a polygon in the complex 
plane U = y + iz, this polygon being of the shape of an infinitely long strip whose 
one boundary is the straight line z = 0, ye(— oo, +co) while the other is the 
following polygonal line: 

z = h1 , y e (— oo, 0> , 

z = h1 + by, ye(0,D), 

z = h2, ye(D, +oo), 

b = tan (p, D = (h2 — h^/tan cp, cp is the slope angle of the oblique part of the 
polygonal line, hx < h2. This problem has been until now solved only for two cases 
of the slope angle cp = n/2, cp = n/4, [1], [2]. We shall consider more general cases 
of the angles: cp = mn/r where m, r are positive integers, m < r. 

2. EXPRESSION OF THE MAPPING 

In order to obtain the required conformal mapping we shall use Schwarz-Christoffel 
theorem which states for the differential dU of the interior of the polygon: 

(1) dU = A(w - Çjf1*-1 (w - ЪУ2'"-1 ... (w - Q*"1*-1 d w 

where £l9 £2, ..., £w are the points of the real axis of the w-plane corresponding to the 
vertices of the given polygon, while a1? a2, ..., art are the interior angles of the polygon 
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and A is a scale constant. Following the technique given e.g. in [3], [4] we can 
arrange the following pairs of points from the planes w and U corresponding to each 
other as well as the angles ak belonging to them. 

w plane U plane angle a  

Či-> o U!= -OO + i|° at = 0 

É 2 - - 1 U2 = І i a 2 = тi(l + w/г) 

Éз -» ~c U3 = D + І 2 
a 3 = 7г(l — m/r) 

ç 4 -> — 00 U4 = +00 + ІҺ2 

Tab. 1. 

a 4 = 0 

The situation in the planes w and U is illustrated in fig. 1 where the path orientation 
is also indicated. The real number c introduced in Tab. 1 will be determined later; 
it will be shown that it depends on some dimensional parameters of the strip. Since 
£4 = — co and a4 = 0, the term (w — £4)a4/w ~ * wiH not occur in the expression (l), 
[5], So we get 

(2) 

(3) 

dU = Aw-Қw + l ) w / r (w + c)"w/rdw 

U = A j w _ 1 [(w + l)/(w + c)]w/r dw + B , 

Now we shall determine the constants A and c by investigation of the properties of 
our conformal mapping at some points of the plane w. Passing in the w plane along 
the real axis from + co to 0, we pass in the plane U along the real axis y from + oo 
to — oo. Now let us pass along a small semicircle w = T exp (id) with its centre at 

^T % ¥>\f 
0 -1 -ç 

11 

complex plane U^y+iz complex plane w mw+irj 

Fig. 1 
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w = 0(T 4 1, 0 e <0,7i>). In the U plane the corresponding change is JdU = ihv Thus 
we get: 

ihx = 

So we have obtained 

(4) 

l i m A f ^ 
t-0 J 0 T 

ҡ u exp (i 0) 

exp (i 0) 

"т exp (iØ) + Г im/r 

_т exp (iØ) + c_ 
d0 = Ař7t(l/c)m/r 

A7i(l/c)m/r = ht . 

If we pass in the w plane along a large semicircle w = K exp (i 0), 0 e <7r, 0>, R > c, 
then we pass in the U plane at y -> + co from the lower boundary to the upper one, 
so the imaginary part of U changes by — ih2. Thus it is: 

— ІҺn lim A 
R^OO 

From this we obtain 

,0 ІR exp (iØ) 

я K exp (ІØ) 

"K exp (ІØ) + 1" 

R exp (iØ) + c 

jm/r 

dØ -AІ7Г 

(5) 

Substituting into (4) we get 

(6) 

A = h2/7Г , 

c = {h2iкүm. 

Since we considered h2 > h1ii will be c > 1. 
The constant of integration B can be determined on the basis of the properties of 

the transformation (3) at the points w = — 1, — c. To this purpose we have to perform 
the integration indicated in (3). We need to calculate the integral 

(7) j = L-i [ ( w + i)/0 + c)]m/rdv 

We introduce a new variable p by the substitution 

(s) P = [ 0 + i)/o + c)Ylr. 

Thus we can write 

(9) І (c - 1) pm+r 

åp 
1 

dp i „ m - l 

1 - cpr 
àp. 

( c / - l ) ( l - / ) 

We can express both integrals in (9) by means of elementary functions, distiguishing 

the cases of even or odd r. According to [6] we get: 

a) for r even; r — 2n: 

* • 

(10) 2n [p"1'1/^ - p2n)~] dp = ( - l ) m + 1 In (1 + p) - In (l - p) -

n - l 

— _^ cos (kmn/n) In (l — 2p cos (kn/n) + p2) + 
k = l 

w - l 

+ 2 _^ sin (kmnjn) arctan [(p — cos (k7r/n))/sin (k7r/n)] , 
/ c = l 
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b) for r odd; r = 2n + 1: 

(11) (2n + 1 ) f [ p m - 1 / ( l - p 2 " + 1 ) ]dp = 

= - In (1 - p) + ( - l ) m + 1 £ cos [m7r(2k - l)/(2n + 1)] . 
fc = i 

. In [1 + 2p cos ((2k - 1) 7r/(2n + 1)) + p2] + 

+ 2 ( - l ) m + 1 £ sin [m7r(2k - l)/(2n + l)] . 
fc=i 

. arctan [(p + cos ((2k - 1) 7r/(2n + l)))/sin (n (2k - l)/(2n + 1))] . 

As it is convenient to reduce the fraction mjr if possible, it is evident that for even r 

we have m odd only. So in (10) we can write (—l)m + 1 In (1 + p) — In (1 — p) = 

= In [(1 + p)j(\ — pj\. Using (10) and (11) we can easily calculate also the second 

integral in (9), obtaining explicit expressions of the mapping: 

a) for r even, r = 2n 

(12) U = -~ {in (L±_/\ _ M £ cos (kmnjn) In [1 - 2p cos (k7r/n) + P2] + 
71 I V ~ PJ *==1 

+ 2 YJ s m (kmnjn) arctan [(p — cos (k7r/ri))/sin (knjn)] H—* 
fc=i cíP + ' 1 

+ £ cos (kmnjn) ln [1 — 2cxp cos (kn/n) + c\p2~\ — 
fc = i 

— 2 J] sin (kmnjn) arctan [(c^P — cos (k7r/n))/sin (k7r/n)] > + ß , 

b) for r odd; r = 2n + 1: 

(13) 17 = h2/n { - ln (1 - p) + ( - l ) m + 1 £ cos (mтr(2k - l)/r) . 
fc=i 

. In [1 + 2p cos ((2k - 1) n/r) + T2] + ( - l ) m + 1 2 £ sin (m7r(2k - l)/r) . 
fc = i 

. arctan [(p + cos ((2k - 1) 7r/r))/sin ((2k - 1) 7r/r)] -

- hjh2[-\n (clP - 1) + ( - l ) m + 1 £ cos (m7r(2k - l)/r) . 
fc=i 

. In [1 + clP cos ((2k - 1) n/r) + c\p2~\ + ( - l ) m + 1 2 £ sin (mn(2k - l)/r) . 
fc=i 

. arctan [(clP + cos ((2k - 1) 7r/r))/sin ((2k - 1) 7r/r)]]} + K . 

In these expressions we put cx = (h2/^i)1/m = cll\ Q is a new constant of integration 
for r even; it contains B and the purely imaginary term ih1 arising by the change of 
sign in the argument of In (l — cYp). K is another constant of integration for r odd, 
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it contains B and the purely imaginary term ihx arising similarly as above. In view of 
different transformation expressions for r even or odd we can expect that Q and K 
will be different too. We shall determine them by using the corresponding relations 
required by Tab. 1. First of all we arrange (12) and (13) into the form convenient for 
the calculation in the vicinity of the point w = —c for which p -» oo. Investigating 

n - l 

the terms of the sum occuring in (12): ]T cos (kmn/n) In [1 — 2p cos (kn/n) + p 2 ] 
k=l 

m odd, we find that there is either zero (for mjr = •£) or an even number of terms, and 
that it is possible to group together the k-th and the (n — k)-th term because 
cos (kmn/n) = — cos [(n — k) m7r/n]. Thus it follows that: 

7 1 - 1 

(14) YJ COS (kmn/n) In [1 — 2p cos (kn/n) + p2] = 
k=l 

N 

= £ cos (kmn/n) In [1 — 2p cos (kn/n) + P2)/(l + 2p cos (kn/n) + p2)] 
k=l 

where N = [(n — l)/2], N = (n — l)/2. In a similar way it is possible to arrange also 
the next sum in (12) in which instead of p there occurs cxp. So we get the following 
expression of the transformation for r even: 

N 

(15) U = h2/7r{ln [(1 + p)/(l - p)] - X cos (km7r/n) . 
k=i 

. [In [1 - 2p cos (fen/n) + P2)/(l + 2p cos (kn/n) + p2)~\ -

- (hjh2) In [(1 - 2cxp cos (kn/n) + CiP2)/(l + 2pci cos (k7r/n) + P2c2)]] + 

+ (h1/h2)\n[(clP- l ) / (c l P + l)] + 
n-l 

+ 2 £ sin (kmn/n) [arctan [(p cos (kn/n))/sm (kn/n)] — 
k=l 

~ (nilni) arctan [(cjp - cos (kn/n))/sm (kn/nj]~]) + g . 

In order to arrange the expression (13) we use the following property of trigonometric 
functions: 

n 

(16) ( - l ) m + 1 2 X cos [m7r(2k - l)/(2n + 1)] = 1 , m < 2n + 1 . 
k=l 

This formula can be easily proved by using Euler formula for cosine and by summing 
geometrical succesions. Then we can write: 

(17) - In (1 - p) + ( - l ) w + 1 £ cos [m7r(2k - l)/(2n + l)] . 
k = i 

. In [1 + 2p cos ((2k - 1) 7r/(2n + 1)) + p2] = 
n 

= 2 ( - l ) m + 1 X cos (mn(2k - l)/(2n + 1)) . 
k=l 

. In [(1 + 2p cos ((2k - 1) nl(2n + l)) + / ) , / 2 / ( l - p)] . 
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The relation (13) can be transcribed in the form: 

(18) 17 = 2 / I 2 / T I { ( - l)m + 1 £ cos (m7i(2fc - l)/r) . 
k=l 

. [In [(1 + 2p cos ((2fc - 1) 7i/r) + P2)1/2/(l - p)] ~ 

- (hjh2) In [(1 + 2ciP cos ((2fc - 1) njr) + c*p2)1/2/(ciP - l)]] + 

+ sin (m7i(2fc - l)/r) [arctan [(p + cos ((2fc - l) 7i/r))/sin ((2fc - l) 7r/r)] -

- (hjh2) arctan [(cvp + cos ((2fc - 1) 7i/r))/sin ((2fc - 1) n/r)]]} + K , 

r = In + 1 . 

Now we can determine the integration constants Q and K. According to Tab. 1 
and (8): 

(19) for w = — 1 there is p = 0 and it should be U = ihu 

(20) for w = — c there is p -> oo and it should be U = D + ih2. 

Let r be even, r = In. We put p = 0 in (15). According to (19) it should be 

n - l 

ihv = ri27i{2(l - hJh2)Y sin (kmKJn) arctan ( —cotan (fc7i/n)) + 

+ / i j ^ l n t - l ) } + Q. 

Considering the principal value of arctan it can be easily shown that the sum in the 
last term yields zero and because of In (— 1) = in, we get 

(21) Q = 0 . 

With such Q = 0 also the second relation (20) must be valid. Passing to the limit of 
the right-hand side of (15) for p -> oo, it should be 

n - l 

D + ih2 = h 2 /7i{ln(- l ) + 7c(l - hjh2) £ sin (kmn/n)} . 
k = i 

The imaginary part of this equality is evidently fulfilled. The real parts of the right-
hand and left-hand sides of it are also equal as the validity of the following relation 
can be proved (in a similar way as in (16)): 

n - l 

(22) 1/tan (mKJln) = £ sin (kmKJn) ; m odd , m < 2n . 
k=l 

Now we determine the integration constant K in the case of r odd, r = 2n + 1. 
Let us pass to the limit of the right-hand side of (18) for p —> oo. According to (20) 
it should be: 

(23) D + ih2 = h2ln{(- l ) w + 1 2 £ cos (m7i(2fc - l)/(2n + 1)) + 
k=l 

+ 7i(l - hjh2) ( - l)m + 1 £ sin (mn(2k - l)/(2n + 1))} + K . 
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The first termin the curly brackets in view of (16) yields In (— 1) so that the imaginary 
part of K will be zero. Then K will be a real number: 

(24) K = D - (-l)m+l (h2 - hx) [1 + ( - l ) w + 1 cos (mni(2n + 1))] . 

. [2 sin (mnj(2n + l ) ) ] " 1 , 

because, in a similar way as in (16), it can be proved that 

n 

(25) YJ s i n [rnn(2k - l)/(2n + 1)] = 
/c = l 

= [1 + ( - l ) w + 1 cos (mnl(2n + l))]/[2 sin (m7r/(2n + 1))] . 

We can see that in the case of r odd we obtained a non zero integration constant. 

Its verification can be made by using (19). Performing the limit process p -> 0 
in (13) we find that in order that (19) be fulfilled it must be: 

K + 2 / T T ( - 1 ) W + 1 (h2 - ht) £ sin [m7i(2k - l)/(2n + 1)] . 
fe=i 

. arctan {cotan [(2k - l) nl(2n + 1)]} = 0 . 

This relation can be used for testing numerical calculation. 
Now when we have determined the integration constants Q and K we know com­

pletely the analytical form of the required conformal mapping. It can be easily shown 
that the mappings known until now for the slopes cp = n/2, 7c/4 given in [1] and [2] 
are special cases of that of ours (it is sufficient to put in (15) mjr = \, \ respectively). 
By means of the conformal mapping obtained it is possible to calculate e.g. the 
stationary electric current through a conductor which is bounded on the upper side 
by a plane and on the lower side by a piecewise planar boundary. Another application 
is possible in the investigation of the flow of an incompressible fluid. In such applica­
tions it is possible to proceed analogously as it is suggested e.g. in [7]. 
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Súhrn 

KONFORMNĚ ZOBRAZENIE POLROVINY NA PÁS 
PREMENLIVEJ VÝŠKY 

MILAN HVOŽDARA 

Pomocou Schwarz-Christoffelovej vety je odvodené konformně zobrazenie pol-
roviny na nekonečné dlhý pás, ktorého jedna hranica je priamka a druhá lomená 
čiara skladajúca sa z dvoch polpriamok rovnoběžných s prvou hranicou a spojených 
šikmou úsečkou s uhlom sklonu rovným racionálnemu násobku n. Toto zobrazenie 
je vyjádřené pomocou elementárnych funkcií, pri rozlišovaní prípadov kedy je n 
dělené párnym a kedy nepárnym celým číslom; sú ukázané niektoré jeho dóležité 
vlastnosti. 

Authoťs address: Dr. Milan Hvoždara, Geofyzikálny ústav SAV, Dúbravská cesta, Bratislava -
Patronka. 
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